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Abstract4

What is the relation between philosophy of science and the sciences? As Pradeu5

et al. (2021) and Khelfaoui et al. (2021) recently show, part of this relation is6

constituted by “philosophy in science”: the use of philosophical methods to address7

questions in the sciences. But another part is what one might call “science in8

philosophy”: the use of methods drawn from the sciences to tackle philosophical9

questions. In this paper, we focus on one class of such methods and examine the10

role that model-based methods play within “science in philosophy”. To do this,11

we first build a bibliographic coupling network with Web of Science records of12

all papers published in philosophy of science journals from 2000 to 2020 (N =13

9, 217). After detecting the most prominent communities of papers in the network,14

we use a supervised classifier to identify all papers that use model-based methods.15

Drawing on work in cultural evolution, we also propose a model to represent the16

evolution of methods in each one of these communities. Finally, we measure the17

strength of cultural selection for model-based methods during the given time period18

by integrating model and data. Results indicate not only that model-based methods19

have had a significant presence in philosophy of science over the last two decades,20

but also that there is considerable variation in their use across communities. Results21

further indicate that some communities have experienced strong selection for the22

use of model-based methods but that other have not; we validate this finding with23

a logistic regression of paper methodology on publication year. We conclude by24

discussing some implications of our findings and suggest that model-based methods25

play an increasingly important role within “science in philosophy” in some but not26

all areas of philosophy of science.27

1 Introduction28

What is the relation between philosophy of science and the sciences? To answer this29

question, philosophers of science have recently turned to digital techniques and biblio-30

metric data (Malaterre et al., 2019, 2020; Khelfaoui et al., 2021; Pradeu et al., 2021).31

This approach has made it possible to identify philosophers who regularly publish in sci-32

ence journals, track how often philosophy papers are cited by scientists, and measure33
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the impact that philosophers have within scientific disciplines. A main finding from this34

emerging body of work is that philosophers often make genuine contributions to scientific35

debates by relying on methods that are typically regarded as philosophical, such as con-36

ceptual analysis and metaphysical theorizing. This is what some now call “philosophy in37

science” (Khelfaoui et al., 2021; Pradeu et al., 2021).38

However, the relation between philosophy of science and the sciences is not unidirec-39

tional. Although “philosophy in science” is certainly part of the picture, philosophers of40

science also engage with the sciences by drawing on methods from scientific disciplines to41

address philosophical questions. There are of course many different ways in which this42

can occur. For instance, philosophers of science sometimes borrow survey-based and ex-43

perimental methods from the cognitive and behavioral sciences in what is now known as44

“experimental philosophy of science” (Knobe, 2007; Griffiths and Stotz, 2008; Machery,45

2016). Philosophers of science can also address philosophical questions by relying on dig-46

ital tools to analyze bibliometric data (Pence and Ramsey, 2018; Ramsey and De Block,47

2021), as in the studies described above. Another class of methods that philosophers48

of science can and often do borrow from the sciences are model-based methods, such49

as mathematical and computational models (Wheeler, 2013; Leitgeb, 2013; Mayo-Wilson50

and Zollman, 2021). Thus, another side of the relation between philosophy of science and51

the sciences is what one might call “science in philosophy”: the use of methods drawn52

from the sciences to tackle philosophical questions.53

Although surveys, experiments, tools for bibliometric data analysis, and models are54

widely used in the sciences, they make up a very heterogeneous collection of methods. It55

is therefore challenging to study their use in philosophy of science at once, especially when56

relying on the automated tools we describe below. For these reasons, we focus here on the57

use of a single type of method: model-based methods. Model-based methods make up a58

complex class of methods that has sparked a large and growing philosophical literature59

(Suárez, 2008; Weisberg, 2012; Frigg et al., 2020). Our goal here is not to contribute60

to our understanding of how models are used in science. Rather, it is to understand61

how philosophers borrow model-based methods from the sciences to address question in62

philosophy. The use of such methods is especially common in philosophy of science. A63

recent example is Sprenger and Hartmann (2019), who make extensive use of probability64

theory to model scientific reasoning and address long-standing issues in general philosophy65

of science. Or take subfields of philosophy of science, such as philosophy of physics66

and philosophy of biology. In these subdisciplines, differential geometry and dynamical67

systems theory are important tools for building models, as recent work by Huggett and68

