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1. Introduction 

 

Foretelling the future is an age-old human desire, and the methods to pursue this goal 

are varied. Ancient Greeks consult an oracle; the superstitious ask a fortune teller to 

read the cards, and the rationally minded revert to scientific methods. Among the 

methods of science mathematical modelling has gained prominence: from planetary 

motion to nuclear fission, and from the growth of a population to the returns of an 

investment there is hardly a phenomenon that has not at one point or other been 

modelled mathematically. Many of these models make probabilistic forecasts: they 

provide us with probabilities for certain future events to occur. Weather models, 

climate models, financial market models, and hydrological models are but some 

prominent examples of models making probabilistic predictions. Designing such 

models is aided by the availability of ever increasing computational power, which has 

led to a trend of building ever larger and more complex models which are capable of 

making ever more precise predictions on an ever finer scale.  

 

An example of the use of such a model is the recent project called United Kingdom 

Climate Projections (UKCP), which aims to make high resolution probability 

forecasts of the climate for up to 70 years from now. Figure 1 provides an example of 

such a forecast. It shows probabilities for different changes in precipitation under a 
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medium level emission scenario.1 The figure purports to tell us, for instance, that there 

is a 0.5 probability for a 20-30% reduction in precipitation in London by 2080. One of 

the striking aspects of this prediction is its precision. Calculations are made for a high 

resolution grid and so the forecast is able to distinguish, for instance, between the 

effects of climate change in London and Oxford (which are only an hour apart by 

train).  

 

 
 

Figure 1: Change in summer mean precipitation (%) for the 2080s under a medium 

emission scenario. Source: UKCP.2 

 

Computational power does not come for free. Super-computers are expensive tools, 

and developing and operating large computational models takes up the best part of the 

working hours of an ever increasing number of scientists. This raises the question of 

exactly what these models deliver: can these models provide the results as advertised? 
 

1 UKCP uses the IPCC A1B scenario. This is a kind of "optimistic" scenario of rapid growth and then a 

levelling off of the population by 2050 and a balance of renewable and fossil fuel energy. Total 

cumulative emissions amount to roughly twice what cumulative emissions were in 1990.  
2 http://www.ukcip.org.uk/wordpress/wp-content/UKCP09/Summ_Pmean_med_2080s.png; retrieved 

on 12 October 2011.  
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The aim of this paper is to urge some caution. We argue that if a model is non-linear 

and if there is only the slightest model imperfection, then treating model outputs as 

decision relevant probabilistic forecasts can be seriously misleading. This casts doubt 

on the trustworthiness of model results like the one we have just seen. In what follows 

we discuss this claim with a focus on climate modelling; we do so for the purpose of 

illustration and emphasise that the problem we describe crops up in all phenomena 

best modelled by non-linear models.  

 

We begin by outlining the general methodology used in producing probabilistic 

forecasts, which we refer to as the default position (Section 2). Using computer 

simulations in a simple model we show that the default position produces seriously 

misleading results if the dynamics of the system is non-linear (Section 3). This casts 

serious doubt on the trustworthiness of model based probability distributions, and 

there is unfortunately no quick and easy way to dispel these doubts (Section 4). This 

raises serious questions about how models are (and indeed should be) used to make 

informed policy decisions (Section 5).  

 

 

2. The Default Position 

 

From a formal point of view, a climate model is a dynamical system, which we denote 

by . As the notation indicates, a dynamical system consists of three elements. 

The first element, , is the system’s state space, which contains all states in which 

the system could be. What these are depends on the nature of the system. For instance, 

the state space of a particle moving along a straight line are the real numbers, and the 

one of a hockey puck sliding on a square ice rink the unit square. The second element, 

, is the flow (or time evolution): if the system is in state  now, then it is in 

 at any later time . In other words, , tells us how the system’s state 

changes over the course of time. The third element, , is the system’s Lebesgue 

measure: it allows us to say that parts of X have certain size. In case  is the real 

axis,  is the length of an interval, and if is the unit square the measure informs us 
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what the area of parts of the square are. In the argument to follow  plays no role and 

we note it here merely for the sake of completeness.   

