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Abstract5

There is mounting evidence that a large portion of experimental6

results cannot be replicated, leading many to believe that science is7

now in the throes of a replicability crisis. In response, there have8

been calls to reduce publication bias against negative results because9

of the effect that publication bias has on the publication record. Oth-10

ers, however, argue that publication bias need not be detrimental to11

scientific progress. Here, we propose a novel mechanism by dint of12

which reducing publication bias can benefit science regardless of the13

effect that publication bias has on the publication record. To do so,14

we introduce a series of increasingly complex mathematical models.15

Our models represent a scientific community consisting of discovery16

researchers who test novel hypotheses, and confirmation researchers17

who test known hypotheses. Results show that reducing publication18

bias can have the surprising consequence of increasing the share of con-19

firmation researchers who conduct replications. When a large share of20

scientists conduct confirmation research, scientists have an incentive21

to conduct high-quality research as others are likely to check their22

findings. Our models therefore suggest an underappreciated reasons23

why reducing publication bias might benefit science.24

1 Introduction25

There is mounting evidence that a large portion of experimental results can-26

not be replicated. This is so across scientific disciplines, from the social and27
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behavior sciences to biomedical and clinical research (Collaboration et al.,28

2015; Begley and Ellis, 2012; Camerer et al., 2016, 2018). As a result, many29

scientists report believing that science is now in the throes of a “replicability30

crisis” (Baker, 2016). If this is accurate, there are reasons to worry. On most31

accounts, failed replications are an indication that experimental protocols32

are unreliable (Machery, 2020; Romero, 2019). Although some argue that33

concerns may be overblown (Feest, 2019; Leonelli, 2018), there is a growing34

sense that something must be done in response.35

Several proposals for improving replicability have already been made.36

A reward system based on the priority rule incentivizes the publication of37

new discoveries at the expense of replicability (Heesen, 2018; Romero, 2017).38

Changing the underlying incentives could therefore improve the overall qual-39

ity of research. Another proposal is to invest in theory development, as the40

prior probability that a hypothesis is true can have a large effect on replica-41

bility (Ioannidis, 2005; Bird, 2020; Stewart and Plotkin, 2021). More contro-42

versially, some propose raising the usual standards of statistical significance43

(Benjamin et al., 2017)—but see McShane et al. (2019) for considerations44

against this approach. Unsurprisingly, expunging fraud and ethically ques-45

tionable research practices might also boost replicability (Fanelli, 2009).46

One proposal that has received a significant amount of attention is re-47

ducing publication bias. Also known as the “file drawer” problem (Sterling,48

1959; Rosenthal, 1979), publication bias against negative results occurs when49

there is a preference for the publication of positive results—that is, results50

that seem to confirm a hypothesis of interest. Some argue that publication51

bias contributes to low replicability by increasing the share of false positives52

in the publication record and thus hindering the capacity of science to self-53

correct (Romero, 2016)—see also Greenwald (1975), van Assen et al. (2014),54

and Nosek et al. (2018). Others argue that publication bias is not necessar-55

ily a problem, as science might be able to self-correct even in the presence56

of publication bias (Bruner and Holman, 2019). Indeed, some even claim57

that abolishing publication bias entirely would be detrimental to scientific58

progress (de Winter and Happee, 2013).59

Central to both camps in this debate is the effect that publication bias60

might have on the publication record: if publication bias harms science, it61

is because it skews the publication record. However, we argue in this paper62

that there is another mechanism by dint of which publication bias might63

be detrimental to science. To do so, we analyze a series of mathematical64

models loosely inspired by Romero (2018, 2020). Our models represent a65
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scientific community consisting of discovery researchers who test novel hy-66

potheses, and confirmation researchers who test known hypotheses. Follow-67

ing Zollman (2010), Holman and Bruner (2017), and O’Connor (2019), our68

models assume that the population undergoes evolution by cultural selec-69

tion. Research practices from successful researchers are therefore more likely70

to spread, as others are more likely to adopt research practices of successful71

researchers.72

Equilibrium and stability analysis yields a series of interesting results.73

First, we show that discovery and confirmation researchers can coexist in74

a population. This is so if researchers experience the effect of a competi-75

tive research environment, where resources for conducting research (funding,76

jobs, publishing opportunities, etc.) are limited and thus rewards are higher77

if there are fewer researchers of a given type in the community. Second,78

we show that a population of discovery and confirmation researchers cannot79

resist invasion by researchers who mix discovery and confirmation research.80

Finally, we explicitly consider the effect of publication bias on the population81