Wüthrich (2018) and Tanaka et al. (2020) illustrate. In work on the social dimension69

of science, numerical techniques such as computer simulations and agent-based models70

are quite widespread as well—for an early and a recent example, see Zollman (2007) and71

Weatherall et al. (2020).72

In this paper, we examine the role that model-based methods play within “science in73

philosophy”. To do so, we analyze a large bibliometric dataset. Using publicly available74

data from the Web of Science, we build a bibliographic coupling network with all research75
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articles published in the main philosophy of science journals from 2000 to 2020. After76

detecting the most prominent communities of papers in the network, we use a supervised77

classifier to identify the papers that use model-based methods. Drawing on work in78

cultural evolutionary theory (Zollman, 2018; O’Connor, 2019; Heesen, 2019), we also79

propose a model to represent the evolution of methods in philosophy of science during the80

time period. By integrating this model with bibliometric data, we measure the strength81

of cultural selection for the use of model-based methods in philosophy of science. This82

allows us to not only determine the prevalence of model-based methods in philosophy of83

science, but also to test the hypothesis that there has been selection for the use of such84

methods.85

Our results indicate that model-based models have had a significant presence in philos-86

ophy of science over the last two decades. We also find that there is considerable variation87

in the use of model-based methods in philosophy of science across different communities:88

while model-driven techniques are widespread in some, models are almost entirely absent89

from others. Moreover, we find that some communities have experienced strong selection90

for the use of model-based methods but that others have not. Our results therefore sug-91

gest that model-based methods play an increasingly important role in some but not all92

areas of philosophy of science.93

The paper proceeds as follows. In Section 2, we present our data, describe the meth-94

ods we use to analyze it, and introduce a model to represent the cultural evolution of95

methods in the philosophy of science; technical details of these methods are described in96

the corresponding Appendices. In Section 3, we report our findings on the prevalence of97

model-based methods in philosophy of science. We show that some areas of philosophy of98

science have experienced strong selection for the use of such methods and validate these99

results with a logistic regression of paper methodology on publication year. In Section100

4, we discuss some implications of our results for recent work by Fletcher et al. (2021),101

Khelfaoui et al. (2021), and Pradeu et al. (2021). In Section 5, we conclude by noting102

some limitations of our approach and suggesting a few directions for future studies.103

2 Data & Model104

To study the use of model-based methods in philosophy of science, we first collected data105

from the Web of Science (www.webofscience.com). Among other services, the Web of106

Science website provides an online database with detailed information on papers published107

in academic journals. Records generally contain information on paper title, abstract,108

authors, and cited references. For this study, we used the advanced search tool to extract109

full records for all papers published in the main philosophy of science journals. Included110

in this study were the nine journals in general philosophy of science already studied by111

Pradeu et al. (2021)—for a complete list of journal titles, see Table 1. We then manually112

downloaded and saved the 11; 030 full records matching our search criteria for the time113

period between 2000 and 2020. The search was restricted to this time period because114

older records often lack data such as abstract or cited references.115

3

www.webofscience.com


Table 1: List of journals, together with number of papers published in each journal (N ).
Considered were all journals in general philosophy of science studied by Pradeu et al.
(2021).

Journal Title N

1 British Journal for the Philosophy of Science 965
2 Erkenntnis 1; 535
3 European Journal for the Philosophy of Science 300
4 Foundations of Science 552
5 International Studies in Philosophy of Science 325
6 Journal for General Philosophy of Science 416
7 Philosophy of Science 1; 824
8 Studies in History & Philosophy of Science 1; 196
9 Synthese 3; 917

Contained in this initial sample were not only research papers, but also reviews, obit-116

uaries, and other editorial materials. To limit our study to research articles in philosophy117

and facilitate analysis, records not tagged as research articles as well as record written118

in languages other than English were removed; records with a missing abstract or with119

missing references were also excluded.120

With the N = 9; 217 remaining papers, we built a bibliographic coupling network121

(Kessler, 1963). Bibliographic coupling networks take the similarity between two papers to122

be a function of how often they cite the same papers. In a bibliographic coupling network,123

a node therefore represents a paper and a link between two nodes represents the extent to124

which two papers cite the same references. In other words, a link represents the similarity125

between two papers with respect to the references that they cite. Bibliographic networks126

are therefore built on the assumption that papers sharing many unique references are127

likely to address similar questions, while papers that do not share many unique references128

are likely to engage with di�erent topics|for a recent use of a bibliographic coupling129

network in philosophy, see Noichl (2021).130

To build a bibliographic coupling network, we calculated the term frequency and the131

inverse-document frequency of references for each paper|for technical details on how to132

build a bibliographic coupling network, see Appendix 1: Bibliographic Coupling Network.133

