
On geometric mean fitness: a reply to Takacs and

Bourrat

In a recent paper, Takacs and Bourrat (2022) examine the use of geometric mean

reproductive output as a measure of biological fitness. We welcome Takacs and

Bourrat’s scrutiny of a fitness definition that some philosophers have adopted

uncritically. We also welcome Takacs and Bourrat’s attempt to marry the philo-

sophical literature on fitness with the biological literature on mathematical mea-

sures of fitness. However, some of the main claims made by Takacs and Bourrat

are not correct, while others are correct but not for the reasons they give.

1 A false contrast

The concept of geometric mean fitness arose from attempts to understand

how natural selection works in a fluctuating (or stochastically-varying) envi-

ronment (Lewontin and Cohen, 1969; Gillespie, 1973). The simplest such sce-

nario involves a large population of haploid asexual organisms, with discrete

non-overlapping generations and no density regulation. Organisms are of two

(heritable) types. An organism’s reproductive output depends on both type

and environmental state. If the environmental state varies stochastically from

generation to generation, then in the long-run, the type with the highest value

of G(X) =
∏

i X(i)p(i) will come to dominate the population, where X(i) is
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the per-capita number of surviving offspring of type X in environmental state

i, p(i) is the probability that state i occurs, and the product is taken over envi-

ronmental states. Note that the geometric mean can equivalently be written as

G(X) = exp (
∑

i lnX(i) · p(i)).

Takacs and Bourrat observe that a number of philosophers have advocated

geometric mean number of offspring as “the” definition of biological fitness,

often without reference to the underlying model assumptions (and some have

tried to extract general philosophical morals from this) (Beatty and Finsen

1989; Brandon, 1990; Sober, 2001). Takacs and Bourrat are right to query this

tendency. However, they go on to contrast geometric mean fitness with the

instantaneous rate of natural increase r (or Malthusian parameter), which is

defined as the exponential population growth rate on a continuous time scale.

Takacs and Bourrat then assert that geometric mean fitness amounts to a special

case of the Malthusian parameter r in the case of a discrete population model

with non-overlapping generations. They write:

Fitness construed as a continuous growth rate is a more general mea-

sure. [...] However, fitness is not measured by way of the geometric

mean when continuous growth rates are used (2022, 17)

This assessment can lead to some mistaken ideas about the relationship

between geometric mean fitness and population growth. It is true that the

geometric mean principle presupposes discrete time and non-overlapping gen-

erations (as does much of classical population genetics). And it is also true

that these idealizations are not appropriate for many species (as has often been

observed). So, Takacs and Bourrat are right that “defining” fitness as geometric

mean number of offspring rests on model assumptions. However, in continuous

time models, which permit overlapping generations, there is in fact a quantity

that is strictly analogous to the geometric mean fitness, known as the long-run
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growth rate, which determines the evolutionary outcome in a fluctuating envi-

ronment (Lande 2007; Saether and Engen 2015). So the concept of maximizing

geometric mean fitness generalizes easily to the continuous setting, contrary to

what Takacs and Bourrat imply.

The long-run growth rate, usually denoted s, is defined as the asymptotic

rate of increase of the natural logarithm of population size. To illustrate the

relationship between geometric mean fitness and long-run growth rate, consider

a population consisting of Nt identical individuals of the same haploid genotype

at time t (t ∈ {0, 1, 2, ...}) that grows without density regulation.1 Genera-

tions are non-overlapping, and the environmental variation affecting popula-

tion growth is assumed to be stochastically independent over time and follows

the same probability distribution. The population size at time t is given by

Nt = N0W0W1...Wt−1 with the growth multipliers Wt (frequently referred to as

“fitness” in the biological literature). The logarithmic population size lnNt can

then be expressed as lnNt = lnN0 +
∑t

u=1 lnWu. The slope of the logarithmic

population size lnNt is given by 1
t (lnNt−lnN0), which reduces to 1

t

∑t
u=1 lnWu,

which, by the law of large numbers, converges to E(lnW ) as t goes to infinity.

(Since the Wt are independent and identically distributed (i.i.d.), we can use

the shorthand W to write E(lnW ), i.e. the expectation, over the uncertain

environment, of the natural logarithm of W .) Thus over long time intervals the

population grows exponentially with growth rate s = E(lnW ).

In this discrete-time setting, maximization of the long-run growth rate is

identical to maximization of geometric mean fitness. For the geometric mean

of a strictly positive random variable X is given by exp (E(lnX)). Since the

long-run growth rate s is equal to E(lnW ), as we have seen, the geometric

mean fitness is simply es. Therefore, choosing a genotype based on the long-run

growth criterion (maximal s) simply amounts to applying the geometric mean

1The presentation follows an example in Saether and Engen (2015).
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principle. However, the long-run growth rate measure applies more widely,

in particular to continuous-time models that allow for overlapping generations

(Tuljapurkar, 1982; Lande et al., 2003).