and propose a novel mechanism by dint of which reducing publication bias82

against negative results might benefit science. Reducing publication bias in-83

creases the relative incentive for confirmation research. Reducing publication84

bias can therefore increase the share of researchers who conduct replications,85

boosting replicability independently of the effect that publication bias has86

on the publication record.87

The paper proceeds as follow. In Section 2, we describe and justify the88

model framework we use to evaluate this proposal. Building on this frame-89

work, we present a series of increasingly complex models in Sections 3, 4, 5,90

and 6. Analytical results show that discovery and confirmation researchers91

can coexist in a population provided that they experience the effect of a92

competitive research environment. Results also show that a population of93

discovery and confirmation researchers cannot resist invasion by researchers94

who mix between the two types of research. Surprisingly, results further95

show that reducing publication bias against negative findings can increase96

the share of confirmation researchers. In Section 7, we discuss the signif-97

icance of these findings and suggest that promoting pre-registrations and98

pre-registered reports might be an efficient way to increase replicability. We99

conclude in Section 8 by noting some limitations of our approach.100
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2 The Credit Economy: A Framework101

Models of the credit economy of science have become a common fixture in102

philosophy of science and social epistemology—for landmark papers and re-103

cent discussions, see Kitcher (1990), Strevens (2003), Weisberg and Muldoon104

(2009), Bruner (2013), Bright (2017), Zollman (2018), and Heesen (2019).105

There is also a long tradition in economics of building similar models—for106

examples, see Partha and David (1994) and Stephan (1996). A central as-107

sumption of these models is that scientists pursue not only epistemic goods,108

but also non-epistemic ones, such as credit (Merton, 1957, 1973). Credit in109

science comes in many different forms. But it usually includes the reputa-110

tion, social status, awards, or number of citations that scientists receive for111

their research.112

In keeping with such models, our framework assumes that scientists pur-113

sue credit when conducting research. Following Smaldino and McElreath114

(2016), O’Connor (2019), and Stewart and Plotkin (2021), we also suppose115

that scientists conduct research by testing hypotheses. If a test indicates116

that the hypothesis is true, we say that the result is positive; otherwise, we117

say the result is negative. Upon publishing a test result, the scientist receives118

some credit for their work.119

Another assumption central to our framework is that the scientific com-120

munity undergoes cultural evolution—for a similar approach, see also Zoll-121

man (2010), Holman and Bruner (2017), and O’Connor (2019). This means122

that we represent the scientific community as a population of scientists en-123

gaging in different research projects and that scientists choose what type of124

research to conduct by copying others. The choice of whom to copy is made125

on the basis of credit: not only are scientists more likely to copy colleagues126

with a high social status, but high-status scientists are also more likely to127

recruit and train students in research practices that yield more credit. In128

this way, the research profile of a scientific community can change over time.129

Bringing together these assumptions, we let a scientific community change130

according to the following expression:131

ẋi = xi(wi − w) (1)

where xi represents the frequency of scientists conducting research of type i,132

ẋi represents the instantaneous rate of change in the frequency of scientists133

of that type, w is the mean value of wi over all types i, and wi is a function134
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of the credit ci that a scientist of type i receives for their research. These135

equations describe the replicator dynamics in an infinite population (Taylor136

and Jonker, 1978; Sandholm, 2010). An infinite-population model might be137

a good representation of large populations, such as modern-day scientific138

communities, but it is a well-known fact that the dynamics of an infinite139

population need not coincide with that of a finite population. In any case,140

wi represents the “cultural fitness” of the corresponding type. Here, cultural141

fitness measures how likely it is that a researcher of a certain type will give142

rise to researchers of the same type—either because a colleague chooses to143

imitate them, or because they train a student in the research practice of their144

choice.145

In the next few sections, we build on this simple framework by introducing146

a series of increasingly complex models. These models represent important147

features of scientific communities, such as a competitive research environ-148

ment and the advantage of opportunistic research. We analyze these models149

by first probing for their equilibrium states—that is, states of the population150

that are not subject to change. We then ask which of the available equi-151

librium states are stable in the sense that the population returns to that152

state after a small perturbation. Equilibrium and stability properties there-153

fore tell us how a scientific community would change its composition under154

different initial conditions. This is important because the composition of a155

scientific community can play a role in replicability: when few scientists con-156

