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Abstract. Scoring rules measure the deviation between a credence as-
signment and reality. Probabilism holds that only those credence assign-
ments that satisfy the axioms of probability are rationally admissible.
Accuracy-based arguments for probabilism observe that given certain
conditions on a scoring rule, the score of any non-probability is domi-
nated by the score of a probability. The conditions in the arguments we
will consider include propriety: the claim that the expected accuracy
of p is not beaten by the expected accuracy of any other credence c
by the lights of p if p is a probability. I argue that if we think given
how a non-probabilist can respond to pragmatic arguments for probabil-
ism, the non-probabilist will accept a condition stronger than propriety
for the same reasons that the probabilist gives for propriety, but this
stronger condition is incompatible with the other conditions that the
probabilist needs to run the accuracy argument. This makes it unlikely
for the probabilist’s argument to be compelling.

1. Introduction

Scoring rules measure the inaccuracy or deviation from reality of a cre-
dence function. Strictly proper scoring rules have the property that for any
credence function that satisfies the axioms of probability, the mathematical
expectation of the score of a credence function p by the lights of p is strictly
better than the mathematical expectation of any other credence function c
by the lights of p. Credence functions need not satisfy the axioms of prob-
ability, but assuming strict propriety and modest auxiliary assumptions, it
has been shown that the score of a credence function that does not satisfy
the axioms of probability is strictly dominated by the score of one that does
satisfy these axioms. These results have been interpreted by epistemologists
as supporting probabilism, the thesis that reasonable credences will always
be probabilistically consistent (e.g., [5, 8, 9, 16]).

However, there has been little sympathetic engagement by defenders of
probabilism with the kind of views a non-probabilist is likely to hold. Accu-
racy arguments are not the only arguments for probabilism: historically,
pragmatic arguments have had pride of place in the probabilist’s arse-
nal [3, 22] (see also [6, Section 2.1]). It is thus worth thinking what a
non-probabilist who already has a well-developed answer to pragmatic ar-
guments is likely to say about the accuracy arguments. I will take as a
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paradigm of this a non-probabilist who accepts Pruss’s LSI↑ level set inte-
gral [19] as yielding a prevision for basing practical decisions on inconsistent
credences satisfying certain axioms, and thereby escapes all Dutch Book
and some dominance arguments. I will argue that such a non-probabilist
has three plausible replies to the accuracy arguments. The upshot will be
that current accuracy arguments provide some evidence for probabilism, but
not very much.

The main line of argument can be seen as a development of Norton’s [12,
Chapter 11] observation that the strict propriety condition on scoring rules
stacks the deck against the non-probabilist in an unfair way. By adopting the
viewpoint of a non-probabilist who has a prevision or at least preference or-
dering allowing for decision-making on (some) inconsistent credences, we are
able to demonstrate how the non-probabilist who is convinced by arguments
for propriety will have a way to extend propriety to (some) inconsistent cre-
dences, with the extended version of propriety ruling out the conditions on
scoring rules that the advocate of probability insists on, including in some
cases strict propriety itself.

First, a quick review of scoring rules. Let Ω be a finite sample space,
encoding the possible situations that the credences concern. Let the credence
functions C be the functions from the power set of Ω to the interval [0, 1].1

Let P be the subset of C which consists of the functions satisfying the axioms
of probability. An inaccuracy scoring rule is a function s from a set F of
credence functions to [M,∞]Ω for some finite M , where AB is the set of
functions from B to A. Then s(c)(ω) for c ∈ F measures the accuracy of
the credence function c when we are in fact at ω ∈ Ω, with higher values
being worse, less accurate.

Given a probability p ∈ P and an extended real function f on Ω, let Epf
be the expected value with respect to p defined in the following way to avoid
multiplying infinity by zero:

Epf =
∑

ω∈Ω,p({ω})6=0

p({ω})f(ω).

We then say that a scoring rule s is proper on a set of credences F (typically
including all probabilities, though see Section 7 below) provided that for
every probability p ∈ F and every credence c ∈ F , we have Eps(p) ≤
Eps(c), that it is strictly proper on F provided the inequality is always
strict, and that it is quasi-strictly proper on F provided that it is proper
and the inequality is strict whenever c /∈ P.

Propriety captures the idea that if an agent adopts a probability function
p as their view, then by the agent’s lights there can be no improvement in
the expected score from switching to a different credence function. Strict

1Some of our discussion will then be simplified by not considering negative credences
and credences greater than one. The kind of non-probabilist that we will be considering
will be one that will place some reasonable constraints on credences, and making credences
range from 0 to 1 certainly seems reasonable.
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propriety captures the idea that such an agent will expect other credence
functions to be inferior. Proper and strictly proper scoring rules have been
widely studied: for instance, see [2, 4, 16, 17, 24, 25].

A scoring rule is said to be additive provided that F = C and there is a
collection of functions (sA)A⊆Ω such that sA : R × {0, 1} → [M,∞] for a
finite M , and for all c ∈ F and ω ∈ Ω:

s(c)(ω) =
∑
A⊆Ω

sA(c(A), 1A(ω)),

where 1A(ω) is 1 if ω ∈ A and 0 otherwise.
The set of probabilities P can be equipped with the topology resulting

from its natural embedding ψ in the |Ω|-dimensional cube [0, 1]Ω, where
ψ(p)(ω) = p({ω}). Thus, a sequence of probabilities (pn) converges to a
probability p just in case pn({ω})→ p({ω}) for all ω ∈ Ω.

A scoring rule is probability-continuous provided that the restriction of
s to P is a continuous function to [M,∞]Ω equipped with the Euclidean
topology.

Say that a credence assignment c1 is (strictly) s-dominated by c2 provided
that s(c2)(ω) < s(c1)(ω) for all ω ∈ Ω.

Predd, et al. [17] and Schervisch, et al. [24] showed that if s is a
probability-continuous additive strictly proper scoring rule, then for any
non-probability c, there is a probability p such that p strictly s-dominates
c. In other words, any forecaster whose forecast fails to be a probability
can find a forecast that is a probability and that is strictly better no mat-
ter what. Recently, Pettigrew [14] announced that this result holds without
the assumption of additivity, merely assuming probability-continuity. While
Pettigrew’s proof was flawed, correct proofs have been found [11, 18, 20].
Nielsen’s proof [11] also extended the result to the quasi-proper case. Finally
Pruss [20] showed that certain non-trivial conditions weaker than continuity
suffice for the domination result.