The expected value E(W ), referred to as the finite rate of increase in the

biological literature and denoted by λ, does not determine the growth of the

genotype over a long period of time in a stochastic environment. Since the

instantaneous rate of natural increase r is given by er = λ, Jensen’s inequality

tells us that s ≤ r holds (Starrfelt and Kokko, 2012). It can be shown that in

large populations where demographic stochasticity can be ignored, the long-run

growth rate s is approximately equal to r − σ2

2λ , with σ2 denoting the variance

for the temporal fluctuations in W (Lewontin and Cohen, 1969; Tuljapurkar,

1982). That is, in these models the long-term growth rate s differs from the

instantaneous rate of natural increase r by a correction factor capturing the

environmental stochasticity.

This shows that Takacs and Bourrat are quite wrong to say that the geomet-

ric mean fitness is a special case of the instantaneous rate of natural increase.

With a fluctuating environment, it is not true that the type with the highest

Malthusian parameter r = lnE(W ) will dominate the population. What is true

is something very different, namely that geometric mean fitness is a special case

of the long-run growth rate. This shows, further, that Takacs and Bourrat’s

emphasis on the distinction between discrete time models with non-overlapping

generations and continuous time models with overlapping generations is mis-

placed. These two are simply alternative modeling choices. The key biological

implication of the early work on geometric mean fitness - that natural selection

will favour genotypes with lower variance in per-capita reproductive output,

other things being equal - applies equally in continuous-time models where the

environment varies stochastically.

4



2 A cautionary tale

The subtitle of Takacs and Bourrat’s paper – “a cautionary tale about the use

of the geometric mean as a measure of fitness” – leads the reader to expect that

they will identify circumstances in which this fitness measure is inappropriate

(or leads to the wrong prediction). However, they do not do this. Rather,

they make two points: (i) since the geometric mean of a random variable X is

inter-definable with the arithmetic mean of lnX, the arithmetic mean is “on an

equal footing” with the geometric mean, so remains a “good measure of fitness”

(p.12); (ii) the geometric mean is appropriate for models with discrete time

and non-overlapping generations only (p.12). Neither (i) nor (ii) is a well-taken

objection. Point (i) is obviously true, but shows only that we need to take care

to specify what random variable we are talking about, when we ask whether the

geometric or arithmetic mean of that variable is a “better” measure. Point (ii)

is true but beside the point, given that the long-run growth rate is the analogue

for continuous-time models, as noted above.

That being said, in the spirit of Takacs and Bourrat’s “cautionary tale”,

some cautionary remarks are indeed in order. There are real reasons why the

geometric mean fitness (or long-run growth rate) criterion may be questionable.

We will briefly discuss two. The first is that stochastic models in which geo-

metric mean fitness offers the appropriate criterion of evolutionary success rely

on the assumption of a sufficiently large population. For instance, Gillespie’s

demonstration that geometric mean fitness is maximized under environmental

stochasticity (Gillespie, 1973) assumes that the competing strategies grow with-

out density or frequency-dependence and thus that the population size can grow

to infinity; this means that we can make a certain prediction about what will

eventually happen. As shown by Proulx and Day (2001), however, the fixation

probability of a rare allele sometimes offers a better way of predicting evolu-
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tionary success in a finite population. Proulx and Day examine a model of

lottery competition in a stochastic environment. In this model, sessile marine

organisms, such as coral reef fish, compete for a small number of sites and are

chosen randomly to win these sites. The population size is limited due to the

finite number of available sites. Environmental stochasticity is introduced via

an environmental variable affecting the mortality of adult organisms. Proulx

and Day show that for small population sizes the fixation probability predicts

evolutionary success, but as the population size becomes large the predictions

based on geometric mean fitness turn out to be correct.

Secondly, the use of geometric mean fitness has been criticised for its em-

phasis on predicting the eventual fate of an allele (or genotype) while saying

nothing about short-term evolutionary dynamics. Lande (2007) presents an ex-

ample of two genotypes facing weak selection. Although the type with the higher

long-run growth rate will ultimately dominate the population (i.e., its frequency

approaches one), the superior type faces a long period of time where there is

a significant probability that its frequency is close to zero. Lande’s example

demonstrates that it can be unclear which fitness measure is most suitable for

predicting evolutionary outcomes over finite time periods. Model assumptions

and the context of inquiry – i.e. what evolutionary question we want to answer

– jointly determine whether a candidate fitness measure is adequate. So there is

indeed a case for “caution” when it comes to the use of geometric mean fitness,

however for reasons entirely different from the ones that Takacs and Bourrat

give.