duct confirmation research, few bother to check previous findings so there is157

little incentive for others to conduct high-quality research. Knowing what158

factors affect the composition of a scientific community can therefore help us159

understand what drives the replicability crisis.160

3 Discovery and Confirmation Research161

In keeping with the assumption that scientists conduct research by test-162

ing hypotheses (Smaldino and McElreath, 2016; O’Connor, 2019; Stewart163

and Plotkin, 2021), we start out by supposing that there are two types of164

researchers in the scientific community: discovery researchers, and confir-165

mation researchers. Discovery researchers test novel hypotheses (hypothe-166

ses that have never been tested before), while confirmation researchers test167

known hypotheses (hypotheses that have already been tested at least once).168

Of course, neither type of researcher knows for a fact whether the hy-169
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potheses that they test are true or false. All they have to go by are the test170

results that they obtain from their research. Given ample evidence of sys-171

tematic bias in the publication record (Dwan et al., 2008, 2013), we assume172

that discovery researchers publish a test result only if it leads to a novel173

finding—that is, only if the result is positive (we relax this assumption later174

on). Confirmation researchers publish a test result whether it is positive or175

negative, as there are less incentives for only publishing positive results when176

replicating previous work.177

Next, we let cN represent the credit that a discovery researcher receives178

for publishing a result that leads to a novel finding. Similarly, we let cR be the179

credit that a confirmation researcher receives for publishing a result—whether180

it is a positive result that confirms a previous finding or negative result181

that disconfirms it. We further assume that novel findings yield more credit182

per publication than replications, with cN > cR. This is because scientists183

generally prefer to publish a new discovery than a replication confirming or184

disconfirming a previously known result. At the same time, we suppose that185

discovery researchers publish at a lower rate than confirmation researchers.186

One reason for this is that confirmation researchers publish both positive187

and negative results, while discovery researchers only publish positive results.188

Another reason is that new discoveries are typically harder to come by than189

replications. We therefore let pN be the rate with which discovery researchers190

publish novel findings and pR the rate with which confirmation researchers191

publish replication studies, with pR > pN .192

Expressing these assumptions in the framework of the replicator dynam-193

ics, the instantaneous rate of change in the frequency of discovery and con-194

firmation researchers is given by:195

ẋN = xN(wN − w) (2a)
196

ẋR = xR(wR − w) (2b)

where xN and xR represent the frequency of discovery and confirmation re-197

searchers, ẋN and ẋR represent the instantaneous rate of change in the fre-198

quency of these researcher types, wN and wR are the fitness functions of the199

corresponding researcher type, and w is the mean fitness of the population.200

For now, we let wN and wR be simply given by wN = cN ·pN and wN = cR ·pR.201

Since we are considering a population composed entirely of discovery and202

confirmation researchers, the mean fitness is w = xN · wN + xR · wR.203
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This is our simplest model. We analyze it by studying its equilibrium204

properties. Since xN = 1 − xR, it suffices to track the frequency of one205

researcher type. To find the equilibrium states, we determine the frequency206

of confirmation researchers when their frequency does not change. This can207

be done by setting ẋR = 0 and solving for xR, which gives multiple solutions.208

For example, trivial solutions exist when x∗
R = 1 and x∗

N = 0 or, similarly,209

when x∗
R = 0 and x∗

N = 1. In both cases, the equilibrium state correspond210

to a state of the population in which only one type of researcher is able to211

persist (Figure 1).212

Figure 1: Equilibria in a population of discovery and confirmation
researchers. Discovery and confirmation researchers cannot coexist at equi-
librium. Left: when the publication rate for discovery researchers (pN) is low
relative to the publication rate for confirmation researchers, the population
state with all confirmation researchers is the only stable equilibrium. Center:
when the publication rate for discovery researchers is intermediate, any state
is an equilibrium provided the population is indefinitely large (but not when
the population is finite). Right: when the publication rate for discovery re-
searchers is high, the state with all discovery researchers is the only stable
equilibrium. Arrows indicate selection gradient; circles indicate equilibria.
Shown are results for cN = 2, cR = 1, and pR = 1.