 

In the case of climate models X consists of relevant weather variables (such as air 

temperature, precipitation, wind speed, …), and  tell us how they change over time. 

When descibed at that level of abstraction, one could be left under the impression that 

climate models are rather simple things. It is important to counter this impression 

before it gains traction. A full specification of the system’s state space would involve 

giving the air temperature, precipitation, etc at every point on the surface of the earth! 

It is not only a practical impossibility to obtain these data; it is also an impossibility to 

store them with digital technology. For this reason we discretise the state space, 

meaning that we put a grid with a fininte number of cells on X and represent the state 

of an entire cell by one set of values for the relevant variables. The grid size is the 

length of the sides of the cells. Typically the grid size used in a climate model is well 

over 100km. Covering the world with such a grid still leaves us an enormous amount 

of data! Yet it is important to emphasise that the volume of numbers notwithstanding, 

this is a rather coarse description. For instance, the weather in the entire city of 

London is now represented by one set of numbers (one number for temperature, one 

for precipitation, etc.). The dynamics of the model raises even more issues. In order to 

specify  we have to make a number of strongly idealising assumptions: we distort 

important aspects of the topography of the surface of the earth as the resolution of 

these models does not allow for realistic mountain ranges like the Andes, does not 

resolve the southern half of the state of Florida, many islands simply don’t exist, 

including small volcanic islands chains easily visible in satelite photographs due to 

their interaction with clouds, and of course clouds fields themselves are not modelled 

realistically. Based on these idealising assumptions we can use basic physics 

(essentially fluid dynamics and thermodynamics) to formulate the equations of motion 

for the simplified earth’s climate system. These equations are non-linear and we 

cannot solve them analytically. For this reason we resort to the most powerful 

µ
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computers available to compute solutions. The result of these computer simulations is 

.3 

 

The formal apparatus developed so far has it that the flow takes as input a particular 

initial state  and then tells us into what state  this condition evolves under 

the dynamics of the system. Unfortunately this algorithm is not very useful in practice 

because we never know in what exact state the system is (if such a thing exists at all). 

To begin with, there is no measurement device that provides exactly correct values 

and so every measurement result comes with a certain margin of error. But more 

importantly, there is no such thing as the true wind speed in a model grid point 

corresponding to central London! Whatever number we settle on is an average of 

some kind or other; all we can truthfully say is something like ‘the wind speed at a 

particular random location within that grid cell is likely to lie within a certain range’. 

We account for some of these uncertainties by specifying a probability distribution 

 over initial states, where the subscript indicates that the distribution describes 

our uncertainty about the initial condition at . There is of course a legitimate 

question about what the correct distribution is; we set this issue aside and assume that 

in one way or another we can come by the correct  (in the sense that it is a correct 

representation of our uncertainty).4 The question then becomes: how does  

change over the course of time? The flow  can now be used to move  forward 

in time: .5 This distribution is the central item of the default position, 

 
3 For a general introduction to climate modelling see Kendal McGuffie and Ann Henderson-Sellers, A 

Climate Modelling Primer. 3rd ed. New Jersey: Wiley 2005; a discussion of the specific model used in 

UKCP can be found at http://ukcp09.defra.gov.uk/.  
4 For a discussion of different kinds of uncertainty and their sources see Seamus Bradley, "Scientific 

Uncertainty: A User’s Guide", in: Grantham Institute on Climate Change Discussion Paper 56, 2011 

(available at http://www2.lse.ac.uk/GranthamInstitute/publications/WorkingPapers/Abstracts/50-

59/scientific-uncertainty-users-guide.aspx).  
5 We use square brackets to indicate that is the propagating forward in time of the initial 

distribution . The flow of distribution derives from the flow of a state as follows: 

, where the sum of  reflects each of the states in  which are 
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the view that we obtain the decision-relevant probabilities for certain events to occur 

by plugging the initial distribution into the model and using the flow to obtain forecast 

probabilities for events at later times. The qualification ‘decision-relevant’ is crucial. 

