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Abstract. Scoring rules measure the deviation between a credence as-
signment and reality. Probabilism holds that only those credence assign-
ments that satisfy the axioms of probability are rationally admissible.
Accuracy-based arguments for probabilism observe that given certain
conditions on a scoring rule, the score of any non-probability is dom-
inated by the score of a probability. The conditions in the arguments
always include propriety: the claim that the expected accuracy of p is
not beaten by the expected accuracy of any other credence c by the
lights of p if p is a probability. I argue that if we think through how
a non-probabilist is likely to respond to pragmatic arguments for prob-
abilism, then the non-probabilist will accept a condition stronger than
propriety for the same reasons that the probabilist gives for propriety,
but this stronger condition is incompatible with the other conditions
that the probabilist needs to run the argument. This makes it unlikely
for the probabilist’s argument to be compelling.

1. Introduction

Scoring rules measure the inaccuracy or deviation from reality of credence
function. Strictly proper scoring rules have the property that for any cre-
dence function that satisfies the axioms of probability, the mathematical
expectation of the score of a credence function p by the lights of p is strictly
better than the mathematical expectation of any other credence function c
by the lights of p. Credence functions need not satisfy the axioms of prob-
ability, but assuming strict propriety and modest auxiliary assumptions, it
has been shown that the score of a credence function that does not satisfy
the axioms of probability is strictly dominated by the score of a one that
does satisfy these axioms. These results have been interpreted by epistemol-
ogists as supporting probabilism, the thesis that reasonable credences will
always be probabilistically consistent (e.g., [5], [4], [8]).

However, there has been little sympathetic engagement by defenders of
probabilism with the kind of views a non-probabilist is likely to hold. Accu-
racy arguments are not the only arguments for probabilism: historically,
pragmatic arguments have had pride of place in the probabilist’s arse-
nal.??refs It is thus worth thinking what a non-probabilist who already has
a well-developed answer to pragmatic arguments is likely to say about the
accuracy arguments. I will take as a paradigm of this a non-probabilist who
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accepts Pruss’s LSI↑ level set integral [11] as yielding a prevision for bas-
ing practical decisions on inconsistent credences satisfying certain axioms,
and thereby escapes all Dutch Book and some dominance arguments. I will
argue that such a non-probabilist has three plausible replies to the accu-
racy arguments. The upshot will be that accuracy arguments provide some
evidence for probabilism, but not very much.

First, a quick review of scoring rules. Let Ω be a finite sample space,
encoding the possible situations that the crdences concern. Let the credence
functions C be the functions from the power set of Ω to the interval [0, 1].1

Let P be the subset of C which consists of the functions satisfying the axioms
of probability. An inaccuracy scoring rule is a function s from a set F ⊇ P
of credence function to [M,∞]Ω for some finite M , where AB is the set of
functions from B to A. Then s(c)(ω) for c ∈ F measures the accuracy of
the credence function c when we are in fact at ω ∈ Ω, with higher values
being worse, less accurate.

Given a probability p ∈ P and an extended real function f on Ω, let Epf
be the expected value with respect to p defined in the following way to avoid
multiplying infinity by zero:

Epf =
∑

ω∈Ω,p({ω})6=0

p({ω})f(ω).

We then say that a scoring rule s is proper on F ⊇ P provided that for
every p ∈ P and every c ∈ F , we have Eps(p) ≤ Eps(c), that it is strictly
proper there provided the inequality is always strict, and that it is quasi-
strictly proper there provided that it is proper and the inequality is strict
when p ∈ P and c ∈ F − P.

Propriety captures the idea that if an agent adopts a probability function
p as their view, then by the agent’s lights there can be no improvement in
the expected score from switching to a different credence function. Strict
propriety captures the idea that such an will expect other credence functions
to be inferior. Proper and strictly proper scoring rules have been widely
studied: for instance, see [2], [3], [8], [9], [14].

A scoring rule is said to be additive provided that F = C and there is a
collection of functions (sA)A⊆Ω : R × {0, 1} → [M,∞] for a finite M such
that for all c ∈ F and ω ∈ Ω:

s(c)(ω) =
∑
A⊆Ω

sA(c(A), 1A(ω)),

where 1A(ω) is 1 if ω ∈ A and 0 otherwise.
The set of probabilities P can be equipped with the topology resulting

from its natural embedding ψ in the |Ω|-dimensional cube [0, 1]Ω, where

1Some of our discussion will then be simplified by not considering negative credences
and credences greater than one. The kind of non-probabilist that we will be considering
will be one that will place some reasonable constraints on credences, and making credences
range from 0 to 1 certainly seems reasonable.
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ψ(p)(ω) = p({ω}). Thus, a sequence of probabilities (pn) converges to a
probability p just in case pn({ω})→ p({ω}) for all ω ∈ Ω.

A scoring rule is probability-continuous provided that the restriction of
s to P is a continuous function to [M,∞]Ω equipped with the Euclidean
topology.

Say that a credence assignment c1 is (strictly) s-dominated by c2 provided
that s(c2)(ω) < s(c1)(ω) for all ω ∈ Ω.

Predd, et al. [9] showed that if s is a probability-continuous additive
strictly proper scoring rule, then for any non-probability c, there is a prob-
ability p such that p strictly s-dominates c. In other words, any forecaster
whose forecast fails to be a probability can find a forecast that is a proba-
bility and that is strictly better no matter what. Recently, Pettigrew [7] an-
nounced that this result holds without the assumption of additivity, merely
assuming probability-continuity. While Pettigrew’s proof was flawed, cor-
rect proofs can be found in Nielsen [6] and Pruss [10, 13]. Nielsen’s proof
also extended the result to the quasi-proper case. Finally Pruss [13] showed
that certain non-trivial conditions weaker than continuity suffice for the
domination result.

2. A way to be a non-probabilist

Let’s call credence assignments that could be rationally permitted “ra-
tionally admissible”. The probabilist says that only credences that are
probabilities are rationally admissible. The non-probabilist denies this, and
says that some non-probabilities are rationally admissible. But the non-
probabilist is unlikely to take a credence function that assigns 0 to all tau-
tologies and 1 to all other propositions to be rationally admissible. All that
is needed to be a non-probabilist is to say that rational admissibility al-
lows at least one credence assignment that isn’t a probability function. Our
non-probabilist is likely to have some constraints on which credences are
rationally admissible. Reasonable minimal constraints would be c(∅) = 0
(Zero) and c(Ω) = 1 (Normalization), but we can expect others.