The term frequency measures the importance that a particular reference has to a paper;134

the inverse-document frequency measures the importance of a particular reference to the135

entire corpus. We then combined the term frequency and the inverse-document frequency136

to obtain the tf idf (pi ) score for each paper. Thetf idf score measures not only how137

important a particular reference is to a paper, but also how important the reference is138

to the entire corpus: it characterizes each paper in terms of the importance that each139

reference in the entire corpus has to the paper.140

As already noted, a link between two papers in a bibliographic coupling network141

represents how similar they are with respect to the references that they cite. To build142
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such a network, we therefore need to measure the similarity between every pair of papers.143

To do so, we used the cosine similarity between thetf idf scores of each pair of papers.144

Although other measures of similarity between pairs of papers are in principle possible,145

the cosine similarity is a common measure of similarity betweentf idf scores. The cosine146

similarity thus serves as a proxy for how much each pair of papers engage the same research147

questions, ranging in the unit interval and with 0 denoting complete dissimilarity and 1148

denoting complete similarity.149

Upon building the bibliographic coupling network, we proceeded to detect communi-150

ties of papers that engage similar research questions. There are of course many di�erent151

methods to detect communities in a network. A simple, computationally e�cient, and152

widely used one is the algorithm for community detection due to Blondel et al. (2008).153

This method �nds discrete communities in a network by maximizing network modular-154

ity. Modularity is a measure of how well-connected nodes are to other nodes within the155

same community and how poorly connected nodes are to other nodes outside the same156

community. As links between nodes in a bibliographic coupling network represent sim-157

ilarity between papers, this algorithm detects communities by �nding a partition of the158

network that maximizes how similar papers are to other papers within the same commu-159

nity but dissimilar to papers in other communities|for technical details on how to detect160

communities, see Appendix 2: Community Detection.161

Having detected communities of papers in the network, we then used a naive Bayes162

classi�er to label papers with respect to their methodology. Naive Bayes classi�ers are163

a family of simple and computationally e�cient classi�cation algorithms that generally164

perform well in text classi�cation (McCallum et al., 1998; Chandrasekar and Qian, 2016);165

as we report below, the naive Bayes classi�er we used also performed quite well. Naive166

Bayes classi�ers assign items to classes on the basis of features that items have. In167

particular, naive Bayes classi�ers assign items to classes by assuming that the occurrence168

of a given feature in the set of all items is probabilistically independent from the occurrence169

of one another feature (hence the epithet \naive"). To assign an item to a particular class,170

naive Bayes classi�ers �rst calculate the probability that the item belongs to di�erent171

classes given the features that the item has and then assign the item to the class with the172

highest probability conditional on the features of the item.173

In our case, we used a multinomial naive Bayes classi�er to classify papers with respect174

to their methodology given the words occurring in their abstracts and the last name of175

the authors in their cited references. This means that items correspond to papers, classes176

correspond to the two types of methods that a paper might use (model-based method177

vs. no model-based method), and features correspond to words contained in a paper's178

abstract as well as the last name of the authors cited in the paper's reference section. In179

a multinomial naive Bayes classi�er, features correspond to the number of times that a180

word appears in a paper's abstract and the number of times that a last name appears in181

a paper's reference section. Our naive Bayes classi�er therefore assigns the label \uses a182

model-based method" or \does not use a model-based method" to a paper depending on183

the words that appear in the paper's abstract and the last name of the authors that the184
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paper cites|for technical details on the naive Bayes classi�er we used, see Appendix 3:185

Naive Bayes Classi�er.186

But to assign an item to a class, a naive Bayes classi�er must �rst estimate the187

parameters that allow it to calculate the conditional probability that an item belongs to188

di�erent classes, given its features. This means that a naive Bayes classi�er must �rst189

be fed the conditional probability of features given di�erent classes, the unconditional190

probability of features, and the unconditional probability of classes. As this is a supervised191

algorithm, a naive Bayes classi�er must therefore rely on humans to provide it with a192

dataset of items, their features, and the classes that these items belong to in order to193

estimate parameters and assign new items to the classes of interest.194

To estimate parameters, we randomly selected 500 papers from the set ofN = 9; 217195

research papers written in English for manual labelling. Papers were labeled as using196

model-based methods or not using such methods. Out of 500 papers, 62 were found197

to use model-based methods; the full list of manually labelled papers is available in198

the repository provided below. Labeling was done according to the following rubric.199