Depending on fitness, both equilibria can be stable. When wR > wN , the213

dynamics carries the population to the equilibrium with x∗
R = 1. In this case,214

ẋR > 0 for all values of xN so that only confirmation researchers persist in the215

population. If a small number of discovery researchers enters the population,216

they are eventually driven to extinction due to the lower amount of credit that217

they receive. When instead wN > wR, the dynamics carries the population218
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to the equilibrium with x∗
R = 0. In this case, only discovery researchers219

persist in the population. If we perturb the population by adding a few220

confirmation researchers, the lower amount of credit that they receive ensures221

that discovery researchers eventually outcompete confirmation researchers.222

There is also a set of non-trivial solutions when wN = wR. In this case,223

discovery and confirmation researchers receive the same amount of credit so224

that selection cannot differentiate between them. In large communities that225

approximate the infinite population described by the replicator equations,226

this means that the frequency of both researcher types does not change:227

any value of x∗
N or x∗

R and thus any composition of the population is at228

equilibrium.229

4 Academic Competition230

We now assume that researchers experience the effect of negative frequency231

dependence. Negative frequency dependence means that selection for a par-232

ticular type is inversely proportional to the frequency of that type in the233

population. In biology, it has long been known that selection for a partic-234

ular type can decrease with the frequency of that type in the population235

(Allen and Clarke, 1984; Brisson, 2018). In our model, negative frequency236

dependence means that the more researchers of a given type there are, the237

lower the fitness of an individual researcher of that type. Negative frequency238

dependence is a plausible assumption in the highly competitive research en-239

vironment of modern-day science: scientists must often compete for limited240

resources, such as funding, academic positions, and slots in journals and con-241

ferences (Kerr, 1995; Cyranoski et al., 2011; Schillebeeckx et al., 2013; Powell,242

2015). Having more scientists conduct research of a certain type therefore de-243

creases the amount of credit that individual scientists conducting that same244

type of research can receive.245

There are of course multiple ways to represent negative frequency depen-246

dence. For simplicity, we assume that wN and wR decrease in direct propor-247

tion to the frequency of the corresponding researcher type. In particular, we248

let the fitness of both researcher types take the following form:249

wN =
cN · pN
xN

(3a)

250

wR =
cR · pR
xR

(3b)

8



where the fitness of a type is high when the type is rare and low when it is251

common.252

To consider the effect of negative frequency dependence in a population253

of discovery and confirmation researchers, we substitute expressions (3) for254

the corresponding terms in the replicator equations given by (2). This yields:255

ẋN = xN

(
cN · pN
xN

− w

)
(4a)

256

ẋR = xR

(
cR · pR
xR

− w

)
(4b)

where the mean fitness of the population is defined as before but now sim-257

plifies to w = cN · pN + cR · pR. So when researchers of a given type are258

rare in the population, their fitness goes up; when they are common, their259

fitness goes down. Negative frequency dependence therefore represents a low-260

rationality analog of rationally choosing the less frequency strategy when the261

less frequent strategy yields a higher payoff.262

Again, it is enough to track the frequency of one researcher type since263

xN = 1 − xR. The equilibrium states are found by setting ẋR = 0 and264

solving for xR. As before, there are two values that trivially satisfy this265

equality: x∗
R = 1, and x∗

R = 0. In both equilibria, discovery and confirma-266

tion researchers do not coexist in the population. But now these equilibria267

are not stable. If, say, a small number of confirmation researchers were to268

invade a population of discovery researchers, the invading confirmation re-269

searchers would face little competition from researchers of the same type.270

Initially, confirmation researchers would therefore receive a larger amount of271

credit than discovery researchers. The same is true if a small number of dis-272

covery researchers were to invade a population of confirmation researchers:273

initially, discovery researchers would receive more credit than confirmation274

researchers. With negative frequency dependence, there is always an advan-275

tage in being the less common researcher type.276

There is also a non-trivial equilibrium. In this case, the equilibrium fre-277

quency of confirmation researchers is given by:278

x∗
R = 1 − cN · pN

cN · pN + cR · pR
(5)

where x∗
N = 1 − x∗

R. This non-trivial equilibrium is stable. When there279

are more discovery researchers than the equilibrium frequency, they have280

9



lower fitness than confirmation researchers; when there are fewer discovery281

researchers than the equilibrium frequency, they have higher fitness than282

confirmation researchers. In either case, there is an advantage in being the283

type with a frequency below what the equilibrium can sustain. This works284

against whatever researcher type is overabundant, which restores the equi-285

librium (Figure 2).286

Figure 2: Equilibria in a population of discovery and confirmation
researchers with academic competition. With negative frequency de-
pendence, discovery and confirmation researchers can coexist at equilibrium.
Left: when the publication rate for discovery researchers (pN) is low, there
are more confirmation than discovery researchers at equilibrium. Center:
when the publication rate for discovery researchers is intermediate, there are
as many confirmation as discovery researchers at equilibrium. Right: when
the publication rate for discovery researchers is high, there are more discov-
ery than confirmation researchers at equilibrium. Arrows indicate selection
gradient; circles indicate equilibria given by equation (5). Shown are results
for cN = 2, cR = 1, and pR = 1.