Now, historically, accuracy arguments are not the only arguments for
probabilism. There are also pragmatic arguments, especially ones based on
Dutch Books and utility domination.??refs A non-probabilist should have
something to say about these. Now whether a given credence assignment
gives rise to unfortunate pragmatic consequences depends on how we link
credences with decisions. For instance, the link can be given by a preference
comparison where f -c g if and only if the portfolio with the utility function
g is at least as desired as the portfolio with utility function f in the light
of credence c.2 One will, then, want -c to satisfy some formal axioms when

2This way of doing things already assumes that we treat two portfolios with the same
utility function interchangeably. This assumption is not satisfied for every method of link-
ing decisions to credences. It is not satisfied, for instance, by the method presupposed by
De Finetti’s pragmatic arguments for probabilism. In the context of preference compar-
isons derived from previsions, the interchangeability of of portfolios with the same utility
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c is rationally admissible. For instance, it is very reasonable to want -c to
satisfy the strict dominance axiom that if f < g everywhere, then f ≺c g,
where f ≺c g if and only if f -c g but not g -c f . Otherwise, -c would
allow one to accept a portfolio whose yield is guaranteed to be worse than
that of another portfolio.

In the case of classical decision theory, the link between credence and
decisions uses mathematical expectation. If one is choosing between portfo-
lio with different utility functions from Ω to R, and one has a probabilistic
credence assignment p, then one should opt for a portfolio for which the
mathematical expectation Epf of the utility function f is biggest. Now, Epf
is normally defined only for a probability p. To adapt this to decisions made
in the light of non-probabilistic credences, one can adapt Epf to get some
sort of “prevision” Vcf of the utility f given a non-probabilistic credence
c. Given such a prevision, one can then define a corresponding preference
comparison by saying that f -c g if and only if Vcf ≤ Vcg. Say that Vc is
strongly monotonic providing that if f < g everywhere, then Vcf < Vcg.

Recently, Pruss [11] offered level set integrals as a way of calculating a
prevision of a utility given a non-probabilistic credence. One of his two ways
of doing so is:

LSIc f =

∫ ∞
0

c({ω : f(ω) > y}) dy,

for non-negative real-valued f . If f is allowed to be negative, then we define
LSIc f = −α+ LSIc(α+ f) where α is a sufficiently large real number that
α + f is everywhere non-negative.3 (It turns out that the definition does
not depend on the choice of α.) This agrees with mathematical expecta-
tion Ecf when c is a probability function. Given the reasonable Zero and
Normalization constraints on c, Pruss [11], working with utilities that are
everywhere finite, proves that LSIc is strongly monotonic if and only if c
satisfies the Monotonicity Axiom that c(A) ≤ c(B) if A ⊆ B. LetM be the
set of credences that satisfy Zero, Normalization and Monotonicity. Pruss
also shows that decision-making procedures with credences inM using level
set integrals can avoid many pragmatic arguments for probabilism (though
one of his proofs is flawed; see our Appendix for a fix).

Note that while Pruss only defined level set integrals for real-valued f ,
we can extend the definition to cases where f takes values in [−∞,∞) or
in (−∞,∞] (but not both, so we avoid ∞−∞), which we will need in the

function is equivalent to saying that the prevision is “integral-like” [11]. Because our task
in this paper is to consider how the accuracy arguments for probabilism fare against the
most plausible versions of non-probabilism, and because a preference comparison that al-
lows one to distinguish two portfolios that have exactly the same utility function—say,
because they arrange the wagers in the portfolio in a different but equivalent way—is eo
ipso problematic, this is a reasonable assumption in our context. We should not expect a
smart non-probabilist to make such a problematic pragmatic distinction.

3Our LSIc corresponds to LSI↑c in [11]. We ignore his LSI±c , because it does not commute
with positive affine transformations, as we would expect in a utility prevision, since utilities
are normally thought to be defined only up to positive affine transformations.
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application to scoring rules. Specifically, for M ≥ 0, let fM (ω) = f(ω) if
|f(ω)| ≤ M and fM (ω) = M sgn f(ω) (where sgnx is 1 if x > 0 and −1 if
x < 0), and let

LSIc f = lim
M→∞

LSIc fM .

This agrees with the previous definition when f is finite-valued, and Zero,
Normalization and Monotonicity continue to imply strong monotonicity (see
the Appendix).

While Pruss does not himself advocate non-probabilism, it is reasonable
to think that something like his approach is a plausible model of a non-
probabilist response to pragmatic arguments for probabilism: impose some
formal constraints, such as Zero, Normalization and Monotonicity, on cre-
dences and find a decision procedure that allows escape from many prag-
matic arguments for probabilism.

3. A reaction to the accuracy arguments

Now, let us consider how our non-probabilist is likely to react to the ac-
curacy arguments for probabilism. The accuracy theorist says that given
an inaccuracy scoring rule s that satisfies certain conditions, for any non-
probabilistic credence c, there is a probability p such that s(c) > s(p) every-
where on Ω, i.e., no matter what, c is more inaccurate according to s than p
is. Thus, it is concluded, it is irrational to adopt c as one’s credence, since
one would be sure to be less inaccurate to adopt p.

How convincing this line of thought is depends on whether the non-
probabilist should be expected to agree that s correctly measures the in-
accuracy of a credence function. If we simply adopted the nearly trivial
scoring rule where t(c)(ω) = 0 if c is a probability and t(c)(ω) = 1 if it’s not,
then we would have the radical domination result that t(c) > t(p) whenever
c isn’t a probability and p is, but of course the non-probabilist is not going
to agree that t is a good measure of inaccuracy, and will rightly insist that
t is ad hoc.

The usual proceeding in accuracy arguments for probabilism is not so
ad hoc. Rather, one imposes constraints on the scoring rule s that appear
plausible, and proves that these imply that for every non-probability c there
is a probability p such that s(c) > s(p) everywhere.

Common to all the versions of these arguments is propriety : we assume
that Eps(p) ≤ Eps(c) whenever p is a probability and c is a credence different
from p. The thought is that given a probability p there should’t be another
credence, c, which by the lights of p would be expected to be less inaccurate.
If we had such p and c, then an agent who had credence assignment p
would be rationally required to switch to c on accuracy grounds without
any evidence, and this is implausible.