First, we checked for the occurrence of any mathematical expressions or �gures that200

might indicate the use of model-based methods. Second, we read the paper abstract to201

determine whether the paper used mathematical expressions or �gures as an example,202

to provide a philosophical interpretation of models built by others, to extend or adapt203

previous models, or to built its own model. Papers were labeled as using model-based204

methods if they used probability theory, dynamical systems theory, di�erential geometry,205

or numerical and computational techniques to extend, adapt, or build a model. The206

choice to focus on these mathematical tools and techniques in particular was made on the207

basis of expert interviews with practicing philosophers of science working in a wide range208

of subdisciplines, including philosophy of biology, cognitive science, computer science,209

decision and game theory, physics, and social science. Papers were labeled as not using210

model-based methods if they did not use any of these methods, or if they used any of211

these methods as an example or to provide a philosophical interpretation of models built212

by others. When we could not determine this on the basis of the abstract alone, we read213

the full paper. Although one might conjecture that not all papers included here address214

philosophical questions, we take the fact that a paper was published in a philosophy215

journal as a proxy for it addressing philosophical questions.216

In addition to facilitating replication, this rubric serves an important function: it217

allows us to distinguish papers that build models to address questions in philosophy218

from papers that simply mention, discuss, or comment on models from a philosophical219

perspective. This distinction is important because philosophers of science can engage220

with the sciences without using any of the model-based methods that are common in221

many scienti�c disciplines. In such cases, philosophers do not contribute to \science222

in philosophy" in the sense of engaging with the sciences by drawing on model-based223

methods from scienti�c disciplines. Clearly, this is not to say that one way of engaging224

with the sciences is better than the other. But it is a distinction worth drawing, as the225

focus of this paper is not on philosophical work that mentions, discusses, or comments on226
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models but instead on the use of model-based methods drawn from the sciences to tackle227

philosophical questions. According to our rubric, we therefore say that a paper builds228

a model when it uses a model to support a philosophical claim about the target of the229

model. In contrast, we say that a paper mentions, discusses, or comments on a model230

when it uses a model to support a philosophical claim about the model itself or its use.231

The distinction is thus akin to one that is often made in philosophy of language between232

mentioning a linguistic expression (cf. using a model to make a philosophical claim about233

the model or its use) and using the expression (cf. using a model to make a philosophical234

claim the model's target).235

Consider, for example, Zollman (2007). In this paper, Zollman explicitly borrows236

model-based methods from economics to represent and study a community of scientists.237

Using computer simulations, Zollman �nds that a community of scientists can be more238

reliable when scientists are less aware of their colleagues' experimental results and that239

there is a trade-o� between the reliability and the speed with which the community240

reaches the right answer on a scienti�c question. This is paradigmatic case of a paper241

that uses model-based methods because it extends and adapts previous models to support242

a philosophical claim about the target of its model|namely, the behavior of a community243

of scientists. Similar examples include Huggett and W•uthrich (2018), Tanaka et al. (2020)244

and Weatherall et al. (2020): in all these cases, models are used to support philosophical245

claims about their targets.246

In contrast, consider Bokulich (2003). Bokulich's focus in this paper is on quantum247

maps: models used to study the relationship between classical and quantum mechanics.248

She explores the use of these models by arguing that quantum maps belong to a family249

of \horizontal models": models that are built not from theory or experimental results,250

but from analogies with models in neighboring disciplines. This is a paradigmatic case251

of a paper that doesnot use model-based methods because it mentions, discusses, and252

comments on models to support a philosophical claim that is not about the target of model253

or group of models but rather about the use of such models in a scienti�c subdiscipline|in254

particular, the use of quantum maps in quantum chaos research. Similar examples include255

Weisberg (2007), Oreskes et al. (2010), Gelfert (2011), as well as other papers that invoke256

models to support philosophical claims about the models themselves or their use.257