2. A way to be a non-probabilist

Let’s call credence assignments that could be rationally permitted “ra-
tionally admissible”. The probabilist says that only credences that are
probabilities are rationally admissible. The non-probabilist denies this, and
says that some non-probabilities are rationally admissible. But the non-
probabilist is unlikely to take a credence function that assigns 0 to all tau-
tologies and 1 to all other propositions to be rationally admissible. All that
is needed to be a non-probabilist is to say that rational admissibility al-
lows at least one credence assignment that isn’t a probability function. Our
non-probabilist is likely to have some constraints on which credences are
rationally admissible. Reasonable minimal constraints would be c(∅) = 0
(Zero) and c(Ω) = 1 (Normalization), but we can expect others.

Now, historically, accuracy arguments are not the only arguments for
probabilism. There are also pragmatic arguments, including ones based on
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Dutch Books and utility domination [3, 15, 22]. A non-probabilist should
have something to say about these. Now whether a given credence assign-
ment gives rise to unfortunate pragmatic consequences depends on how we
link credences with decisions. Suppose the link is given by a three-place
preference comparison relation - where f -c g if and only if the portfo-
lio with the utility function g is at least as desired as the portfolio with
utility function f in the light of credence c.2 One will, then, want -c to
satisfy some formal axioms when c is rationally admissible. For instance, it
is very reasonable to want -c to satisfy the strict dominance axiom that if
f < g everywhere, then f ≺c g, where f ≺c g if and only if f -c g but not
g -c f . Otherwise, -c would allow one to accept a portfolio whose yield is
guaranteed to be worse than that of another portfolio.

In the case of classical decision theory, the link between credence and
decisions uses mathematical expectation. If one is choosing between portfo-
lio with different utility functions from Ω to R, and one has a probabilistic
credence assignment p, then one should opt for a portfolio whose utility
function f has the biggest mathematical expectation Epf with respect to p.
Now, Epf is normally defined only for a probability p. To adapt this to de-
cisions made in the light of non-probabilistic credences, one can replace Epf
with some sort of “prevision” Vcf of the utility f given a non-probabilistic
credence c. Given such a prevision, one can then define a corresponding
preference comparison by saying that f -c g if and only if Vcf ≤ Vcg. Say
that Vc is strongly monotonic providing that if f < g everywhere, then
Vcf < Vcg. Then the corresponding preference relation will satisfy the strict
dominance axiom.

Recently, Pruss [19] offered level set integrals as a way of calculating a
prevision of a utility given a non-probabilistic credence. One of his two ways
of doing so is:

LSIc f =

∫ ∞
0

c({ω ∈ Ω : f(ω) > y}) dy,

for non-negative real-valued f . If f is allowed to be negative, then we define
LSIc f = −α+ LSIc(α+ f) where α is a real number large enough to ensure

2This way of doing things already assumes that we treat two portfolios with the same
utility function interchangeably. This assumption is not satisfied for every method of
linking decisions to credences. It is not satisfied, for instance, by the method presupposed
by De Finetti’s pragmatic arguments for probabilism [3]. In the context of preference
comparisons derived from previsions, the interchangeability of portfolios with the same
utility function corresponds to saying that the prevision is “integral-like” [19]. Because our
task in this paper is to consider how the accuracy arguments for probabilism fare against
the most plausible versions of non-probabilism, and because a preference comparison that
fails to be indifferent between two portfolios that have exactly the same utility function—
say, because the portfolios arrange the wagers in different but logically equivalent ways—is
eo ipso problematic, integral-likeness is a reasonable assumption in our context. We should
not expect a smart non-probabilist to distinguish equivalent wagers.



DIALECTICS OF ACCURACY ARGUMENTS FOR PROBABILISM 5

that α + f is everywhere non-negative.3 (It turns out that the definition
does not depend on the choice of α.) This agrees with mathematical ex-
pectation Ecf when c is a probability function. Given the reasonable Zero
and Normalization constraints on c, Pruss [19], working with utilities that
are everywhere finite, proves that LSIc is strongly monotonic if and only if
c satisfies the Monotonicity Axiom that c(A) ≤ c(B) if A ⊆ B. Let M be
the set of credences that satisfy Zero, Normalization and Monotonicity. Fur-
thermore, decision-making procedures with credences in M using level set
integrals can avoid many pragmatic arguments for probabilism [19] (though
one of the proofs is flawed; see the Appendix of the present paper for a fix).

Note that while Pruss only defined level set integrals for real-valued f ,
we can extend the definition to cases where f takes values in [−∞,∞) or
in (−∞,∞] (but not both, so we avoid ∞−∞), which we will need in the
application to scoring rules. Specifically, for M ≥ 0, let fM (ω) = f(ω) if
|f(ω)| ≤ M and fM (ω) = M sgn f(ω) (where sgnx is 1 if x > 0 and −1 if
x < 0), and let

LSIc f = lim
M→∞

LSIc fM .

This agrees with the previous definition when f is finite-valued, and Zero,
Normalization and Monotonicity continue to imply strong monotonicity (see
the Appendix).

It may help with intuitions to get a more concrete picture of how LSIc
works. Suppose c satisfies Zero an Normalization and f does not take on
both ∞ and −∞. Then if c({ω : f(ω) = ∞} > 0, we have LSIc f = ∞. If
c({ω : f(ω) = −∞}) < 1, then LSIc f = −∞. If neither of these happens,
and y1 < ... < ym are all the finite values that f takes on, then:

LSIc f = y1 +
n−1∑
i=1

(yi+1 − yi)c({ω : f(ω) > yi}).

While Pruss [19] does not himself advocate non-probabilism, it is reason-
able to think that something like the LSI approach is a compelling model of
a non-probabilist response to pragmatic arguments for probabilism: impose
some formal constraints, such as Zero, Normalization and Monotonicity, on
credences and find a decision procedure that allows escape from many prag-
matic arguments for probabilism.