In a similar vein, caution is needed when using the instantaneous rate of

natural increase r to predict evolutionary success, as championed by Takacs

and Bourrat. In a constant environment, r is often an appropriate measure

of a genotype’s fitness – but not always. In an important article, Mylius and
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Diekmann (1995) contrast two possible fitness measures in the context of life-

history evolution in a density-regulated population. The first is r; while the

second is R0, the net reproductive rate, defined as a female’s lifetime expected

number of offspring. A key difference between these measures is that R0 simply

counts the total amount of offspring a female produces, so is insensitive to early

versus late reproduction, unlike r.2 Using ESS (evolutionary stable strategy)

considerations, Mylius and Diekmann show that whether r or R0 is the “right”

definition of fitness (in the sense of supplying a criterion for whether a genotype

will be uninvasible by mutants once fixed in the population), depends on the

precise form that the density regulation takes (e.g. reducing adult survival,

adult fecundity, or juvenile survival). Under some forms of density regulation, a

genotype that maximizes r will be uninvasible; while under others, a genotype

that maximizes R0 will be uninvasible. Again, model assumptions dictate the

choice of fitness measure.

3 A note on biological modelling

Takacs and Bourrat insist on the primacy of continuous-time over discrete-time

growth models. We find this puzzling. While it is true that only a few species

(such as 13-year periodical cicadas) correspond exactly to the assumptions of

a discrete-time growth model with non-overlapping generations, such models

can nonetheless yield insight; and of course, continuous-time models rest on

idealizations of their own. There is no general reason to regard continuous-time

models as “closer to biological reality” than discrete-time models, nor therefore

to regard continuous-time fitness measures as more fundamental. The choice

between modelling in discrete or continuous time, in both evolution and ecology,

2Both r and R0 can be expressed as functions of genotype-specific birth and death rates,
however they are different functions. See Brommer (2000) for a good explanation of this point.
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is a pragmatic matter; it is dictated partly by considerations of analytical or

computational convenience – which can pull in either direction – and partly by

the biology of the species under consideration.

It is worth noting that some mathematical phenomena only occur in a

discrete-time setting. A famous example is the discrete logistic growth model

discussed by May (1974). May shows that the discrete model displays a form

of instability and oscillatory behaviour that is not present in the continuous

model. So the discrete model (making use of difference equations) is, in a sense,

more complex than the continuous model (making use of differential equations).

Discrete modelling therefore has its rightful place in theoretical biology.

It should also be noted that some models with overlapping generations can

be re-described as models with non-overlapping generations. Cannings (1973)

shows how the continuous-time Moran model of genetic drift assuming over-

lapping generations can be reduced to a non-overlapping generations model by

modifying its nomenclature. For this class of models, the choice between an

overlapping and a non-overlapping generations assumption leaves the mathe-

matics of the model essentially unaffected.

4 The definition of fitness

Much ink has been spilled in both biology and philosophy of biology over the

question of how to define fitness. It is tempting to assume, given the great

generality of Darwin’s theory, that there must be a single “right” answer to this

question. The tendency that Takacs and Bourrat criticize – taking the geometric

mean number of offspring as “the” definition of fitness – is an example of this.

But as we have seen, there are circumstances where this fitness measure (or

its continuous-time analogue) is not suitable for answering certain questions of

interest. The correct moral, though, is not to seek an alternative “always right”
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fitness measure, as Takacs and Bourrat do, but rather to realize that there is

no universally correct measure. That is, the correct measure depends on both

precisely what question we want the fitness measure to answer, and on model

assumptions.

This leads to the question of what determines whether a candidate fitness

measure is or is not “correct”, that is, what do we actually mean by “correct”

here? Takacs and Bourrat say little about this, other than to talk about the

measure being “predictively efficacious” or “predictively adequate” (2022, p.12).

But the question is an important one, and has been extensively discussed in the

biological literature (Mylius and Diekmann, 1995; Metz, Nisbet and Geritz,

1992; Saether and Engen, 2015; Brommer, 2000; Otto and Day, 2007). The

consensus that has emerged is that a fitness measure (or putative optimality

criterion) should ideally be justified on the basis of an invasibility, or evolution-

ary stability, argument. That is, for a fitness measure to be “correct”, it should

be the case that the type with the highest value of this measure is an ESS

(and preferably the unique ESS) of the underlying evolutionary model. (The

rationale here is that only an ESS is a candidate endpoint of the evolutionary

process). This provides a principled way of choosing between fitness measures;

and it picks out the geometric mean measure in those stochastic environment

models where it is used. Moreover, it is this consideration that shows why the

instantaneous rate of increase r – Takacs and Bourrat’s preferred measure –

is not always the right fitness measure when there is density-dependence, even

without the complication of fluctuating environments, as noted above.

The fact that there is no uniquely correct fitness measure, free from model

assumptions, is perhaps somewhat surprising. It is tempting to think that there

must be such a measure on pain of evolutionary theory lacking the generality

that it is widely supposed to have. Surely, one is tempted to say, there must
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be some “meta-model” that subsumes all others and that gives a universally-

applicable mathematical definition of fitness of which all others are special cases?

But the evidence strongly suggests that there is no such definition; and evolu-

tionary biology seems to get on fine without one. We suggest that this is because

the theory of evolution is in reality closer to a “patchwork of models” (sensu

Cartwright (2008)) than to an axiomatic theory, despite the impression con-

veyed by the simple verbal summaries of “the Darwinian principles” found in

both the scientific and philosophical literature. Further philosophical reflection

on this point might be useful.
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