Now, our non-probabilist may well find propriety compelling. However,
a non-probabilist thinks that some non-probabilities—say, those inM—are
rationally admissible. And they will thus think that the above argument
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about evidenceless switching should apply to the rationally admissible non-
probabilities as well, as long as one replaces comparisons of the mathematical
expectation E with the appropriate preference comparison.

Let A ⊆ C be the set of credences satisfying the conditions our non-
probabilist thinks yield rational admissibility and suppose -c is the associ-
ated preference comparison. Then the non-probabilist impressed by the rea-
soning behind propriety is going to insist that −s(c) -r −s(r) whenever r ∈
A and c is any credence other than r, a condition I will call (A,-)-propriety;
if -c is derived from a prevision Vc, I will also call it (A, V )-propriety, with
the condition then being equivalent to Vr(−s(c)) ≤ Vr(−s(r)). The reason
for the negative signs is that -r is meant for utilities, and our inaccuracy
scores are disutilities.4

So far we have no disagreement between the person offering the accuracy
argument for probabilism and the non-probabilist. The non-probabilist is
likely to think that all the probabilities are rationally admissible so P ⊂ A,
and that f -p g if and only if Epf ≤ Epg for a probability p. In that case,
(A,-)-propriety will be a stronger condition than ordinary propriety, i.e.,
(P, E)-propriety.

Propriety does not, of course, yield the strict domination results that are
supposed to trouble non-probabilists. After all, the completely trivial scor-
ing rule T such that T (c)(ω) = 0 for all c and ω is proper, but gives no reason
to prefer probabilities to non-probabilities. But the accuracy-arguer adds
some additional conditions on s on top of propriety. For instance, they may
add strict or quasi-strict propriety and continuity on the probabilities. Such
conditions guarantee that for any non-probability c there is a probability p
that strictly s-dominates c.

At this point, however, the probabilist offering an accuracy argument
runs into a serious problem. For while our non-probabilist was liable to find
propriety compelling, they only found it compelling as a special case of a
stronger requirement, (A,-)-propriety. Now in order to be pragmatically
plausible, the preference comparison-r should satisfy strict dominance. But
the following four statements are logically incompatible:

(1) -r satisfies strict dominance for r in A
(2) A is not a subset of P
(3) s is (A,-)-proper
(4) for any c /∈ P there is a p ∈ P such that s(c) > s(p) everywhere.

We will call (4) “the domination thesis” from now on.
To see that the four conditions above are incompatible, note that if we

choose r in A − P (which we can by (2)), then the domination thesis (4)
implies there is a p distinct from c such that s(r) > s(p) everywhere, which

4In the case of mathematical expectation for a probability r, we have Er(−f) = −Er(f)
and so our condition is equivalent to the more familiar Ers(r) ≤ Ecs(r). However, it is in
general not true that LSIr(−f) = −LSIr(f): see the Appendix for what is actually true.
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by strict dominance (1) implies that −s(r) ≺r −s(p), and that contradicts
the (A,-)-propriety condition (3).

In particular, whatever conditions the accuracy-arguer would place on s
that imply the domination thesis are incompatible with our non-probabilist’s
requirement that s be (A,-)-proper, given that our non-probabilist takes
some non-probability to be admissible and can be expected to be working
with a preference comparison that satisfies strict dominance, perhaps one
derived from a prevision that satisfies strong monotonicity.

In other words, the accuracy-arguer offers some set of conditions C on a
scoring rule (e.g., strict propriety and continuity in the case of Pettigrew [7])
and proves that C plus propriety implies the domination thesis. If the
accuracy-arguer has done their job well, C and propriety will be plausible to
our non-probabilist. But if propriety will be plausible to the non-probabilist,
likewise (A,-)-propriety will be plausible. Thus our non-probabilist will see
C and (A,-)-propriety as reasonable constraints to put on a scoring rule.
But if P ⊂ A and - agrees with E on the probabilities, then the accuracy
theorist’s argument for the domination thesis from propriety and C shows
that no scoring rule satisfies C and (A,-)-propriety.

At this point, one might wonder if there are any non-trivial scoring rules
that satisfy (A,-)-propriety for any plausible examples of A and -. The
answer is positive in the case of (M,LSI). In fact any bounded scoring rule
s defined only on the probabilities and proper there (where s is bounded
provided there is a finite K such that |s(p)(ω)| < K for all p and ω) can
be extended to a (M,LSI)-proper scoring rule on all the credences. To see
that, note that s’s values s(p) are functions from Ω to R and RΩ can be
thought of as n-dimensional Euclidean space, where n is the cardinality |Ω|
of Ω. Let V be the topological closure of the set {−s(p) : p ∈ P}. For any
fixed u ∈ M− P, the prevision LSIu is known to be a continuous function
from RΩ to R??ref, and since V is compact, it attains a maximum at one
or more points of V . Choose any one of these points, and call it αu.5 Then
let s(u) = −αu. For any u ∈ M − P, the point −s(u) maximizes LSIu
over V . The same can be seen to be true for u ∈ P by propriety of our
original score s on P, the fact that any point of V is a limit of a sequence
of values of −s, and the fact that LSIu agrees with Eu for u a probability.
Then for any u, v ∈ M we have LSIu(−s(u)) ≥ LSIu(−s(v)) because LSIu
is maximized over V at −s(u) and −s(v) ∈ V . Finally, we need to define
s(c) where c ∈ C −M. The simplest solution is just to let s(c)(ω) =∞ for
all ω (any point that is dominated by some point in V will also work).

The accuracy-arguer now needs to convince the non-probabilist to hold
on to C and weaken (A,-)-propriety to mere propriety. The non-probabilist

5This can be done as a direct application of the Axiom of Choice, but we can also do
it constructively. Identifying RΩ with Rn, order it lexicographically. The set of points
of where LSIu attains its maximum is closed (since it’s the pre-image of the closed set
{maxV LSIu} under the continuous function LSIu) and hence compact, and so it will have
a lexicographically first element. Let αu be that element.
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has several options. First, they can reject C. Second, they can accept both C
and (A,-)-propriety as plausible constraints on scoring rules but say that it
is an unfortunate fact that no scoring rule satisfies both, and hence a scoring
rules are not a good way to evaluate the accuracy of a credence assignment.
Third, propriety itself could be rejected. In all cases, the argument from
accuracy for probabilism will carry little weight.

I will next survey the variety of versions of C that have been offered and
the reasons that can be given for them, and discuss the three options for a
non-probabilist response.