3. A reaction to accuracy arguments

Now, let us consider how our non-probabilist is likely to react to the accu-
racy arguments for probabilism, after having thus responded to pragmatic
arguments. The accuracy theorist says that given an inaccuracy scoring

3Our LSIc corresponds to LSI↑c in [19]. We ignore LSI±c , as we would expect a utility
prevision to commute with positive affine transformations, since utilities are normally
thought to be defined only up to positive affine transformations, and LSI↑c commutes in
this way if c satisfies Zero and Normalization [19, Lemma 1], while LSI±c does not in
general.
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rule s that satisfies certain conditions, for any non-probabilistic credence c,
there is a probability p such that s(c) > s(p) everywhere on Ω, i.e., no matter
what, c is more inaccurate according to s than p is. Thus, it is concluded,
it is irrational to adopt c as one’s credence, since one would be sure to be
less inaccurate to adopt p.4

How convincing this line of thought is depends on whether the non-
probabilist should be expected to agree that s correctly measures the in-
accuracy of a credence function. If we simply adopted the nearly trivial
scoring rule where t(c)(ω) = 0 if c is a probability and t(c)(ω) = 1 if it’s not,
then we would have the radical domination result that t(c) > t(p) whenever
c isn’t a probability and p is, but of course the non-probabilist is not going
to agree that t is a good measure of inaccuracy, and will rightly insist that
t is ad hoc.

The usual proceeding in accuracy arguments for probabilism is not so
ad hoc. Rather, one imposes constraints on the scoring rule s that appear
plausible, and proves that these imply that for every non-probability c there
is a probability p such that s(c) > s(p) everywhere.

Common to all the versions of these arguments that we will consider is
propriety : we assume that Eps(p) ≤ Eps(c) whenever p is a probability and
c is a credence different from p. The thought is that given a probability
p there should not be another credence, c, which by the lights of p would
be expected to be less inaccurate. If we had such p and c, then an agent
who had credence assignment p would be rationally required to switch to c
on accuracy grounds without any evidence, and this is implausible. In the
vocabulary of Joyce [9], if we had Eps(p) > Eps(c), then p would be “mod-
est”, in an unfortunate way: it would estimate itself to be a poorer credence
than another. But while it is controversial whether any non-probabilities
are rationally admissible, probabilities surely are rationally admissible, and
hence they should be “immodest”: they should think themselves to be at
least as good, by their own lights, as any competitor.

Now, our non-probabilist may well find propriety compelling. However,
a non-probabilist thinks that some non-probabilities—say, those inM—are
rationally admissible. And they will thus think that the above argument
about evidenceless switching or “modesty” should apply to the rationally ad-
missible non-probabilities as well. In his defense of non-probabilism against
accuracy arguments, Norton [12, pp. 417–418 and 418n17] suggests that
“[t]he analysis stalls at this point”, because there is no good way to define
an expectation of the score and “expectation-like quantities computed using
a non-probabilistic [credence] fail to meet minimal conditions of an expecta-
tion”. But as the defense of the level set integral prevision shows [19], this
is far from clear. If the non-probabilist has a good answer to pragmatic ar-
guments such as sketch in Section 2, above, then in fact they can formulate

4Hájek [6] notes that it is important to also show that if c is a probability, then there
is no such p. Since this follows from the propriety assumption which says that Ecs(c) ≤
Ecs(p) if c is a probability, we will omit this point for brevity in discussions.
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a meaningful notion of propriety that extends to the non-probabilities that
our non-probabilist likes, and which does not unfairly privilege probabilities.

Let A ⊆ C be the set of credences satisfying the conditions our non-
probabilist thinks yield rational admissibility and suppose -c is the asso-
ciated preference comparison. Then the non-probabilist impressed by the
reasoning behind propriety is going to insist that −s(c) -r −s(r) when-
ever r ∈ A and c is any credence other than r. We will call this condi-
tion (A,-)-propriety. If -c is derived from a prevision Vc, we will call it
(A, V )-propriety, with the condition then being equivalent to Vr(−s(c)) ≤
Vr(−s(r)). The reason for the negative signs is that -r is meant for utilities,
and our inaccuracy scores are disutilities.5

So far we have no disagreement between the person offering the accuracy
argument for probabilism and the non-probabilist. The non-probabilist is
generally taken to concede that all the probabilities are rationally admissible
so P ⊂ A, and a reasonable preference relation will be such that f -p g if
and only if Epf ≤ Epg for a probability p. In that case, (A,-)-propriety
will be a stronger condition than ordinary propriety, i.e., (P, E)-propriety.

Propriety does not by itself yield the strict domination results that are
supposed to trouble non-probabilists. After all, the completely trivial scor-
ing rule T such that T (c)(ω) = 0 for all c and ω is proper, but gives no reason
to prefer probabilities to non-probabilities. But the accuracy-arguer adds
some additional conditions on s on top of propriety. For instance, they may
add strict or quasi-strict propriety and continuity on the probabilities. Such
conditions guarantee that for any non-probability c there is a probability p
that strictly s-dominates c.

At this point, however, the probabilist offering an accuracy argument
runs into a serious problem. For while our non-probabilist was liable to find
propriety compelling, they only found it compelling as a special case of a
stronger requirement, (A,-)-propriety. Now in order to be pragmatically
plausible, the preference comparison-r should satisfy strict dominance. But
the following four statements are logically incompatible:

(1) -r satisfies strict dominance for r in A
(2) A is not a subset of P
(3) s is (A,-)-proper
(4) for any c /∈ P there is a p ∈ P such that s(c) > s(p) everywhere.

We will call (4) “the domination thesis” from now on.
To see that the four conditions above are incompatible, note that if we

choose r in A − P (which we can by (2)), then the domination thesis (4)
implies there is a p distinct from c such that s(r) > s(p) everywhere, which
by strict dominance (1) implies that −s(r) ≺r −s(p), and that contradicts
the (A,-)-propriety condition (3).

5In the case of mathematical expectation for a probability r, we have Er(−f) = −Er(f)
and so our condition is equivalent to the more familiar Ers(r) ≤ Ecs(r). However, it is in
general not true that LSIr(−f) = −LSIr(f): see the Appendix for what is actually true.
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In particular, whatever conditions the accuracy-arguer would place on s
that imply the domination thesis are incompatible with our non-probabilist’s
requirement that s be (A,-)-proper, given that our non-probabilist takes
some non-probability to be admissible and can be expected to be working
with a preference comparison that satisfies strict dominance, perhaps one
derived from a prevision that satisfies strong monotonicity.

In other words, the accuracy-arguer offers some set of conditions C on a
scoring rule (e.g., strict propriety and continuity in the case of Pettigrew [14])
and proves that C plus propriety implies the domination thesis. If the
accuracy-arguer has done their job well, C and propriety will be plausible to
our non-probabilist. But if propriety will be plausible to the non-probabilist,
likewise (A,-)-propriety will be plausible. Thus our non-probabilist will see
C and (A,-)-propriety as reasonable constraints to put on a scoring rule.
But if P ⊂ A and - agrees with E on the probabilities, then the accuracy
theorist’s argument for the domination thesis from propriety and C shows
that no scoring rule satisfies C and (A,-)-propriety.