Although this rubric allows us to draw a distinction between using and mentioning258

models, it is also important to emphasize that this is of course not the only possible259

rubric. At the same time, not any rubric will do. A choice of rubric is a consequential260

methodological decision. But as it is often the case with such decisions, it is not one that261

can be made in the absence of a goal or purpose. Given the goal of isolating the use of262

model-based methods drawn from scienti�c disciplines to address philosophical questions,263

we have chosen to use one rubric among many that allows us to single out papers that are264

representative of the phenomenon we are interested in. But we acknowledge that other265

researchers might have decided to use a di�erent rubric to study the same phenomenon.266

Comparing results obtained on the basis of di�erent rubrics would in fact be a worthwhile267

project.268
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After manually labelling the entire set of 500 papers, we split labelled papers into two269

sets: a training set with 400 papers, and a testing set of 100 papers. This is common270

practice in classi�cation tasks because it allows us to estimate parameters and the ac-271

curacy of the classi�er using separate data sets. That is, the training set was used to272

estimate the parameters used in the classi�cation task and thus to train the naive Bayes273

classi�er; the testing set was used to determine the accuracy of the classi�er. Since labels274

were manually assigned to all papers in both the training and the testing set, we could275

determine how often the classi�er assigned the correct label to papers in the testing set276

given the parameters estimated using the training set. In this way, it was possible to277

estimate the accuracy of the classi�er in the entire dataset by using the accuracy of the278

classi�er in the testing set.279

We then labeled the remaining 8; 717 papers with the help of the naive Bayes classi�er;280

the entire dataset with labelled papers is available in the repository provided below. With281

papers thus labelled and sorted into communities, we were then able to track how the282

proportion of papers using model-based methods changed over time in each community.283

However, the mere presence of a signi�cant di�erence in the proportion of papers using284

model-based methods does not tell us whether the observed change was due to random285

chance or a preference for a particular methodology. To determine whether and in what286

communities there has been a preference for the use of model-based methods, we therefore287

built a model to represent the cultural evolution of methods in each of the communities288

of papers that we identi�ed within philosophy of science.289

Models that represent the cultural evolution of epistemic practices in academic com-290

munities are now common in philosophy|for landmark papers and recent examples, see291

Weisberg and Muldoon (2009), Bruner (2013), Bright (2017), Zollman (2018), O'Connor292

(2019), and Heesen (2019). A central assumption of these models is that researchers293

choose what epistemic practices to pursue by copying others. These models therefore294

assume that epistemic communities change via a process of cultural evolution in which295

epistemic agents are the focal unit of analysis. Although this is a plausible assumption to296

make in many cases, in other cases it is also reasonable to suppose that cultural evolution297

takes place in a population of artefacts|for a discussion of these alternative formulations298

of cultural evolution, see Ramsey and De Block (2017). As our data pertains to papers299

and not researchers, we choose artefacts as our focal unit of analysis and thus assume300

that cultural evolution takes place in a population of research artefacts|i.e., papers.301

To do so, we built a model for the cultural evolution of methods in philosophy of302

science using a modeling framework known as the Wright-Fisher model|for an early303

mathematical treatment and a recent philosophical discussion, see Wright (1931) and304

Clatterbuck (2015). Similar versions of the Wright-Fisher model have already been used305

to study the evolution of cultural artefacts, such as words (Sindi and Dale, 2016; Newberry306

et al., 2017; Karsdorp et al., 2020). In its simplest form, the Wright-Fisher model assumes307

that evolution takes place in a population with discrete types and discrete generations.308

In every generation, individuals are chosen to reproduce in proportion to how many309

individuals of each type there are in the population. Upon reproduction, all individuals310
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die and a new generation is born.311

In our case, the two discrete types correspond to the two types of papers (papers that312

use model-based methods and papers that do not) and discrete generations correspond to313

the publication year of research papers|see Figure 1. Every year, papers are chosen to314

reproduce in proportion to how many papers of each type were available in the previous315

year. The population of papers grows over time because papers never leave the popula-316

tion: for simplicity, we assume that are no retractions and thus that papers never leave the317

publication record once they have been published. This model for the cultural evolution318

of methods in philosophy of science therefore represents change over time in the method-319

ological pro�le of the discipline under the assumption that the methods used in papers320

are chosen on the basis of what methods were used in papers published previously|for321

details on the model, see Appendix 4: Wright-Fisher Model.322

generationt generationt + 1

Figure 1: Example population in a model with two discrete types (white and grey),
discrete generations, and growing population size. With selection given by the coe�cient
s, the probability that a population of size N t = 2 and one grey individual transitions to
a population of sizeN t+1 = 3 and two grey individuals is equal toP r(i t+1 = 2ji t = 1) =
1 � p1q0, with p = 1+ s

2+ s and q = 1
2+ s .