When discovery and confirmation researchers experience the effect of neg-287

ative frequency dependence, both researcher types can therefore coexist indef-288

initely in the population. At equilibrium, the exact distribution of discovery289

and confirmation researchers depends on the values of wN and wR. When290

wN = wR, discovery and confirmation researchers coexist in the population291

at equal frequencies since x∗
R = 0.5. When wR > wN , both types of re-292

searchers coexist in the population but confirmation researchers outnumber293

discovery researchers (x∗
R > x∗

N). And when wN > wR, both researcher types294

again coexist but discovery researchers outnumber confirmation researchers295
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(x∗
N > x∗

R).296

If we suppose that our models represent a polymorphic population of pure297

strategists, these results hold only under the assumption that researchers can-298

not conduct both types of research. This assumption is very stringent. It299

requires confirmation researchers to be incapable of ever making new discov-300

eries and discovery researcher to never do any confirmatory work. In the301

next section, we relax this assumption.302

5 Opportunistic Research303

In this version of the model, we introduce an opportunistic researcher type.304

Researchers of this type are opportunistic in that they mix the behaviors of305

discovery and confirmation researchers. Accordingly, we let m be the proba-306

bility that mixed-type researchers conduct discovery research, and 1 −m be307

the probability that they conduct confirmatory research. Otherwise, mixed-308

type researchers behave as other researcher types: they receive cN when309

publishing a novel finding at rate pN , and they receive cR when publishing310

the result of a replication at rate pR.311

Researchers continue to experience the effect of negative frequency depen-312

dence. The fitness of each researcher type therefore depends on the frequency313

of that type in the population. However, the frequency of the mixed-type314

researcher now affects the fitness of each pure-type researcher differently. In315

particular, the fitness of the three researcher types is now given by:316

wN =
cN · pN

m · xM + xN

(6a)

317

wR =
cR · pR

(1 −m)xM + xR

(6b)

318

wM = m · wN + (1 −m)wR (6c)

where wM represents the fitness of mixed-type researchers and xM is the319

frequency of that type. The fitness of all three researcher types therefore320

depends on the value of m.321

Using the same framework as before, we substitute expressions (6) for322

the corresponding terms in the replicator equations (2). The dynamics of323

the population is now given by:324
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ẋN = xN

(
cN · pN

m · xM + xN

− w

)
(7a)

325

ẋR = xR

(
cR · pR

(1 −m) · xM + xR

− w

)
(7b)

326

ẋM = xM

(
m · cN · pN

m · xM + xN

+ (1 −m) · cR · pR
(1 −m) · xM + xR

− w

)
(7c)

where ẋM represents the rate of change in the frequency of mixed-type re-327

searchers. Although the mean fitness now includes terms for the three re-328

searcher types, notice that terms cancel out so that w = cN · pN + cR · pR.329

As the population is now composed of three researcher types, we find the330

equilibrium states by setting ẋR = 0 and ẋN = 0 and solving for xR and xN331

simultaneously. An equilibrium state is thus any pair of values x∗
R and x∗

N332

that solves both equations, with x∗
M = 1 − x∗

N − x∗
R. Solving for x∗

R and x∗
N ,333

we find a line of equilibria given by:334

x∗
R =

w (m(1 − x∗
N) + x∗

N) − cN · pN
mw

(8)

where x∗
N can take any value in the unit interval. Any point in the interior of335

this line represents a population consisting of not only discovery and confir-336

mation researchers, but also mixed-type researchers. In any such equilibrium,337

there is no strict division of replication labor: some scientists conduct dis-338