At this point, one might wonder if there are any non-trivial scoring rules
that satisfy (A,-)-propriety for any plausible examples of A and -. The
answer is positive in the case of (M,LSI). In fact any bounded scoring rule
s defined only on the probabilities and proper there (where s is bounded
provided there is a finite K such that |s(p)(ω)| < K for all p and ω) can
be extended to a (M,LSI)-proper scoring rule on all the credences (see
Theorem 2 in the Appendix).

The accuracy-arguer now needs to convince the non-probabilist to hold
on to C and weaken (A,-)-propriety to mere propriety. The non-probabilist
has several options. First, they can reject C. Second, they can accept both C
and (A,-)-propriety as plausible constraints on scoring rules but say that it
is an unfortunate fact that no scoring rule satisfies both, and hence a scoring
rules are not a good way to evaluate the accuracy of a credence assignment.
Third, propriety itself could be rejected. In all cases, the argument from
accuracy for probabilism will carry little weight.

I will next survey the variety of versions of C that have been offered and
the reasons that can be given for them, and discuss the three options for a
non-probabilist response.

4. The condition C

The condition C is added to propriety to yield the domination thesis.
Several versions of C are known. The earliest known fairly general version
of C was

(CASP) probability-continuity, additivity and strict propriety. [17]

It was later seen that additivity can be dropped, and two other versions
were offered:

(CSP) probability-continuity and strict propriety [14, 11, 18]

(CQSP) probability-continuity and quasi-strict propriety [11].
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In the same line of development, one can get a weakening of CQSP where
probability-continuity is replaced by a continuity condition at the probabil-
ities with an infinite score combined with a complicated geometric condi-
tion [20], but as no one has formulated a philosophical reason to accept the
geometric condition beyond the fact that it is entailed by CQSP, we do not
need to consider this version.

There is also one other fairly recent line of development we will consider.
Campbell-Moore and Levinstein [1] prove that

(CASTD) probability-continuity, additivity and strict truth-directedness

together with propriety implies strict propriety, and so we can take C to
be CASTD. Here, strict truth-directedness says that if c′ is truer than c at
ω, then s(c′)(ω) < s(c)(ω). A credence assignment c′ is truer than another
credence assignment c at ω provided that for every event A, if ω ∈ A, then
c′(A) ≥ c(A), and if ω /∈ A, then c′(A) ≤ c(A), and in at least one case the
inequality is strict.

5. Response I: Rejecting C

In order for the accuracy argument to succeed against our non-probabilist,
the relevant version of C must be sufficiently plausible to overcome the plau-
sibility that (A, V )-propriety has to our non-probabilist, since in the circum-
stances under consideration, the two conditions are incompatible. Moreover,
because the probabilist needs propriety, it is necessary to overcome the plau-
sibility of (A, V )-propriety without undercutting the plausibility of propriety
as such, which is no mean task. But the candidates for C, while all plausible,
are not that plausible, especially to the non-probabilist. To see this, let us
consider their ingredients.

Additivity is primarily a simplifying assumption rather than a philosoph-
ically plausible constraint on what counts as accuracy. Global features of
a credence function could turn out to be relevant to the function’s accu-
racy. One might, for instance, think that there is an additional epistemic
utility in having gotten everything right that goes beyond the value of each
individual thing one got right. Moreover, one way to see the implausibility
of additivity as anything beyond a simplifying assumption is to reflect on
the likely reaction of an accuracy theorist who has a strong commitment to
strict or at least quasi-strict propriety to the news that there is no additive
quasi-strictly proper scoring rule for probabilities defined on every subset
of an infinite sample space [21, Proposition 3]. The reaction is likely to be
to search for good non-additive scoring rules rather than rejection of the
accuracy framework on the grounds that without additivity, scoring rules
are not plausible measures of accuracy.

Furthermore, additivity is particularly implausible if we are to evaluate
agents with incoherent credences and there are some intuitive closeness rela-
tions on the points of Ω. Suppose that Alice is trying to figure out Bob’s age
in years, with the sample space being Ω = {0, 1, . . . , 140}, and Alice assigns
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credence 0.9 to 77 and credence 0.1 to 78. If Bob is 76, then Alice is better
off epistemically than if Bob is 26. If Alice’s credences are probabilistic,
we can account for this by assigning a higher weight in an additive scoring
rule to getting right the contiguous event {76, 77, 78} than getting right the
scattered event {26, 77, 78}.

However, if the credences are non-probabilistic, this need no longer work.
Imagine, for instance, that Alice assigns 0 to ∅, 1 to Ω, 0.9 to every event
whose cardinality is between 2 and 140, inclusive, as well as 0.9 to {77}, 0.1
to {78} and 0 to every other singleton (note that this credence assignment
is in M), while Darin assigns 0.9 to {27}, 0.1 to {28}, zero to every other
singleton, and agrees with Alice on all the non-singletons. Let a and d be
Alice’s and Darin’s scores, respectively. Then if n is either 76 or 26, we have:

a(n)− d(n) = s{27}(0, 0) + s{28}(0, 0) + s{77}(0.9, 0) + s{78}(0.1, 0)

− (s{27}(0.9, 0) + s{28}(0.1, 0) + s{77}(0, 0) + s{78}(0, 0)),

since Alice’s and Darin’s credences agree on everything but the four single-
tons {27}, {28}, {77} and {78}, and regardless of whether n is 76 or 26, n is
not a member of any one of these four. Thus:

a(76)− d(76) = a(26)− d(26).

But intuitively Alice is less inaccurate than Darin when Bob is 76, so a(76) <
d(76), while Darin is less inaccurate than Alice when Bob is 26, so d(26) <
a(26), which contradicts the above equality of differences.

Now, granted, in this case both Alice and Darin’s scores seem irrational.
But even if these scores are quite irrational, probabilists and non-probabilists
alike should agree that Alice is the one better off when Bob is 76 while Darin
is the one better off when Bob is 26. And there is no way of capturing this
judgment using an additive scoring rule.

The fact that additivity does not have much independent plausibility, and
in fact has independent implausibility for non-probabilistic credences, casts
a shadow over arguments based on CASP and CASTD.

Probability-continuity has a significant degree of initial plausibility—it
does seem that a slight change in credences should result only in a slight
change in score.