The default position does not make the (trivial) statement that  is a probability 

distribution in a formal sense (i.e. that it is a mathematical object satisfying the 

axioms of probability); it is committed to the (non-trivial) claim that these 

probabilities are the correct probabilities for outcomes in the world in the sense that a 

rational decision maker should adjust his/her beliefs to these probabilities and act 

accordingly (assuming that there is no other pertinent evidence). In other words, 

 is taken to provide us with predictions about the future of sufficient quality that 

we ought to place bets, set insurance policies, or make public policy decisions 

according to the probablities given to us by . 

 

 

3. The Poison Pill  

 

Its intuitive appeal notwithstanding, the default position is wrong:  need not be 

the correct probability distribution, and taking  as a guide to actions can be 

ruinous.6 Our strategy is to present a case where one can explicitly see that  

need not be the correct probability distribution. This is enough to refute the default 

position, which has it that  always is the correct probability distribution.  

 

Consider the following thought experiment. McMath has a pond in his garden where 

he breeds fish. He does not like being a hostage to fortune and wants to plan carefully 

how much food he will have to buy to feed his fish. To this end he constructs a model 

which allows him to predict the size of the population in his pond at a given time. He 

first introduces the population ratio : the number of fish in the pond at time t 

 
mapped onto  under the flow  (i.e.  for all ); if the flow is invertible this reduces to 

.  

6 A probability distribution is deemed correct conditional on a particular observational resolution.  
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divided by the maximum number of fish the pond could accommodate;  lies in the 

unit interval . To predict future populations he comes up with  

 

,                                                                  (1) 

   

where time  is measured in units of weeks. So the model says that the population 

ratio in a week’s time is four times today’s ratio multiplied by one minus today’s 

ratio.7 

 

This allows McMath to predict the future size of his population given he knows 

today’s size. The model is a dynamical system in the above sense with the unit 

interval  being the state space, the flow being given by Equation 1, and the 

measure being the “usual” length of real intervals. So McMath decides to follow the 

prescription of the default position: he puts a probability distribution  over the 

initial conditions – here today’s population ratio – and moves it forward in time under 

the dynamics of the system. He then uses the predictions thus generated to bet with 

one of his fellow villagers. The bet is “above or below 0.5”: they split the unit interval 

into two equal parts, and , which they call A and B respectively, and 

bet on whether A or B occurs in two months’ time.  

 

How successful will McMath be? Will he feed his fish well and will he win the bet 

against his mate? At this point the second part of our thought experiment begins: as 

we are pondering this question, we are incredibly lucky: heaven opens and God 

whispers the formula of the world’s true dynamics into our ear: 

 

,    (2)  

 
 

7 Equation (1) is of course just the well-known logistic map. The rationale for choosing this equation is 

that it is one of the simplest non-linear flows and that it has originally been proposed as a population 

model; see Robert May, "A Simple Mathematical Equation with very Complicated Dynamics", in: 

Nature 261, 1976, pp. 459-469. For the ease of presentation we assume that a new generation of fish is 

born once a week.  
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where  is a parameter taken here to be 0.1. We immediately realise that this is just 

McMath’s model plus a small perturbation. Figure 2 shows both the model (Equation 

1) and the world (Equation 2), which makes obvious how similar the two are.  

 

 

 
 

Figure 2: Equation 1 in blue (dotted line) and Equation 2 in yellow (drawn line) with 

and on the x-axis and and on the y-axis.  

 

The maximum error of the model is at , where  and 

. This error is really small, which would lead us to believe that 

McMath’s predictions should be accurate, and that therefore the use of the default 

position should be a winning strategy.  

 

But calculations are better than intuitions, and so we use our God-given insider 

knowledge to see how well McMath will do. We move the initial distribution  

forward in time both under the dynamics of the model (Equation 1) and the world 

(Equation 2), which gives us the two distributions  and  for the model 

and the world respectivley. If the default position was correct, one would have to find 

that  and  are identical, or at least broadly overlap. This is because, by 

assumption, the initial distribution is the correct distribution and the dynamics of the 

e
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world is the true dynamics, hence  is the correct distribution and  

captures what happens in the world only to the extent that it agrees with .  