4. The condition C

The condition C is added to propriety to yield the domination thesis.
Several versions of C are known. The earliest known fairly general version
of C was

(CASP) probability-continuity, additivity and strict propriety. [9]

It was later seen that additivity can be dropped, and two other versions
were offered:

(CSP) probability-continuity and strict propriety [7, 6, 10]

(CQSP) probability-continuity and quasi-strict propriety [6].

In the same line of development, one can get a weakening of CQSP where
probability-continuity is replaced by a continuity condition at the probabil-
ities with an infinite score combined with a complicated geometric condi-
tion [13], but as no one has formulated a philosophical reason to accept the
geometric condition beyond the fact that it is entailed by CQSP, we do not
need to consider this version.

There is also one other fairly recent line of development. Campbell-Moore
and Levinstein [1] prove that

(CASTD) probability-continuity, additivity and strict truth-directedness

together with propriety implies strict propriety, and so we can take C to
be CASTD. Here, strict truth-directedness says that if c′ is truer than c at
ω, then s(c′)(ω) < s(c)(ω). A credence assignment c′ is truer than another
credence assignment c at ω provided that for every event A, if ω ∈ A, then
c′(A) ≥ c(A), and if ω /∈ A, then c′(A) ≤ c(A), and in at least one case the
inequality is strict.

5. Rejecting C

In order for the accuracy argument to succeed against our non-probabilist,
the relevant version of C must be sufficiently plausible to overcome the
plausibility that (A, V )-propriety has to our non-probabilist. But the can-
didates for C, while all plausible, are not that plausible, especially to the
non-probabilist. To see this, let us consider their ingredients.

Additivity is primarily a simplifying assumption rather than a philosoph-
ically plausible constraint on what counts as accuracy. Global features of a
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credence function could turn out to be relevant to the function’s accuracy.
One might, for instance, think that there is an additional epistemic utility in
having gotten everything right that goes beyond the value of each individual
thing one got right. Moreover, one way to see the implausibility of additiv-
ity as anything beyond a simplifying assumption is to reflect on the likely
reaction of an accuracy theorist who has a strong commitment to strict or
at least quasi-strict propriety to the news that there is no additive quasi-
strictly proper scoring rule for probabilities (whether countably or finitely
additive) defined on every subset of an infinite sample space [12, Proposi-
tion 3]. The reaction is likely to be to search for non-additive quasi-strictly
proper scoring rules rather than rejection of the accuracy framework on the
grounds that without additivity, scoring rules are not plausible measures of
accuracy. The fact that additivity does not have that much independent
plausibility casts a shadow over arguments based on CASP and CASTD.

Probability-continuity has a significant degree of initial plausibility—it
does seem that a slight change in credences should result only in a slight
change in score. Though even this is not completely clear. For there might
turn out to be probability thresholds that have significance in the case of
beliefs about important matters. For instance, for propositions that are
particularly epistemically central to one’s view of the world, such as that
life has (or lacks) meaning, that moral realism is (or is not) true, that God
does (or does not) exist, or that we live (or do not live) in a simulation,
if the proposition is true, there may be a discontinuous jump in epistemic
utility as one goes from assigning a credence lower than 1/2 to assigning a
credence greater than 1/2. Or it may be the case that there is a threshold
such that one does not count as knowing when one’s credence lies below that
threshold, and if knowledge has a special value, then the epistemic utility of
a credence in a truth may discontinuously jump as we cross that threshold.
Furthermore, one might think that the epistemic utility of a credence in a
falsehood may discontinuously go down when the credence hits one—it seems
extra bad to be sure of a falsehood—or with Descartes one might think that
there is a special value in being certain of a truth, so the epistemic utility
jumps discontinuously as the credence hits one.

While quasi-strict propriety is logically weaker than strict propriety, there
does not appear to be any reason to accept it beyond the reasons for strict
propriety, unless one has a prior objection to non-probabilistic credences
that the non-probabilist will take to be question-begging. For quasi-strict
propriety, in the absence of strict propriety, expressly disadvantages non-
probabilistic credences with respect to the scoring rule by requiring that any
non-probabilistic credence have a poorer expectation than p by the lights
of p for any probabilistic credence p, without requiring that a probabilistic
credence other than p have such a poorer expectation. Thus, despite the
logical weakening in the premises, the argument based on CQSP thus has
little if any weight beyond the one based on CSP.
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Strict truth-directedness has some plausibility, though it only appears in
CASTD conjoined with additivity, which is not particularly plausible. With-
out additivity, Theorem 3 in the Appendix shows that truth-directedness
and continuity do not yield the domination thesis.

And there is some reason for the proponent of probabilism to be suspicious
of strict truth-directedness. Suppose that in the case of a fair coin toss, I
have a probabilistic credence p that the probability of heads is 0.50 and that
of tails is 0.50 as well. Next, suppose that I sustain a head injury that causes
my credence for tails to shift to 0.49, everything else remaining the same,
so I still assign 0.50 to heads, inconsistency notwithstanding. If it turns
out that in fact the coin does land heads, it is not clear that I am better
off epistemically for having shifted my credence slightly in the truth-ward
direction, when I have done so at the cost of inconsistency. But since my
new credences are truer, a strictly truth-directed scoring rule will give me a
higher score.

Furthermore, Theorem 2 in the Appendix shows that strict truth-
directedness of a scoring rule is incompatible with (M,LSI)-propriety if
Ω has at least two points. Thus the non-probabilist who likes M and LSI
will have good reason to be suspicious of strict truth-directedness.

We are finally left with strict propriety as such. Now, this has some initial
plausibility. Just as it seemed likely that one would not be required by inac-
curacy minimization to change one’s probabilistic credences evidencelessly,
it is fairly plausible that one would not be permitted to do so, and hence
if one’s probability is p, then the p-expected score of a different credence
should be strictly worse. ??ref

But there are several problems in this line of thought.
First, it could well be that there are many permissible ultimate priors for

rational credences. On subjective Bayesianism, any coherent (and maybe
regular) credence assignment can function as the ultimate priors, but one
need not be a subjective Bayesian to think that there is some freedom. But
if there is any freedom in the ultimate priors, then it is unclear why it
would be irrational for someone to reverse-engineer their current credences
and the evidence they have received back to their original priors, and then
switch those original priors to some other set of permissible ultimate priors,
and then re-impose the evidence on top of this, thereby changing one’s
credences evidencelessly. Moreover, on any view on which there are non-
formal constraints on the ultimate priors, it should be not only permissible
but required that if one should discover that one’s ultimate priors did not
satisfy these constraints, then one should backtrack and fix one’s priors and
readjust one’s current credences.