But this, too, can be challenged. For there might turn out to be probabil-
ity thresholds that have significance in the case of beliefs about important
matters. For instance, for propositions that are particularly epistemically
central to one’s view of the world, such as that life has (or lacks) meaning,
that moral realism is (or is not) true, that God does (or does not) exist, or
that we live (or do not live) in a simulation, if the proposition is true, there
may be a discontinuous jump in epistemic utility as one goes from assigning
a credence lower than 1/2 to assigning a credence greater than 1/2. Or it
may be the case that there is a threshold such that one does not count as
knowing when one’s credence lies below that threshold, and if knowledge
has a special value, then the epistemic utility of a credence in a truth may
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discontinuously jump as we cross that threshold. Furthermore, one might
think that the epistemic utility of a credence in a falsehood may discontinu-
ously go down when the credence hits one—it seems extra bad to be sure of
a falsehood—or with Descartes one might think that there is a special value
in being certain of a truth, so the epistemic utility jumps discontinuously as
the credence hits one.

It is worth noting that without the continuity condition, strict propriety
is not sufficient for the domination thesis (see [20] for exactly what kind of
continuity suffices), even when combined with additivity [24].

Strict truth-directedness has some plausibility, though it only appears
in CASTD conjoined with additivity, which is not particularly plausible.
And Theorem 4 in the Appendix shows that without additivity, truth-
directedness and continuity do not yield the domination thesis, so additivity
is essential to the CASTD argument.

Further, there is reason for the probabilist to be suspicious of strict truth-
directedness. Suppose that in the case of a fair coin toss, I have a probabilis-
tic credence p that assigns 0.50 to heads and 0.50 to tails. Next, I sustain a
head injury that causes my credence for tails to shift to 0.49, everything else
remaining the same, so I still assign 0.50 to heads, inconsistency notwith-
standing. If it turns out that in fact the coin does land heads, it is not clear
that I am better off epistemically for having shifted my credence slightly in
the truth-ward direction, when I have done so at the cost of inconsistency.
But since my new credences are truer, a strictly truth-directed scoring rule
will give me a higher score.

Furthermore, Corollary 1 in the Appendix shows that strict truth-
directedness of a scoring rule is by itself incompatible with (M,LSI)-
propriety if Ω has at least two points. Thus the non-probabilist who likesM
and LSI will have good reason to be suspicious of strict truth-directedness.

While quasi-strict propriety is logically weaker than strict propriety, there
does not appear to be any reason to accept it beyond the reasons for strict
propriety, unless one has a prior objection to non-probabilistic credences
that our non-probabilist will take to be question-begging. For quasi-strict
propriety, in the absence of strict propriety, expressly disadvantages non-
probabilistic credences with respect to the scoring rule by requiring that
any non-probabilistic credence have a poorer expected accuracy than p by
the lights of p for any probabilistic credence p, without requiring that a
probabilistic credence other than p have such a poorer expected accuracy.
Thus, despite the logical weakening in the premises, the argument based on
CQSP thus has little if any weight beyond the one based on CSP.

We are finally left with strict propriety as such. Now, this has some ini-
tial plausibility. Just as it seemed likely that one would not be required by
inaccuracy minimization to change one’s probabilistic credences evidence-
lessly, it is fairly plausible that one would not even be permitted to do so,
and hence if one’s probability is p, then the p-expected score of a differ-
ent credence should be strictly worse. It is plausible that each probability
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should be strictly “immodest” and think itself to be more accurate than its
competitors (cf. [9]).

But there are several problems in this line of thought.
First, it could well be that there are many permissible ultimate priors for

rational credences. On subjective Bayesianism, any coherent (and maybe
regular) credence assignment can function as the ultimate priors, but one
need not be a subjective Bayesian to think that there is some freedom. But
if there is any freedom in the ultimate priors, then it is unclear why it would
be irrational for someone to reverse-engineer their current credences and
the evidence they have received back to their original priors, then switch
those original priors to some other set of permissible ultimate priors, and
then re-impose the evidence on top of this, thereby changing one’s credences
evidencelessly. Moreover, on any view on which there are non-formal con-
straints on the ultimate priors, intuitively it should be not only permissible
but required that if one should discover that one’s ultimate priors did not
satisfy these constraints, then one should backtrack and fix one’s priors and
readjust one’s current credences.

Second, even if one grants that one would not be permitted to change cre-
dences evidencelessly, it is not clear that this prohibition would have to come
from expected accuracy optimization. One can have two levels of commit-
ment to the accuracy-theoretic framework. More weakly one could hold that
it provides a constraint on one’s rational credences, or more strongly one
could hold that it accounts for all the constraints on one’s rational credences.
Only the stronger commitment to the accuracy-theoretic framework yields
the argument for strict propriety. For the weaker commitment is compatible
with there being a rule of rationality separate from the accuracy-theoretic
framework that forbids evidenceless switches of credence away from proba-
bilistic credences.

Third, the argument for strict propriety, i.e., strict (P, E)-propriety, is
plausible precisely because we think probabilistic credences in P are ratio-
nally admissible. (If we did not think some credence assignment to be ratio-
nally admissible, we should have no problem with a scoring rule permitting—
or even requiring—an evidenceless change from that credence assignment.)
Thus the principle behind the argument for strict propriety is that it is im-
permissible to change rationally admissible credences evidencelessly or that
such credences should be strictly immodest. What this supports—assuming
we can defend it from the previous objections—is the thesis that

(5) −s(c) ≺r −s(r) if r is rationally admissible, c is different from r and
- is the correct preference ordering.

Now, our non-probabilist thinks that the set of rationally admissible cre-
dences contains some non-probabilities. Given this, the argument pushes
her to accept that what one might call strict (A,-)-propriety, namely that
−s(c) ≺r −s(r) for all r ∈ A and c ∈ C − {r}, where A contains all the
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credences that satisfy our non-probabilist’s formal constraints (e.g., A could
be M).

But remember that our non-probabilist, in order to get out of pragmatic
problems, is assumed to have a preference structure - that satisfies strong
monotonicity. If, further, A ⊃ P and - agrees with E on the proba-
bilities, then strict (A,-)-propriety will be impossible given probability-
continuity. For strict (A,-)-propriety will imply strict (P, E)-propriety,
which together with probability-continuity will imply the domination the-
sis (by the Pettigrew-Nielsen-Pruss domination theorem proved in [11, 18]).
But this thesis is incompatible (A,-)-propriety given strong monotonicity
of - for credences in A. Thus, our non-probabilist looks very likely to want
to reject strict (A,-)-propriety, and similarly strict propriety insofar as it’s
justified by the same reasoning.