 

Since we don’t know how to calculate  and  with pencil and paper, we 

resort to computer simulation. To this end, we divide the system’s state space into 49 

cells (which, in this context, are usually referred to as ‘bins’). We then choose an 

initial distribution which is distributed according to the invariant measure within a 

radius of  from the true initial condition. The true initial condition is randomly 

chosen; in the concrete example to follow it happens to lie in the third bin. The true 

initial condition was within the same interval, but not necessarily at the centre. In turn 

we iterated forward in time 1024 points from the initial distribution (see first graph in 

Figure 3) under both dynamical laws. The other graphs in Figure 3 show how many 

points there are in each bin after two, fours and eight weeks respectively. Dividing 

these numbers by 1024 yields an estimate of the probability for the system’s state to 

be in a particular bin.  

 

[Insert Figures 3a-d so that they form a 2 by 2 matrix.  

See the attach PDF for how the entire graph should look like] 

 

 

 
Figure 3: The evolution of the initial probability distribution under the  

dynamics of the model (Equation 1, blue line) and the world (Equation 2, yellow line). 

 

These calculations show the failure of the default position. While the two distributions 

overlap relatively well after two and four weeks, they are almost completely disjoint 

after two months. The implications of this for McMath are dramatic. His calculation 

led him to believe that after two months  and  (this is read off from 

the blue line in the fourth graph in Figure 3). This led him offer extremely long odds 

on A.8 
 

8 We use so-called odds-for, which give the ratio of payout to stake. These are convenient because they 

are reciprocals of probabilities; i.e. if  is the probability of , then  are the odds 

on .  
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But the correct probabilities (read off from the pink line in the same figure) are 

 and . So he is very likely to lose a large amount of money to 

his fellow villager!9  

 

The moral of this thought experiment is that if a non-linear model differs from the 

truth only by a little bit (i.e. if the model has only a slight structural imperfection), 

then probabilistic predictions can break down. This implies that the default position is 

wrong. Simply moving forward in time an initial distribution under the dynamics of 

the model will not yield decision-relevant probabilities! But the break-down of the 

default position is nothing short of a methodological disaster: as we mentioned above, 

it is used in many places all the time and the realisation that probabilistic forecast 

cannot be trusted pulls the rug from underneath many modelling endeavours. One can 

sum up the result of our story in the slogan that model imperfection is a poison pill.  

 

An immediate reply would point out that we have biased the presentation of the case 

in various ways to arrive at our conclusion and that the situation is in fact less dire 

than we make it out to be. The first bias is the focus on the two months forecast: had 

we focussed on the one month forecast McMath’s forecasts would have been accurate 

enough to make both his planning and betting sustainable. Perhaps, perhaps not; but 

in the real world heaven doesn’t open and no one whispers true dynamical laws into 

our ears. So we cannot simply compare the model with the true dynamics and affirm 

that we are fine at . In fact, if we knew the true dynamics we would not need a 

model in the first place! All we have is a model, and we know that the model is 

imperfect in various ways. What the above scenario shows is that model-probabilities 

and probabilities in the world can come unstuck dramatically, and as long as we have 

no means of telling when this happens, we better be on guard! For all we know there 

is no method of predicting when the model is accurate other than knowing the truth in 

advance, in which case we would not bother with a model anyway.  

 
9 Notice that our argument does not trade on worries about . We assume that the initial 

distribution gives us the correct probabilities and that setting ones degrees of belief in accordance with 

these probabilities would be rational. The core of our concern is what happens with these probabilities 

under the time evolution of the system.  