For all its simplicity, this model is useful because it allows us to estimate the strength323

of selection for or against the use of model-based methods within communities of papers in324

our bibliographic coupling network. To do so, we use the technique of maximum-likelihood325

estimation (Bolker, 2008). That is, we �rst calculated the probability of observing the326

actual trajectory of a community of papers given di�erent values ofs. We then took our327

estimate ŝ to be the value ofs that maximizes this probability|for details on how we328

used our cultural evolutionary model to estimate the strength of selection using maximum329

likelihood, see Appendix 5: Maximum-Likelihood Estimation.330

To validate the results we obtained using the Wright-Fisher model, we followed Fletcher331

et al. (2021) and ran a regression analysis to determine whether the use of model-based332

methods has grown over time within each community. Publication year was the continuous333

independent variable and the dependent variable was whether a paper used model-based334

methods. This regression analysis provides a robustness check on our estimates of selection335

9



because it indicates whether there was a signi�cant increase in the proportion of papers us-336

ing model-based methods without the assumptions that go into the Wright-Fisher model.337

To determine whether there was an overall increase in the use of model-based methods,338

we also ran a regression analysis with the same independent and dependent variables for339

the entire dataset|that is, disregarding community membership.340

Having described our data, the methods used to analyze it, and the model we use to341

represent our object of study, we present our results in the next section. Data sets and342

scripts are available anonymously at:343

https://osf.io/tm6v9/?view_only=2bb42691e5be4f9ca6ceec87b4860e48344

3 Results345

Using Web of Science records for all papers written in English and published in the346

main philosophy of science journals between 2000 and 2020, we �rst built a bibliographic347

coupling network based on the cosine similarity betweentf idf scores for every pair of348

research paper matching our search criteria. This network containedN = 9; 217 nodes349

corresponding to research papers and over one million edges between them. To simplify350

analysis, we therefore discarded edges with weight less than 0:05. The remaining network351

had the same number of nodes and 110; 540 edges.352

This network had 390 connected components. In graph theory, a connected component353

is a set of nodes such that one could traverse from any node in the set to any other node in354

the same set via the edges connecting them. In informal terms, a connected component is355

thus a set of nodes that hang together and that is isolated from nodes outside the set. The356

largest connected component had 8; 782 nodes with 110; 474 edges between them. None of357

the 202 remaining components had more than eight nodes, with most of the components358

being singletons. To focus on papers that are representative of the discipline as a whole,359

we selected the largest connected component in the network; all other components were360

excluded from subsequent analyses.361

By searching for a partition that maximizes network modularity, we then detected 20362

distinct communities of papers in the largest connected component. Of these communi-363

ties, four communities with fewer than 100 papers were excluded to ensure that enough364

data was available for community-level analysis. Overall, the remaining 16 communities365

contained 8; 654 papers (Table 2). Communities varied greatly in size (ranging from 171366

to 1; 162 papers) and in number of edges (ranging from 424 to 17; 637). The mean num-367

ber of papers per community was 541 (s:d: = 265), with a mean number of 5; 2645 edges368

(s:d: = 4; 141).369

To identify the main research topics in each community of papers, we extracted all370

keywords occurring in every paper in a given community and ranked them according371

to frequency of occurrence. Communities were labeled with the three most common372

keywords. We further identi�ed the paper with the highest degree centrality in each373

community, degree centrality being the sum of the weights of all edges of a given node. We374

then assigned a topic to each community on the basis of most common keywords and most375
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Table 2: List of communities with assigned topic, most common keywords, most central
paper, number of nodes (i.e., papers), and number of edges between papers.