Interestingly, Corollary 1 in the Appendix shows that in the special case
of strict (M,LSI)-propriety, the assumption of probability-continuity in this
argument can be dropped. Indeed, if Ω has at least two points, no (M,LSI)-
proper scoring rule is quasi-strictly proper. Thus if our non-probabilist takes
the members of M to be rationally admissible with LSI as the associated
prevision, and hence finds (M,LSI)-propriety very plausible, then they will
be immediately suspicious of strict or even quasi-strict propriety. In fact,
the result in the Appendix applies even if all we ask for is (S,LSI)-propriety,
where S is the members ofM that are regular (every non-empty event gets
non-zero credence) and subadditive (r(A) + r(B) ≤ r(A ∪B) for disjoint A
and B). Moreover, Theorem 3 in the Appendix shows that if at least one
regular credence has a score that’s everywhere finite and we have (S,LSI)-
propriety, then there will be a probability and a non-probability in S that get
exactly the same score everywhere, and hence no accuracy-based reasoning
will let one prefer that probability to that non-probability.6

Thus, in fact, given the conflict between C and (A,-)-propriety, and
given the weakness of the arguments for any of the versions of C, it does
not appear irrational for our non-probabilist to reject all the versions of C.

Our arguments in this section may seem akin to a trivial modus tollens
response: the conjunction of some conditions implies probabilism is true,
so the non-probabilist concludes that this conjunction is false. However,
the point is a little subtler. One of the conditions in the argument, namely
propriety, is more plausible than the others. By our non-probabilist’s lights,
the argument for propriety is an argument for a stronger thesis, (A,-)-
propriety, which thesis ends up being incompatible with the conjunction of
the other conditions.

6The assumption that that at least one regular credence has a finite score is very plau-
sible, since if a regular probability has a score that’s somewhere infinite, that regular
probability’s expected inaccuracy by its own lights will be infinite, and it is implausi-
ble that some probability, especially a regular one, would expect itself to be infinitely
inaccurate.
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6. Response II: Pessimism about scoring rules

But the non-probabilist also has a different response available, which is
to accept that both (A,-)-propriety and some version of C are correct con-
ditions to impose on a reasonable scoring rule. Of course, it immediately
follows from this that there is no reasonable scoring rule. Is this an unac-
ceptable conclusion?

Recently, Pruss [21] has proved (assuming the Axiom of Choice) various
negative results about scoring rules in infinite contexts. For instance, in
the case of finitely additive probabilities defined on all subsets of an infinite
space, there is no strictly proper scoring rule, and in the case of continuum-
many coin tosses and countably additive probabilities defined on the usual
product σ-algebra, there is no strictly proper scoring rule either.

Now, one plausible reaction to those negative results would be to con-
clude that strict propriety is an unreasonable condition on a scoring rule.
That would lead to the non-probabilist’s responding to the arguments for
probabilism by rejecting condition C, as in the previous section.

But there is another possible reaction if we are impressed by the idea that
strict propriety is needed for a scoring rule to really capture the concept of
accuracy. We could conclude that in the infinite contexts there is are no good
scoring rules: the scoring rule approach should simply be put aside. And this
has a parallel for the non-probabilist, who can say that in contexts where
non-probabilistic credences are appropriate, there are no good scoring rules.
Scoring rules should satisfy C and be (A,-)-proper, but because no scoring
rule does that, scoring rules are not a good tool for analyzing credences in
contexts where non-probabilistic credences are an option.7

7. Response III: Further constraints to the rescue

So far, we have assumed that the set A of rationally admissible credences
contains all the probabilities. But this might be incorrect. First, some formal
epistemologists accept regularity as a further constraint on rationality: all
non-empty events must have non-zero probability. If so, then non-regular
probabilities, ones that assign zero probability to some non-empty event,
will not be rationally admissible and hence will not be members of A. In
that case, (A,-)-propriety will not imply propriety, even if - agrees with
mathematical expectation E on the probabilities. And the usual arguments
for propriety are implicitly or explicitly based on the assumption that all
probabilities are rationally admissible. If some credence is not rationally

7It is worth noting that in the infinite case, there is a third highly technical solution.
It is possible to construct strictly proper scoring rules in the infinite contexts if instead
of requiring the values of the scores to be extended real numbers, we allow scores to take
values in some larger set such as nets of real numbers [21] (it is not known at present
whether an argument for probabilism can be run in infinite contexts using this approach).
This way out of the negative results does not appear to have a parallel in our finite-space
non-probabilist context.
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admissible, it is not particularly surprising if by its own lights it is recom-
mended that one change to a different credence. Granted, there is a price
to be paid for requiring regularity even in the finite case: updates will have
to be something like Jeffrey conditionalization to maintain regularity.

Moreover, regularity need not be the only additional constraint on rational
admissibility. It could turn out that there are also non-formal constraints
based on the subject matter. Objective Bayesians think there are non-
formal constraints on the priors. Now consider this story. Original priors
are rationally required to be regular and friendly to induction (e.g., lawlike
regularities should not have astronomically low probabilities), but at the
same time rationality requires classical Bayesian conditionalization rather
than Jeffrey conditionalization. In that case, a probability assignment that
is regular and not friendly to induction is one that a perfectly rational agent
could never have. For our perfectly rational agent’s original priors would
be regular but friendly to induction. And our perfectly rational agent’s
posteriors might be unfriendly to induction, but would not be regular, since
regularity is lost in classical Bayesian conditionalization—the complement
of one’s evidence will come to have credence zero. So a regular probability
assignment not friendly to induction would never be rationally inadmissible.

As soon as any probability function is omitted from the set of ratio-
nally admissible credences, the philosophical arguments for strict or even
non-strict (P, E)-propriety fail, since the arguments are only plausible for
probability functions that are rationally admissible. There is nothing wrong
with a rationally inadmissible probability function being modest—indeed,
shouldn’t it be modest? All we will have will be arguments for strict or
non-strict (P0, E)-propriety, where P0 is the subset of probabilities that are
rationally admissible. And that won’t be good enough for the domination
thesis.