Second, even if one grants that one would not be permitted to change cre-
dences evidencelessly, it is not clear that this prohibition would have to come
from expected accuracy optimization. One can have two levels of commit-
ment to the accuracy-theoretic framework. More weakly one could hold that
it provides a constraint on one’s rational credences, or more strongly one
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could hold that it accounts for all the constraints on one’s rational credences.
Only the stronger commitment to the accuracy-theoretic framework yields
the argument for strict propriety. For the weaker commitment is compatible
with there being a rule of rationality separate from the accuracy-theoretic
framework that forbids evidenceless switches of credence away from proba-
bilistic credences.

Third, the argument for strict propriety, i.e., strict (P, E)-propriety, is
plausible precisely because we think probabilistic credences in P are ratio-
nally admissible. (If we did not think some credence assignment to be ratio-
nally admissible, we should have no problem with a scoring rule permitting—
or even requiring—an evidenceless change from that credence assignment.)
Thus the likely principle behind the argument for strict propriety is really
that it is impermissible to change rationally admissible credences evidence-
lessly. What this supports—assuming we can defend it from the two previous
objections—is the thesis that

(5) −s(c) ≺r −s(r) if r is rationally admissible, c is different from r and
- is the correct preference ordering.

Now, our non-probabilist thinks that the set of rationally admissible cre-
dences contains some non-probabilities. Given this, the argument pushes her
to accept that what one might call strict (A,-)-propriety—that −s(c) ≺r
−s(r) for all r ∈ A and c ∈ C − {r}.

But remember that our non-probabilist, in order to get out of pragmatic
problems, is assumed to have a preference structure - that satisfies strong
monotonicity. If, further, A ⊃ P and - agrees with E on the probabilities,
then strict (A,-)-propriety will be impossible given probability-continuity.
For strict (A,-)-propriety will imply strict (P, E)-propriety, which together
with probability-continuity will imply the domination condition which is
incompatible (A,-)-propriety (given strong monotonicity of - for credences
in A). Thus, our non-probabilist is likely to want to reject strict (A,-)-
propriety, and likewise strict propriety as it’s based on the same reasoning.

Interestingly, Theorem 2 in the Appendix shows that in the special case
of strict (M,LSI)-propriety, the assumption of probability-continuity in this
argument can be dropped. Indeed, if Ω has at least two points, no (M,LSI)-
proper scoring rule is quasi-strictly proper. Thus if our non-probabilist takes
the members of M to be rationally admissible with LSI as the associated
prevision, and hence finds (M,LSI)-propriety very plausible, then they will
be additionally suspicious of strict or even quasi-strict propriety.

Thus, in fact, given the conflict between C and (A,-)-propriety, and
given the weakness of the arguments for any of the versions of C, it does
not appear irrational for our non-probabilist to reject all the versions of C.

Our arguments in this section may seem akin to a trivial modus tollens
response: the conjunction of the conditions in C implies probabilism is true,
so the non-probabilist concludes that this conjunction is false. However, the
point is a little subtler. One of the conditions in C, namely propriety, is more
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plausible than the others. By our non-probabilist’s lights, the argument for
propriety is an argument for a stronger thesis, (A,-)-propriety, which thesis
ends up being incompatible with the conjunction of the other conditions.

6. Pessimism about scoring rules

But the non-probabilist also has a different response available, which is
to accept that both (A,-)-propriety and some version of C are correct con-
ditions to impose on a reasonable scoring rule. Of course, it immediately
follows from this that there is no reasonable scoring rule. Is this an unac-
ceptable conclusion?

Recently, Pruss [12] has proved (assuming the Axiom of Choice) various
negative results about scoring rules in infinite contexts. For instance, in
the case of finitely additive probabilities defined on all subsets of an infinite
space, there is no strictly proper scoring rule, and in the case of continuum-
many coin tosses and countably additive probabilities defined on the usual
product σ-algebra, there is no strictly proper scoring rule either.

Now, one plausible reaction to those negative results would be to con-
clude that strict propriety is an unreasonable condition on a scoring rule.
That would lead to the non-probabilist’s responding to the arguments for
probabilism by rejecting condition C, as in the previous section.

But there is another possible reaction if we are impressed by the idea
that strict propriety is a correct requirement for a scoring rule to capture
the concept of accuracy. We could conclude that in the infinite contexts
there is are no good scoring rules: the scoring rule approach should simply
be put aside. And this has a parallel for the non-probabilist, who can say
that in contexts where non-probabilistic credences are appropriate, there are
no good scoring rules. Scoring rules should satisfy C and be (A,-)-proper,
but because no scoring rule does that, scoring rules are not a good tool
for analyzing credences in contexts where non-probabilistic credences are an
option.6

7. Further constraints to the non-probabilist’s rescue

So far, we have assumed that the set A of rationally admissible credences
contains all the probabilities. But this might be incorrect. First, some formal
epistemologists accept regularity as a further constraint on rationality: all
non-empty events must have non-zero probability. If so, then non-regular
probabilities, ones that assign zero probability to some non-empty event,
will not be rationally admissible and hence will not be members of A. In

6It is worth noting that in the infinite case, there is a third solution. Pruss [12] shows
that it is possible to construct strictly proper scoring rules in the infinite contexts if instead
of requiring the values of the scores to be extended real numbers, we allow scores to take
values in some larger set such as nets of real numbers (at the same time, he notes that it
is not known at present whether an argument for probabilism can be run in that context).
This way out of the negative results does not appear to have a parallel in our finite-space
non-probabilist context.
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that case, (A,-)-propriety will not imply propriety, even if - agrees with
mathematical expectation E on the probabilities. And the usual arguments
for propriety are implicitly or explicitly based on the assumption that all
probabilities are rationally admissible. If some credence is not rationally
admissible, it is not particularly surprising if by its own lights it is recom-
mended that one change to a different credence. Granted, there is a price
to be paid for requiring regularity even in the finite case: updates will have
to be something like Jeffrey conditionalization to maintain regularity.??ref

Moreover, regularity need not be the only additional constraint on ratio-
nally admissibility. It could turn out that there are also non-formal con-
straints based on the subject matter. Objective Bayesians think there are
non-formal constraints on the priors. Now consider this story. Original
priors are rationally required to be regular and friendly to induction (e.g.,
elegant regularities should not have astronomically low probabilities), but
at the same time rationality requires classical Bayesian conditionalization
rather than Jeffrey conditionalization. In that case, a probability assign-
ment that is regular and not friendly to induction is one that a perfectly
rational agent could never have. For our perfectly rational agent’s original
priors would be regular but friendly to induction. And our perfectly rational
agent’s posteriors would never be regular, since regularity is lost in classical
Bayesian conditionalization—the complement of one’s evidence will come
to have credence zero. So a regular probability assignment not friendly to
probabilism would never be rationally inadmissible.