No. Topic Keywords Paper Nodes Edges

1 History Kant, Newton,
Immanuel Kant

Kochiras (2011) 171 424

2 Logic epistemic logic,
belief revision,

dynamic epistemic logic

Renne (2008) 233 1,210

3 Mind perception,
theory of mind,
social cognition

Kulvicki (2007) 322 1,184

4 Confirmation con�rmation,
probability, coherence

Br•ossel (2015) 326 4,697

5 Teleology predictive processing,
function, teleology

Barrett (2014) 357 2,674

6 Social social epistemology,
values in science,
interdisciplinarity

Biddle (2013) 383 3,192

7 Quantum quantum mechanics,
Bohmian mechanics,

entanglement

Lewis (2007) 414 2,959

8 Evolution natural kinds,
concepts, evolution

Ramsey (2013) 421 3,712

9 Metaphysics grounding,
ontology, vagueness

Tugby (2021) 533 4,736

10 Models models, representation,
representation

Ducheyne (2012) 570 5,222

11 Relativity structural realism,
general relativity,

quantum mechanics

Ainsworth (2011) 618 5,034

12 Decision decision theory,
probability, rationality

Shaw (2013) 645 7,329

13 Realism scienti�c realism, realism,
incommensurability

Doppelt (2005) 659 7,140

14 Knowledge knowledge, belief,
epistemology

Alspector-Kelly (2011) 892 11,382

15 Truth truth, semantics,
propositions

Bangu (2013) 948 5,696

16 Explanation explanation, causation,
understanding

Fagan (2012) 1,162 17,637
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central paper. As shown in Table 2, the largest communities address questions in general376

philosophy of science, such as the nature of knowledge (No. 14,Knowledge : \ knowledge,377

belief, epistemology"), truth (No. 15, Truth : \ truth, semantics, propositions"), and378

explanation (No. 16, Explanation : \ explanation, causation, understanding"). The379

smallest communities address topics in the history of philosophy (No. 1,History : \ Kant,380

Newton, Immanuel Kant"), logic (No. 1, Logic : \ epistemic logic, belief revision, dynamic381

epistemic logic"), the philosophy of mind (No. 3, Mind : \ perception, theory of mind,382

social cognition").383

These communities closely correspond to the topics that Malaterre et al. (2021) iden-384

tify taking a topic-model approach. In particular, the communities onMind , Confir-385

mation , Social , Quantum , Evolution , Relativity , Knowledge , Truth , and386

Explanation seem to correspond to homonymous topics in Malaterre et al. (2021). At387

the same time, the community onHistory seems to correspond to the topic onClas-388

sics in Malaterre et al. (2019), whereasLogic seems to partly correspond toFormal389

and Language , Teleology to Neuroscience , Metaphysics to Philosophy and390

Property , Models to Explanation and Scientific Theory , Decision to Agent-391

Decision and Game-Theory , and Realism to Scientific Theory . Despite similar-392

ities between these two sets of communities, it is important to keep in mind that neither393

the data nor the methods used in both studies are the same. So di�erences in the number394

and composition of these communities should be expected.395

Next, we classi�ed each paper as to their methodology (\uses a model-based method"396

vs. \does not use a model-based method") using a multinomial naive Bayes classi�er.397

Out of the N = 9; 217 research papers in our sample, the classi�er identi�ed 1; 215398

papers that use model-based methods. This represents 13:2% of all papers in the dataset.399

Despite its simplicity, the classi�er performed quite well in the classi�cation task. Its400

overall accuracy was 0:92, meaning that the classi�er was able to correctly label 92%401

of papers in the testing set. The overall accuracy alone does not specify the rate of402

false positives (i.e., papers that were incorrectly tagged as using model-based methods)403

and the rate of false negatives (i.e., papers that were incorrectly tagged asnot using404

model-based methods). Yet, a closer look at the classi�er's error rates revealed that its405

false-negative rate was 0:23 and that its false-positive rate was 0:057. The classi�er's406

overall performance was therefore quite high: despite a relatively high false-negative rate,407

the classi�er behaved quite conservatively as it had a very low false-positive rate; results408

reported below therefore represent an underestimate of the role that model-based methods409

play in philosophy of science.410

The resulting classi�cation allowed us to determine the proportion of papers using411

model-based methods in each community. Some communities contained a very high con-412

centration of papers using model-based methods, while other contained almost none. For413

example, a community on general topics in philosophy of science contained almost as414

many papers that use model-based methods as papers that do not (Figure 2, left;De-415

cision : \decision theory, probability, rationality" ). At the same time, one community of416

papers in the philosophy of physics contained a moderate amount of papers using model-417
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