covery or confirmation research exclusively, but others conduct both types of339

research (Figure 3).340

There are trivial equilibria too: one equilibrium when x∗
R = 1, another341

when x∗
R = 0, and yet another when x∗

M = 1. These trivial equilibria differ342

with respect to their stability. The equilibrium where there are only con-343

firmation researchers (x∗
R = 1) is unstable. A small number of discovery344

researchers can invade because they enjoy the advantage of being rare. For345

the same reason, mixed-type researchers can invade as well: by choosing346

a sufficiently high value of m, they reap the benefit of conducting the less347

frequent type of research. The equilibrium with only discovery researchers348

(x∗
R = 0) is likewise unstable. A few confirmation researchers can invade349

a population of discovery researchers, as confirmation researchers enjoy the350

advantage of being the less common type. Mixed-type researchers can also351

invade, as they receive the benefit of the less frequent research type if they352
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Figure 3: Equilibria in a population with academic competition and
opportunistic researchers. With negative frequency dependence, discov-
ery, confirmation, and opportunistic researchers can coexist at equilibrium.
Left: when the publication rate for discovery researchers (pN) is low, the equi-
libria sustain more researchers doing confirmation than discovery research.
Center: when the publication rate for discovery researchers is intermediate,
the equilibria sustain the same fraction of researchers doing confirmation as
discovery research. Right: when the publication rate for discovery researchers
is high, the equilibria sustain more researchers doing discovery than confirma-
tion research. Arrows indicate selection gradient; lines indicate equilibrium
states given by equation (8). Shown are results for cN = 2, cR = 1, pR = 1,
and m = 0.5.

choose an appropriately low value of m. Although there is a strict division353

of replication labor in these trivial equilibria, the equilibria are unstable.354

But the equilibrium with only mixed-type researchers (x∗
M = 1) is neu-355

trally stable. In this case, the population falls on the equilibrium line given356

by equation (8). If the population is shaken out of equilibrium along this357

line, the population is taken to another equilibrium state on the same line.358

For example, if a small portion of discovery and confirmation researchers359

were to enter a population of mixed-type researchers, the invaders might360

be able to persist depending on the exact ratio of discovery and confirma-361

tion researchers that arrive. Yet, the mixed-type researchers would do no362

worse than the invaders. Pure and mixed types would therefore coexist in a363

heterogeneous population.364
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6 Publication bias365

This last model considers the effect of publication bias. Publication bias oc-366

curs when the result of a study—rather than its theoretical or methodological367

quality—biases the decision to publish it (Rothstein et al., 2006; Song et al.,368

2010). There is ample evidence for publication bias against negative results369

across scientific disciplines (Dwan et al., 2008, 2013). In the context of hy-370

pothesis testing, a positive result corresponds to rejecting the null hypothesis371

in favor of an alternative hypothesis of interest. Informally, a positive result372

thus corresponds to a new discovery. A negative result, on the other hand,373

corresponds to failing to reject the null hypothesis and the absence of a new374

discovery. Publication bias against negative results can therefore occur if375

journals prefer to publish positive over negative findings, or if scientists an-376

ticipate such a bias and are thus more likely to submit positive results for377

publication than negative results (Franco et al., 2014).378

Whether the underlying mechanism for publication bias is due to jour-379

nals’ editorial preferences or authors’ response to such preferences, we can380

model publication bias by supposing that scientists have different incentives381

to publish positive versus negative results and that scientists therefore pub-382

lish positive and negative results at different rates. Accordingly, we assume383

that discovery researchers receive different amounts of credit for publishing384

positive and negative results. In particular, we let c+N be the credit that a385

researcher receives for publishing a positive result and c−N be the credit that386

they receive for publishing a negative result, with c+N > c−N . We can now387

explicitly represent the strength of bias for positive over negative results.388

For simplicity, we do so by letting b represent the share of publications that389

report a positive result, with 1− b corresponding to the share of publications390

that report a negative result. The parameter b therefore ranges from 0 if391

only negative results are published to 1 if only positive results are published.392

As before, pN is the publication rate for discovery researchers. With-393

out the effect of negative frequency dependence, the credit that discovery394

researchers receive is pN
(
b · c+N + (1 − b) · c−N

)
. The assumption of no fre-395

quency dependence is unrealistic in a competitive research environment, so396

we ignore this case. When there is negative frequency dependence, the credit397

that discovery researchers receive in a population consisting entirely of dis-398

covery and confirmation researchers is now given by:399
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wN =
pN