In fact if P0 is any proper subset of P, then strict (P0, E) propriety
is insufficient for the domination thesis, even if we add (P, E)-propriety
and probability-continuity. For let s be any probability-continuous strictly
proper score. Fix a probability q ∈ P−P0. Define s′(p) = s(p) for any prob-
ability p and s′(c) = s(q) for any non-probability c. Then s′ is a probability-
continuous (P, E)-proper score which fails in strict propriety only at q, where
q is not rationally admissible. But s′ does not have the domination prop-
erty. For s′(c) for a non-probability c is not dominated by the score of any
probability, since s′(c) = s(q), and no s-score of a probability by a proper
scoring rule s is dominated by the s-score of any probability (if s(p1) were
dominated by s(p2), we would have Ep1s(p1) > Ep1s(p2), contrary to pro-
priety). Hence s′ does not satisfy the domination thesis, despite having
probability-continuity, (P, E)-propriety and strict (P0, E)-propriety.

It is thus crucial to the accuracy arguments for probabilism that all prob-
abilities be rationally admissible, and while previously we had our non-
probabilist grant that, it need not in fact be granted.
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8. Conclusions

We have imagined a non-probabilist who thinks that rationally admissible
credences include some class of non-probabilities and who has a decision
procedure based on these credences that is helpful in practical cases. For
example, the non-probabilities held to be rationally admissible could be ones
satisfying some formal axioms weaker than the Kolmogorov axioms, say
Zero, Normalization and Monotonicity, in which case the decision procedure
could be based on level set integrals [19]. Normally, propriety is defined with
respect to the probabilities: no score of a probability p is beaten by the lights
of p by the score of any other credence. And the accuracy-based arguments
for probabilism that we are considering presuppose propriety. But the reason
why propriety appears plausible is because a typically more general thesis
appears plausible: no score of a rationally admissible credence r is beaten
by the lights of r by the score of any other credence. Given that our non-
probabilist thinks that some non-probabilities are rationally admissible, if
they find the considerations behind propriety compelling, they will accept
the extension of propriety to their preferred class of credences. But now if
our non-probabilist’s decision procedure is strongly monotonic, as it needs
to be to escape pragmatic arguments for probabilism (and as it will be in
our example case of an advocate of M and LSI), and assuming that our
non-probabilist concedes all probabilities to be rationally admissible, then
the extended propriety thesis ends up being logically incompatible with the
rest of the premises of the accuracy theorist’s argument for probability (e.g.,
strict propriety and probability-continuity).

At this point, three ways were seen for the non-probabilist to continue
the discussion: deny one or more of the premises incompatible with the
non-probabilistically extended propriety thesis, most likely strict propriety;
grant that all the conditions the probabilist wants to put on a scoring rule
are correct, but conclude that there is no such thing as a good scoring rule;
or drop the concession that all probabilities are rationally admissible.

In all of the above, it was assumed that the non-probabilist positively
thinks that some non-probabilities are rationally admissible. However, it
is worth noting that the accuracy-theoretic arguments may still have sig-
nificant force against someone who is merely agnostic about whether any
non-probabilities are rationally admissible. Such a theorist might find it
plausible to think that a good scoring rule will satisfy strict propriety and
continuity with respect to the rationally admissible credences, and may be
confident that all probabilities are rationally admissible, while being agnos-
tic on whether any non-probabilities are. In that case, learning that strict
propriety and continuity cannot hold with regard to a strict superset of
the probabilities (given strong monotonicity of the decision procedure) will
give the theorist reason to think that only the probabilities are rationally
admissible. In fact, it is interesting to note that if the class of potentially
rationally admissible credences includes M and the decision procedure is
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based on LSI, then one can even drop the assumption of continuity from
the argument in light of Corollary 1 in the Appendix saying that there is no
strictly (M,LSI)-proper scoring rule if Ω has two or more points.

Similarly, a non-probabilist who is inclined to think that some non-
probabilities are rationally admissible but is significantly more strongly
committed to the rational admissibility of the probabilities may find the
accuracy-theoretic arguments to carry some weight.

Thus, the accuracy-based arguments for probabilism carry some weight,
but are very far indeed from significantly disturbing a committed non-
probabilist who already knows how to respond to pragmatic arguments.

9. Appendix: Some technical results

9.1. Level set integrals and monotonic credences. Given a credence
c, let c∗(A) = 1− c(Ω−A) (for a probability p we have p∗ = p). Then given
Zero and Normalization, we have LSIc(−f) = −LSIc∗ f when f is a function
that takes values either in (−∞,∞] or in [−∞,∞). We only need to check
this for f having finite values. Moreover, because LSIc(α+ f) = LSIc f (by
the well-definition of LSIc f), we may suppose f takes values in [0, L] for
some finite L and then:

LSIc f =

∫ L

0
c({ω : f(ω) > y}) dy

=

∫ L

0
(1− c∗({ω : −f(ω) ≥ −y})) dy

= L−
∫ L

0
c∗({ω : −f(ω) ≥ −y}) dy

= L−
∫ L

0
c∗({ω : −f(ω) > −y}) dy

= L−
∫ L

0
c∗({ω : −f(ω) > t− L}) dt

= L−
∫ ∞

0
c∗({ω : L− f(ω) > t}) dt

= −LSIc∗(−f),

where the first and last equalities used Zero and Normalization (applied to c)
respectively, and the move from considering the level set {ω : −f(ω) ≥ −y}
to considering the level set {ω : −f(ω) > −y} depended on the fact that the
two level sets are equal except perhaps when y is one of the finitely many
values of f .

In [19, Lemma 1g], it is incorrectly stated (with some trivial translation
to our setting) that if f is negative and finite, then LSIc f = −LSIc(−f).
The right hand side should instead be −LSIc∗(−f). The only place where
[19] uses the incorrect claim appears to be in the proof of Theorem 1 in

the special case of LSI↑P , where it is shown that decisions using level set
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integrals avoid Dutch Books. To fix the problem, in the statement of the

theorem in the case of LSI↑P one needs to replace Non-Negativity with the
axiom that credences have value at most 1, and instead of the argument

given in the proof, use the formula LSI↑P f = −LSI↑P ∗(−f) to establish that

LSI↑P f < 0 if f < 0 everywhere, noting that P ∗ satisfies Non-Negativity if
P ≤ 1 everywhere.

The following extends one of the monotonicity results from [19]:

Theorem 1. If c ∈ M and f and g are functions on Ω with values in
[−∞,∞] such that f < g everywhere, then LSIc f < LSIc g, with both level
set integrals well-defined.

Proof. Since f < g everywhere, g cannot take the value −∞ anywhere and f
cannot take the value +∞ anywhere. Let M0 = 1 + max(max f,max(−g)).
This is finite, and if M ≥M0, then

fM ≤ fM0 < gM0 ≤ gM
everywhere. By [19, Theorem 2], we then have

LSIc fM ≤ LSIc fM0 < LSIc gM0 ≤ LSIc gM .