As soon as any probability function is omitted from the set of ratio-
nally admissible credences, the philosophical arguments for strict or even
non-strict (P, E)-propriety fail, since the arguments are only plausible for
probability functions that are rationally admissible. All we will have will
be arguments for strict or non-strict (P0, E)-propriety, where P0 is the sub-
set of probabilities that are rationally admissible. And that won’t be good
enough for the domination thesis.

Indeed, even (P, E)-propriety is not enough for the domination thesis if
all we have is strict (P0, E)-propriety, with P0 a proper subset of P. For
let s be any probability-continuous strictly proper score. Fix a probability
q ∈ P − P0. Define s′(p) = s(p) for any probability p and s′(c) = s(q)
for any non-probability c. Then s′ is a probability-continuous score which
fails in strict propriety only at q, which is not rationally admissible. But
s′ does not have the domination property. For s′(c) for a non-probability
c is not dominated by the score of any probability, since s′(c) = s(q), and
no s-score of a probability by a proper scoring rule s is dominated by the
s-score of any probability (if s(p1) were dominated by s(p2), we would have
Ep1s(p1) > Ep1s(p2), contrary to propriety), so s′(c) = s(q) is not dominated
by the s- or, equivalently, s′-score of any probability. Hence s′ does not
satisfy the domination thesis, despite having probability-continuity, (P, E)-
propriety and strict (P0, E)-propriety.
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It is thus crucial to the accuracy arguments for probabilism that all prob-
abilities be rationally admissible, and while previously we had our non-
probabilist grant that, it need not in fact be granted.

8. Conclusions

We have imagined a non-probabilist who thinks that rationally admissi-
ble credences include some class of non-probabilities and who has a decision
procedure based on these credences that is helpful in practical cases. For ex-
ample, the non-probabilities held to be rationally admissible could be ones
satisfying some formal axioms weaker than the Kolmogorov axioms, say
Zero, Normalization and Monotonicity, in which case the decision procedure
could be based on level set integrals [11]. Propriety is defined with respect to
the probabilities: no score of a probability p is beaten by the lights of p by the
score of any other credence. And accuracy-based arguments for probabilism
all presuppose propriety. But the reason why propriety appears plausible
is because a typically more general thesis appears plausible: no score of a
rationally admissible credence r is beaten by the lights of r by the score
of any other credence. Given that as our non-probabilist thinks that some
non-probabilities are rationally admissible, if they find the considerations
behind propriety compelling, they will accept the extension of propriety to
their preferred class of credences. But now if our non-probabilist’s decision
procedure is strongly monotonic, as it needs to be to escape pragmatic argu-
ments for probabilism (and as it will be in our example case of an advocate of
M and LSI), and assuming that our non-probabilist accepts all probabilities
are rationally admissible, then the extended propriety thesis ends up being
logically incompatible with the rest of the premises of the accuracy theorist’s
argument for probability (e.g., strict propriety and probability-continuity).

At this point, three ways were seen for the non-probabilist to continue
the discussion: deny one or more of the premises incompatible with the
non-probabilistically extended propriety thesis, most likely strict propriety;
grant that all the conditions the probabilist wants to put on a scoring rule
are correct, but conclude that there is no such thing as a good scoring rule;
or insist that not all probabilities are rationally admissible.

In all of the above, it was assumed that the non-probabilist positively
thinks that some non-probabilities are rationally admissible. However, it
is worth noting that the accuracy-theoretic arguments may still have sig-
nificant force against someone who is merely agnostic about whether any
non-probabilities are rationally admissible. Such a theorist might find it
plausible to think that a good scoring rule will satisfy strict propriety and
continuity with respect to the rationally admissible credences, and may be
confident that all probabilities are rationally admissible, while being agnos-
tic on whether any non-probabilities are. In that case, learning that strict
propriety and continuity cannot hold with regard to a strict superset of
the probabilities (given strong monotonicity of the decision procedure) will
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give the theorist reason to think that only the probabilities are rationally
admissible. In fact, it is interesting to note that if the class of potentially
rationally admissible credences includes M and the decision procedure is
based on LSI, then one can even drop the assumption of continuity from
the argument in light of the fact proved in the Appendix that there is no
strictly (M,LSI)-proper scoring rule.

Similarly, a non-probabilist who is inclined to think that some non-
probabilities are rationally admissible but is significantly more strongly
committed to the rational admissibility of the probabilities may find the
accuracy-theoretic arguments to carry some weight.

Thus, the accuracy-based arguments for probabilism carry some weight,
but are very far indeed from significantly disturbing a committed non-
probabilist who already knows how to respond to pragmatic arguments.

Appendix: Some technical results

Level set integrals and monotonic credences. Given a credence c, let
c∗(A) = 1− c(Ω−A) (for a probability p we have p∗ = p). Then given Zero
and Normalization, we have LSIc(−f) = −LSIc∗ f when f is a function that
takes values either in (−∞,∞] or in [−∞,∞). We only need to check this
for f having finite values. Moreover, because LSIc(α + f) = LSIc f (by the
well-definition of LSIc f), we may suppose f takes values in [0, L] for finite
L and then:

LSIc f =

∫ L

0
c({ω : f(ω) > y}) dy

=

∫ L

0
(1− c∗({ω : −f(ω) ≥ −y})) dy

= L−
∫ L

0
c∗({ω : −f(ω) ≥ −y}) dy

= L−
∫ L

0
c∗({ω : −f(ω) > −y}) dy

= L−
∫ L

0
c∗({ω : −f(ω) > t− L}) dt

= L−
∫ ∞

0
c∗({ω : L− f(ω) > t}) dt

= −LSIc∗(−f),

where the first and last equalities used Zero and Normalization (applied to c)
respectively, and the move from considering the level set {ω : −f(ω) ≥ −y}
to considering the level set {ω : −f(ω) > −y} depended on the fact that the
two level sets are equal except perhaps when y is one of the finitely many
values of f .