(
b · c+N + (1 − b) · c−N

)
xN

(9)

where we assume no publication bias for confirmation researchers and the400

credit that confirmation researchers receive is thus wR = pR · cR, as before.401

We now consider how publication bias alters the population dynamics402

with negative frequency dependence and pure types. To do so, recall that403

the corresponding population dynamics is given by equations (4). To find404

the equilibrium frequency of discovery researchers, we therefore substitute405

expression (9) into equations (4). Setting ẋR = 0 and solving for xR yields:406

x∗
R = 1 −

pN
(
b · c+N + (1 − b)c−N

)
pN

(
b · c+N + (1 − b)c−N

)
+ cR · pR

(10)

where x∗
N is the equilibrium frequency of confirmation researchers and x∗

N =407

1 − x∗
R, as before. This equation is decreasing in b provided that c+N > c−N .408

The equilibrium frequency of confirmation researchers, x∗
R, is thus always409

decreasing in b as long as discovery researchers receive more credit for positive410

than negative results. In a population of pure types and negative frequency411

dependence, publication bias against negative results therefore decreases the412

share of confirmation researchers at equilibrium (Figure 4).413

Next, we consider how publication bias alters the population dynamics414

with negative frequency dependence and mixed-type researchers. The credit415

that discovery researchers receive in this case is given by:416

wN =
pN

(
b · c+N + (1 − b)c−N

)
m · xM + xN

(11)

where the credit for mixed-type researchers is wM = m · wN + (1 −m)wR.417

In this case, equations (7) describe the population dynamics. To find the418

equilibrium states, we therefore substitute expression (11) into equations (7).419

Setting ẋN = 0 and ẋR = 0 and solving for xN and xR, this yields:420

x∗
R =

w (m(1 − x∗
N) + x∗

N) − pN
(
b · c+N + (1 − b)c−N

)
mw

(12)

where x∗
N can again take any value in the unit interval. Under the assumption421

that c+N > c−N , this expression is also decreasing in b. So x∗
R is decreasing in b422

whenever discovery researchers receive more credit for a positive result than423

for a negative result. In a population of pure and mixed types with negative424
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Figure 4: Equilibria in a population of discovery and confirmation
researchers with academic competition and varying levels of pub-
lication bias. Decreasing publication bias (b) increases the share of confir-
mation researchers at equilibrium (solid lines: b = 1; dashed lines: b = 0.5;
and dotted lines: b = 0.15) for different publication rates (pN) among dis-
covery researchers (left, center, and right panels). Arrows indicate selection
gradient; circles indicate equilibria given by equation (10). Shown are results
for c+N = 2, c−N = 0.5, cR = 1, and pR = 1.

frequency dependence, publication bias against negative results again reduces425

the share of confirmation researchers at equilibrium (Figure 5).426

In summary, increasing publication bias against negative results decreases427

the share of confirmation researchers at equilibrium. Equivalently, reducing428

publication bias against negative results increases the share of confirmation429

researchers at equilibrium. Intuitively, this is because reducing publication430

bias has an equalizing effect on the amount of credit that researchers of431

different types receive. Thus, reducing publication bias makes it easier for432

confirmation research to thrive when the credit economy would otherwise433

favor discovery research.434

7 Discussion435

In a series of increasingly complex models, we show that discovery and confir-436

mation researchers can coexist in a population. This is possible if researchers437

experience the effect of a competitive research environment, where the credit438

that a scientist receives for their research depends on how many other scien-439

tists conduct research of the same type. We then show that a population of440

16



Figure 5: Equilibria in a population with academic competition,
opportunistic researchers, and varying levels of publication bias.
Decreasing publication bias (b) increases the share of researchers doing con-
firmation work at equilibrium (solid lines: b = 1; dashed lines: b = 0.5;
and dotted lines: b = 0.15) for different publication rates (pN) among those
conducting discovery research (left, center, and right panels). Lines indicate
equilibria given by equation (12); for clarity, selection gradient is not shown.
Shown are results for c+N = 2, c−N = 0.5, cR = 1, pR = 1, and m = 0.5.