1.0)( @Ap 9.0)( @Bp
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The second alleged bias is the choice of the initial distribution. In order to run the 

calculations we have to choose a particular initial distribution (1024 points distributed 

according to the invariant measure within a radius of  from the true initial 

condition, which came to lie in the third bin). However, so the argument goes, this 

must be a special case that we have carefully chosen in order to drive home our 

sceptical conclusion; most of the distributions do not behave in this way and models 

provide trustworthy results most of time. Our story, so the counter continues, shows at 

most that every now and then unexpected results happen, but does not warrant a 

wholesale rejection of the default position.  

 

There is no denying that our calculations rely on a particular initial distribution, but 

that realisation does not rehabilitate the default position. We repeated that same 

calculation with a large number of randomly chosen initial distributions, and it turns 

out that about one third of these distributions showed behaviour similar to that seen in 

Figure 3; another third resulted in forecast distributions that manifested an overlap of 

about fifty percent; and only one third behaved as the default position would lead us 

to expect. Hence, the problems we describe are by no means as rare as those critics 

would have it, and as long as we have no systematic way of drawing a line between 

the good and the bad distributions, we had better not rely too heavily on our 

calculations when making provisions for the future.  

 

Some may have started wondering what all this has to do with modelling in the 

sciences; after all what we care about is the future climate or the stability of financial 

markets and not the fishing success of an imaginary Scotsman. Unfortunately the 

connection between our imaginary scenario and ‘real’ scientific cases is tighter and 

more immediate than we would like it to be. As we have seen above, the problems 

arise if models are non-linear and imperfect, and most scientific models have these 

properties. Without question, climate models have both these properties. It is not clear 

how to interpret the situation when different models agree (give indistinguishable 

probability forecasts), but in the climate case the different models give very different 

distributions (as becomes clear in the last IPCC Report, WG I) and so we know that 

3107 -´



 12 

the details of the models have a significant impact on expected results.10 So when 

calculating, say, monthly precipitation in the 2080s based on climate models we may 

well not fare better with our planning of flood provision and water systems than 

McMath with fish food and bets.  

 

 

4. Antidote Wanted 

 

The first serious issue is whether Equations 1 and 2 are good proxies for all other non-

linear systems. Equation 1 is of course the well-known logistic map with the 

independent parameter set equal to 4, which results in the dynamics being fully 

chaotic;11 Equation 2 is a perturbed version of it. By saying that climate or finance 

models will face the same predictive breakdowns we implicitly assume that the 

problems when making predictions with the logistic map are typical of all non-linear 

models and will also occur in systems with completely different dynamical laws (as 

long as they are non-linear). It is fair to say that there is no hard and fast argument for 

this conclusion. However, it seems to us that the burden of proof lies with those who 

want to argue that the logistic map is a special case that the default position does not 

run into the problems we describe when used in the context of other non-linear 

models. Since the rise of chaos theory in the 1980s a bewildering array of non-linear 

systems has been studied and the general moral to be drawn from these studies is that 

random properties of systems get more dominant as (a) parameter values controlling 

the non-linear terms increase and (b) the size of the systems increases.12 Generalising 

 
10  See Leonard Smith, "What Might We Learn from Climate Forecasts?", in: Proceedings of the 

National Academy of Science USA 4, 99, 2002, pp. 2487-2492.  
11 See Robert May, "A Simple Mathematical Equation with very Complicated Dynamics”, loc. cit. and 

Leonard Smith, Chaos. A Very Short Introduction. Oxford: Oxford University Press 2007.  
12 By ‘random properties’ we mean, for instance, properties belonging to the ergodic hierarchy such as 

being mixing or Bernoulli; for a discussion of these see Joseph Berkovitz, Roman Frigg, and Fred 

Kronz, "The Ergodic Hierarchy, Randomness and Chaos", in: Studies in History and Philosophy of 

Modern Physics 37, 2006, pp. 661-691. An example of a system that becomes increasingly random as 

the perturbation parameter is turned up is the Hénon-Heiles system; see John Argyris, Gunter Faust, 

and Maria Haase, An Exploration of Chaos. Amsterdam: Elsevier 1994. For a discussion of systems 

that become more random as the number of particles increases see Roman Frigg and Charlotte Werndl, 
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from these cases one would expect that climate models, which are both strongly non-

linear and huge, should display more rather than less of the problems we have seen 

above.  