In [11, Lemma 1g], it is incorrectly stated (with some trivial translation
to our setting) that if f is negative and finite, then LSIc f = −LSIc(−f).
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The right hand side should instead be −LSIc∗(−f). The only place where
[11] uses the incorrect/ claim appears to be in the proof of his Theorem 1 in

the case of what is called there LSI↑P , where it is shown that decisions using
level set integrals avoid Dutch Books. To fix the problem, in the statement

of the theorem in the case of LSI↑P one needs to replace Non-Negativity with
the axiom that credences have value at most 1, and instead of the argument

given in the proof, use the formula LSI↑P f = −LSI↑P ∗(−f) to establish that

LSI↑P f < 0 if f < 0 everywhere, noting that P ∗ satisfies Non-Negativity if
P ≤ 1 everywhere.

Theorem 1. If c ∈ M and f and g are functions on Ω with values in
[−∞,∞] such that f < g everywhere, then LSI f < LSI g, with both level set
integrals well-defined.

Proof. Since f < g everywhere, g cannot take the value −∞ anywhere and f
cannot take the value +∞ anywhere. Let M0 = 1 + max(max f,max(−g)).
This is finite, and if M ≥M0, then

fM ≤ fM0 < gM0 ≤ gM
everywhere. By [11, Theorem 2], we then have

LSIc fM ≤ LSIc fM0 < LSIc gM0 ≤ LSIc gM .

Taking the limit as M →∞, we conclude that LSIc f < LSIc g. �

Say that a credence c satisfies Subadditivity provided that c(A) + c(B) ≤
c(A ∪ B) whenever A and B are disjoint. Given that our credences take
values in [0, 1], Subadditivity implies Zero and Monotonicity. Let S be the
credences that satisfy Normalization and Subadditivity.

Theorem 2. Let s be a (S,LSI)-proper scoring rule defined for all credences
in S. Then s is neither quasi-strictly proper nor strictly truth-directed.

Write v · w for the dot product of two vectors.

Lemma 1. Let V ⊆ (−∞,M ]2 be a non-empty closed convex set. Then
there is a point z of V and a vector v = (v1, v2) in the positive quadrant
(0,∞)2 such that for all w ∈ V − {z} we have v · w < v · z.

Proof. Let v(θ) = (cos θ, sin θ) be the unit vector at angle θ. For θ ∈ (0, π/2),
the set of points z of V that maximize v(θ)·z is a finite (perhaps degenerate)
line segment which is a subset of a line normal to v(θ) (finitude follows from
the fact that any line segment contained in (−∞,M ]2 and orthogonal to
a vector in the positive quadrant is finite). Let a(θ) = (a1(θ), a2(θ)) and
b(θ) = (b1(θ), b2(θ)) be the endpoints of that line segment, chosen so that
a2(θ) ≤ b2(θ).

I claim that if 0 < θ < φ < π/2, then b2(θ) ≤ a2(φ).
For let z = (z1, z2) = b(θ) and w = w(w1, w2) = a(φ). Then:

w1 cos θ + w2 sin θ = v(θ) · w ≤ v(θ) · z = z1 cos θ + z2 sin θ
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and so

w1 cos θ cosφ ≤ z1 cos θ cosφ+ z2 sin θ cosφ− w2 sin θ cosφ

Also:

z1 cosφ+ z2 sinφ = v(φ) · z ≤ v(φ) · w = w1 cosφ+ w2 sinφ

and so

z1 cos θ cosφ+ z2 cos θ sinφ− w2 cos θ sinφ ≤ w1 cos θ cosφ.

Putting our two inequalities together:

z1 cos θ cosφ+ z2 cos θ sinφ− w2 cos θ sinφ

≤ z1 cos θ cosφ+ z2 sin θ cosφ− w2 sin θ cosφ

and so:

z2(cos θ sinφ− sin θ cosφ) ≤ w2(cos θ sinφ− sin θ cosφ).

Since cos θ sinφ − sin θ cosφ = sin(φ − θ) > 0, we have z2 ≤ w2, which is
what we wanted.

So if 0 < θ < φ < π/2, then b2(θ) ≤ a2(φ) as desired. Thus for any
sequence of angles π/4 = θ0 < · · · < θn = π/2, we have:

b2(θn) = b2(θ0) +
n∑
i=1

(b2(θi)− a2(θi) + a2(θi)− b2(θi−1))

≥ b2(θ0) +
n∑
i=1

(b2(θi)− a2(θi)).

Hence:

b2(θn) ≥
∑

θ∈(π/4,π/2)

(b2(θ)− a2(θ)).

Since b2(θ) − a2(θ) ≥ 0, and the only way an uncountable sum of non-
negative values can converge if all but countably many summands are zero,
it follows that for uncountably many θ ∈ (π/4, π/2) we have b2(θ) = a2(θ).
Choose one such θ. Then b(θ) and a(θ) have the same second coordinate
but both lie on a line at angle θ + π/2. Since that line is not horizontal,
the only way they can have the same second coordinate is if b(θ) = a(θ).
Letting v = v(θ), it follows that only one point z = a(θ) = b(θ) maximizes
v · z over V , as desired. �

If Ω = {1, 2} and α, β ∈ [0, 1], let rα,β be the credence in M such that
rα,β({1}) = α and rα,β({1}) = β. This is a member of S if and only if
α + β ≤ 1 and a member of P if and only if α + β = 1. It will be useful to
note that

LSIrα,β f =

{
f(1) + β(f(2)− f(1)) if f(1) < f(2)

f(2) + α(f(1)− f(2)) otherwise.
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Lemma 2. Let Ω = {1, 2}. Suppose that s : S → [−∞,M ] is such that
LSIr s(r) ≥ LSIr s(u) for any r, u ∈ S. Then there are α, β, γ ∈ (0, 1) such
that γ ≤ α and β ≤ 1− α with exactly one of the two inequalities strict and
s(rα,1−α) = s(rγ,β) everywhere.

Proof. By abuse of notation, we will identify RΩ with R2 in the natural way
(a function f ∈ RΩ corresponds to the point (f(1), f(2)) in R2).

Let U be the set of finite values of s and let V be the closed convex hull
of U .

By Lemma 1, there is a point z = (z1, z2) of V and a vector v = (v1, v2)
in the positive quadrant (0,∞)2 such that for all w ∈ V − {z} we have
v · w < v · z.

Without loss of generality we can suppose z1 ≥ z2 for the rest of our
proof. For if we can prove the result in that case, then if for any z chosen as
above we had z1 < z2, we could have swapped the labels on the two elements
of Ω and applied the case we are about to prove.