discovery and confirmation researchers cannot resist invasion by researchers441

who mix discovery and confirmation research. Finally, we show that reducing442

publication bias against negative results increases the share of confirmation443

research at equilibrium.444

Our results therefore suggest that mechanisms to reduce publication bias—445

for example, pre-registrations and registered reports—might be beneficial446

to science regardless of the effect that publication bias has on the pub-447

lication record. Pre-registrations reduce publication bias against negative448

results by ensuring that researchers commit to a study design before know-449

ing their results. When coupled with registered reports in which a study’s450

methods are pre-registered and peer-reviewed before research is carried out,451

pre-registrations can also reduce publication bias by committing journals452

to publish a study whether results are positive or negative. That is, pre-453

registrations and registered reports reduce publication bias against negative454

results by decreasing the share of positive findings that discovery researchers455

publish (Wagenmakers et al., 2012; Nosek et al., 2018, 2019).456

Independently of the effect that this may have on the publication record,457

reducing publication bias levels the difference in credit that discovery and458
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confirmation researchers receive—especially when making discoveries is at459

a premium. With a smaller credit gap between discovery and confirmation460

research, the relative incentive to conduct replications goes up at the same461

time that the relative incentive to make discoveries goes down. By reduc-462

ing publication bias, pre-registrations and registered reports therefore make463

scientists less averse to confirmatory work. This increases the share of con-464

firmation researchers in the population, meaning that more scientists end up465

conducting replications and thus that there is additional pressure for others466

to conduct high-quality and reproducible research.467

It is also worth emphasizing that reducing publication bias would not468

involve a large overhaul of existing methodological practices or the reward469

system of science. In fact, publishers can easily reduce publication bias by470

creating special tracks for registered reports, as many already do. Researchers471

should welcome the option to publish registered reports, as they are then472

guaranteed to publish their work no matter what results they obtain. Regis-473

tered reports also seem to increase research quality (Soderberg et al., 2021),474

so journal editors should be eager to embrace the practice. For the same475

reason, science consumers and funding agencies should prefer research that476

comes out as registered reports. Reducing publication bias against negative477

results might therefore provide an effective response to the replicability crisis.478

8 Conclusion479

How should we respond to the replicability crisis? In this paper, we introduce480

and analyze a formal framework to address this question. Our framework al-481

lows us to describe a novel mechanism by means of which reducing publica-482

tion bias—via pre-registrations and pre-registered reports—benefits science483

regardless of the effect that publication bias has on the publication record.484

In particular, we show that reducing publication bias against negative re-485

sults increases the share of confirmation research at equilibrium. Reducing486

publication bias may therefore boost replicability if incentives for scientists487

to conduct high-quality research are higher when other scientists attempt to488

replicate previous results.489

It is important to discuss some limitations of our approach, however.490

First, we restrict our attention to the distinction between discovery and con-491

firmation research. Although science consists in a complex tangle of multi-492

farious practices, it is helpful to focus on the distinction between these two493
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types of research (Brandon, 1994; Steinle, 1997). This is because a closer494

look at the empirical evidence reveals that scientists do engage in discovery495

and confirmatory practices across disciplines (Franklin, 2005; Sakaluk, 2016).496

Our models therefore capture a crucial feature of scientific practice, even if497

other aspects—e.g. the distinction between manipulation and observation,498

among others—play an important role as well.499

Second, we assume that scientists can conduct both discovery and con-500

firmation research without incurring any cost for switching from one type501

of research to another. This is because meta-scientific work shows that sci-502

entists do in fact switch from one type of research to another, even though503

the quality of confirmatory research may go down when scientists attempt504

to confirm their own discoveries (Makel et al., 2012; Kunert, 2016). It is505

therefore a realistic feature of our models that the cost of switching from one506

type of research to another would have to be extremely high for scientists507

to not ever conduct both types of research. But it would be interesting to508

explicitly consider such a cost in further extensions of our model, as well as509

the possibility that scientists can spontaneously try out a different type of510

research.511

More generally, it is important to highlight that the modeling approach512

we take here provides a “how-possibly” explanation (Dray, 1957; Grüne-513

Yanoff, 2013). That is, our models are silent on whether mechanisms that re-514

duce publication bias—e.g. pre-registrations and registered reports—actually515

boost the share of confirmation research in real-world scientific communities516

and whether such mechanisms do in fact promote the use of high-quality517

research practices. Rather, our models allow us to isolate a mechanism that518

may or may not be instantiated in the real world. Although we believe that519

isolating this mechanism is a valuable endeavor on its own rights, it would be520

important to draw on the available empirical evidence and ultimately check521

whether such a mechanism operates in the real world—for example, by com-522

paring the share of replications or other forms of confirmation research that523

journals with and without registered reports end up publishing. We leave524

treatment of this question for future work.525
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