 

Another set of issues concerns lead times. Three challenges can be mounted. The first 

points out that all we are interested in are short term predictions and the above results 

show that in the short term the model forecasts appear accurate – hence there is no 

cause for concern. In some cases this seems to be the right response. In weather 

forecasting, for instance, we are mainly interested in predicting the immediate future 

and hence limiting model runs to the short term is the right thing to do. But this 

response does not seem to work in all cases. In both weather and climate modelling, 

for instance, we also are interested in the medium or long term behaviour and so we 

cannot limit predictions to short lead times. Of course what counts as short-term or 

long-term is relative to the model and it could be the case that by standards of the 

relevant climate models a prediction for 2080 is still a short term prediction. We are 

doubtful that this is the case. Indeed, it would be surprising to say if such predictions 

would turn out to be short term by the lights of a model used to make that prediction, 

in particular given that state of the art climate models differ even in terms of their 

performance over the past century. So we take it that the burden of proof lies squarely 

with those who believe that this is the case.  

 

The second challenge argues for the opposite conclusion: what we are interested in is 

long term behaviour and so we can actually do away with detailed predictions 

completely and just study the invariant measure of the dynamics because it is the 

invariant measure that reflects a system’s long term behaviour. Implicit in this 

proposal is the assumption that the invariant measures of similar dynamical laws are 

similar, because unless Equations 1 and 2 have similar invariant measures there is no 

reason to assume that adjusting beliefs according to the invariant measure is less 

misleading than adjusting them according to . However, it is at best unclear 

whether this is so. There is no proof that invariant measures have this property. 

Nonlinear systems are not expected to be structurally stable in general, which 

 
Explaining Thermodynamic-Like Behaviour in Terms of Epsion-Ergodicity, in: Philosophy of Science 

78, 3, 2011, pp. 628–652.  

)(xpmt
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suggests that invariant measures need not be similar. And what is worse still, unlike 

McMath’s pond, the world’s climate is a transient system and as such it does not have 

an invariant measure at all.  

 

The third challenge is that we are playing fast and loose with the notion of prediction. 

While McMath wants to predict what happens exactly two months from now, the 

above climate prediction is an average for the 2080s. So we would be comparing 

apples and pears. Not quite. What UKCP provides are not decadal averages. They 

provide an average for every year (the claim being that the distribution of likely 

monthly averages is the similar in each year of the 2080s). This is not so different 

from weekly predictions in the fish model. Other predictions made by UKCP are even 

more precise, e.g. the forecasts for the hottest day in August of a particular year. So 

what UKCP provides are not long term averages and hence an appeal to averages does 

not help circumventing the difficulties we describe.   

 

 

5. Conclusion 

 

We have argued that the combination of non-linear dynamics and model imperfection 

is a poison pill in that it shows that treating model outputs as probabilistic predictions 

can be seriously misleading. Probabilistic forecasts are therefore unreliable and do not 

provide a good guide for action.  

 

This raises two questions. The first concerns the premises of the argument. The model 

being non-linear has been an essential ingredient of our story. While this assumption 

is realistic in that many relevant models have this property, there is still a question 

whether the effects we describe are limited to non-linear models. Arguably, if the 

world was governed by linear equations, then imperfect linear models need not suffer 

from the effects we discuss. One might like to avoid the assumption that the world is 

governed by any equations, of course, but the relevant point here is the role of model 

imperfections: a linear model will suffer from these effects unless its imperfections 

are also linear. The model being linear does not remove the difficulty we note. And of 

course, in practice the best models are not linear, nor are the relevant laws of physics. 
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The second question is what conclusion we are to draw from the insight into the 

unreliability of models. An extreme reaction would be to simply get rid of them. But 

this would probably amount to throwing out the baby with the bathwater because, as 

we have seen, in about one third of the cases the model indicates usefully. So the 

challenge is to find a way to use the model when it provides insight while guarding 

against damage when it does not. Finding a way of doing this is a challenge for future 

research.  
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