Given the choice of z, let p be the probability such that p({i}) = vi/(v1 +
v2) for i = 1, 2. Then z = s(p). For every w ∈ U is such that

Epw = LSIpw ≤ LSIp s(p) = Eps(p)

and hence v ·w ≤ v · s(p). It follows this is true for every w ∈ V , and hence
v · z ≤ v · s(p) which by choice of z can only be true if s(p) = z.

Let α = p({1}) and choose any β ∈ (0, 1− α). Then s(p)(2) = z2 ≥ z1 =
s(p)(1), and so:

LSIrα,β s(p) = s(p)(2) + α(s(p)(1)− s(p)(2)) = LSIp s(p).

Now, if s(rα,β)(1) ≥ s(rα,β)(2), then:

LSIrα,β s(rα,β) = s(rα,β)(2) + α(s(rα,β)(1)− s(rα,β)(2)) = LSIp s(rα,β).

On the other hand if s(rα,β)(1) < s(rα,β)(2), then

LSIrα,β s(rα,β) = s(rα,β)(1) + β(s(rα,β)(2)− s(rα,β)(1))

< s(rα,β)(1) + (1− α)(s(rα,β)(2)− s(rα,β)(1)) = LSIp s(rα,β).

So in either case:

LSIp s(rα,β) ≥ LSIrα,β s(rα,β) ≥ LSIrα,βs(p) = LSIp s(p) ≥ LSIp s(rα,β).

It follows that LSIp s(rα,β) = LSIp s(p). But LSIp is the same as Ep for p
a probability. Considering s(rα,β) and s(p) as vectors in R2, it follows that
v · s(rα,β) = v · s(p). Thus by the choice of z, we have s(p) = z = s(rα,β)
with α+ β < 1. And p = rα,1−α. Letting γ = α we are done. �

Proof of Theorem 2. Assume s is (S,LSI)-proper. Without loss of general-
ity, Ω = {1, . . . , n}. Let Ω2 = {1, 2} and let S2 be the credences on Ω2

that satisfy Normalization and Subadditivity. For a credence r on Ω2 and
A ⊆ Ω, let r̄(A) = r(A ∩ Ω2). It is easy to check that if r ∈ S2, then
r̄ ∈ S. Define s2(r) for r ∈ S2 by s2(r)(ω) = −s(r̄)(ω) for ω ∈ Ω2. Then
LSIr s2(u) = LSIr̄(−s(ū)) for any r and u in S.
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Thus, LSIr s2(u) ≤ LSIr s2(r) for all r, s ∈ S.
Choose α, β, γ as in Lemma 2 applied to s2. Let p = rα,1−α and r = rγ,β.

Then LSIr s2(r) = LSIp s2(p), and so LSIp̄(−s(p̄)) = LSIp̄(−s(r̄)), which
implies that s is not quasi-strictly proper.

If γ < α and β = 1 − α, then p̄ is truer than r̄ at 1, and if γ = α and
β < 1−α, then p̄ is truer than r̄ at 2. But because s2(p) = s2(r) everywhere
on {1, 2}, it follows that s(p̄) = s(r̄) everywhere on {1, 2}, contrary to strict
truth-directedness. �

The credences C are the space of functions from the powerset of Ω to [0, 1]

and can be equipped in the natural way with 2|Ω|-dimensional Euclidean
topology. This agrees with the topology on P ⊂ C that was used to define
probability-continuity.

Say that a scoring rule s is probability-distinguishing provided that if
p ∈ P and c ∈ C − P, then s(p)(ω) 6= s(c)(ω) for some ω. If a scoring rule
is proper but not probability distinguishing, then it cannot be quasi-strictly
proper and also it cannot satisfy the domination thesis (4). To see the latter
point, observe that no score of a probability can be s-dominated by the
score of a probability given propriety, since if p were s-dominated by q, then
Eps(p) > Eps(q), contrary to propriety. So if the score of a non-probability
c equaled that of a probability, we wouldn’t have the domination thesis for
c.

Theorem 3. Let s be any proper truth-directed scoring rule defined on the
probabilities P on Ω where |Ω| = 2. Then s can be extended to a truth-
directed, proper but not probability-distinguishing scoring rule defined on all
of C. Furthermore, the extension can be taken to be a continuous function
from C to [M,∞] if s is probability-continuous.

Proof. Without loss of generality Ω = {1, 2}. Let pα be the probability such
that pα({1}) = α. Note that pα is truer than pβ at 1 if and only if α > β
and at 2 if and only if α < β.

Let α(c) = 1/2 + (c({1})− c({2}))/2 for any credence c. Now define

s′(c) = s(pα(c)) + c(∅) + 1− c(Ω)

for c ∈ C. Note that this agrees with the original definition on P, since if c
is a probability, α(c) = c({1}). For simplicity, write s in place of s′.

We now need to show that s thus extended is truth-directed, proper but
not quasi-strictly proper.

Propriety is easy. Let p be any probability and c any credence. If c
is a probability, we have Eps(p) ≤ Eps(c) by propriety restricted to the
probabilities. If c is not a probability, we have Eps(p) ≤ Eps(pα(c)) ≤ Eps(c),
since s(c) ≥ s(pα(c)) everywhere.

Lack of probability distinguishing follows from the fact that if c satisfies
Zero and Normalization but is not in P, then s(c) = s(pα(c)) everywhere.

We now prove truth-directedness. All we need to prove is that if c is truer
than d at 1, then s(c)(1) < s(d)(1); the case where c is truer than d at 2 is
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essentially the same. Furthermore, by forming a chain of credences between
c and d that differ on only one set, we need to prove that s(c)(1) < s(d)(1)
in each of the following cases:

(i) c and d agree on all events except ∅, where c(∅) < d(∅)
(ii) c and d agree on all events except Ω, where c(Ω) > d(Ω)
(iii) c and d agree on all events except {1}, where c({1}) > d({1})
(iv) c and d agree on all events except {2}, where c({2}) < d({2})
The inequality s(c)(1) < s(d)(1) is obvious in cases (i) and (ii).
Now suppose we have case (iii) or (iv). In both cases we have α(c) > α(d).

Then pα(c) is truer at 1 than pα(d), and so by truth-directedness of s on P
we have s(c)(1) = s(pα(c)) < s(pα(d)) = s(d)(1).

Finally, the continuity claim is clear from our definition of the extension
s. �
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