Taking the limit as M →∞, we conclude that LSIc f < LSIc g. �

9.2. Propriety.

Theorem 2. Any bounded scoring rule s defined only on the probabilities
and proper there can be extended to a (M,LSI)-proper scoring rule on all
the credences.

Proof. The value s(p) of s are functions from Ω to R and RΩ can be thought
of as n-dimensional Euclidean space, where n is the cardinality |Ω| of Ω.
Let V be the topological closure of the set {−s(p) : p ∈ P}. For any fixed
u ∈ M− P, the prevision LSIu is a continuous function from RΩ to R [19,
Prop. 2], and since V is compact, it attains a maximum at one or more
points of V . Choose any one of these points, and call it αu.

The selection of αu for each u can be done as a direct application of the
Axiom of Choice, but we can also do it constructively. Identifying RΩ with
Rn, order it lexicographically. The set of points of V where LSIu attains its
maximum is closed (since it’s the pre-image of the closed set {maxV LSIu}
under the continuous function LSIu) and hence compact, and so it will have
a lexicographically first element. Let αu be that element.

Then let s(u) = −αu. For any u ∈ M− P, the point −s(u) maximizes
LSIu over V . The same can be seen to be true for u ∈ P by propriety of our
original score s on P, the fact that any point of V is a limit of a sequence
of values of −s, and the fact that LSIu agrees with Eu for u a probability.
Then for any u, v ∈ M we have LSIu(−s(u)) ≥ LSIu(−s(v)) because LSIu
is maximized over V at −s(u) while −s(v) ∈ V . Finally, we need to define
s(c) where c ∈ C −M. The simplest solution is just to let s(c)(ω) =∞ for
all ω (any point that is dominated by some point in V will also work). �
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Say that a credence c satisfies Subadditivity provided that c(A) + c(B) ≤
c(A ∪ B) whenever A and B are disjoint. Given that our credences take
values in [0, 1], Subadditivity implies Zero and Monotonicity. Recall that c
is regular provided that c(A) > 0 whenever A is non-empty. Let S be the
regular credences that satisfy Normalization and Subadditivity. Say that a
member f of [−∞,∞]Ω is finite provided |f(ω)| <∞ for all ω ∈ Ω.

Theorem 3. Suppose Ω has at least two points. Let s : S → [M,∞]Ω be a
(S,LSI)-proper scoring rule defined on S and suppose that s(u) is finite for
at least one u ∈ S. Then there is a probability p in S and a non-probability
r in S such that (a) s(p) = s(r) everywhere, and (b) there is a point ω ∈ Ω
at which p is truer than s.

The proof of the Theorem actually can actually be used to show that for
almost all (in the sense of Lebesgue measure) regular probabilities p with
finite score there is a non-probability r ∈ S such that (a) and (b) are true.

Say that a scoring rule s is probability-distinguishing provided that if
p ∈ P and c ∈ C − P, then s(p)(ω) 6= s(c)(ω) for some ω. Then Theorem 3
shows that no (S,LSI)-proper scoring rule defined on S with at least one
finite score is probability-distinguishing.

Note that quasi-strict propriety makes it impossible for a regular proba-
bility p to have an infinite score, since then we would have Eps(p) =∞.

Corollary 1. No (S,LSI)-proper scoring rule on a space with at least two
points is quasi-strictly proper or strictly truth-directed.

Write v · w for the dot product of two vectors. The (convex) support
function σK of a subset K of Rn is defined by:

σK(v) = sup
z∈K

v · z

for v ∈ Rn. As usual, we say that something happens for almost all members
of a set if it happens everywhere except on a set of zero Lebesgue measure.

Lemma 1. Let K ⊆ (−∞,M ]n be a non-empty closed convex set for n ≥ 2.
Then for almost all v in the positive orthant (0,∞)n, there is a unique z ∈ V
such that σK(z) = v · z.

We will write vi for the ith component of a vector in Rn. I am grateful
to [redacted for anonymity] for the part of the proof after the reduction to
bounded K.

Proof of Lemma 1. Without loss of generality 0 ∈ V (otherwise translate K
and change M as needed), so σK(z) ≥ 0 for all z.

Fix ε > 0. Let Qε be the set of vectors v in the positive orthant such that
vi/|v| > ε for all i. We shall show our result restricted to vectors in Qε, and
the general result follows since (0,∞)n =

⋃∞
k=1Q1/k.

Next observe that without loss of generality we can take K to be bounded.
For suppose that v ∈ Qε and z ∈ K. If zi < −(n− 1)M/ε for some i, then

v · z < −(ε|v|)(n− 1)M/ε+ (n− 1)M |v| = 0 ≤ σK(v).
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Thus if K ′ = K ∩ [−(n−1)M/ε,M ]n, then σK′ and σK are equal on Qε and
the suprema defining them are attained at the exact same points.

The support function of any closed, bounded and convex set is Lips-
chitz [10, p. 421, Theorem F.1]. A Lipschitz function on an open set in
Rn is differentiable almost everywhere [7, p. 47, Theorem 6.15] And if the
support function of K is differentiable at v, then there is a unique z ∈ K
such that σK(z) = v · z (see [23, Cor. 25.1.3] or, for a self-contained proof,
[13, Theorem 1.1]; note that results for the concave support function applied
to the negative of the argument vector yield results for our convex support
function σK). �

Proof of Theorem 3. Let n = |Ω|. Suppose without loss of generality that
Ω = {1, . . . , n}. Let t = −s, so LSIr t(r) ≥ LSIr t(u) for all r, u ∈ S by the
(S,LSI)-propriety of s.

By abuse of notation, identify members of RΩ with members of Rn. Let
U ⊂ Rn be the set of all finite t(u) for u ∈ S. Let K be the closed convex hull
of U . By Lemma 1, let v in the positive orthant be such that for a unique
z ∈ K we have σK(v) = v · z. Rescaling as needed, suppose

∑n
i=1 vi = 1.

Let p be the probability such that p({i}) = vi. Then for any w ∈ U we
have w = t(u) for some u and so:

v · t(p) = Ept(p) = LSIp t(p) ≥ LSIp t(u) = LSIpw = Epw = v · w.
By continuity and linearity of the inner product, it follows that v ·t(p) ≥ v ·w
for all w ∈ K. Letting w = z, we see that v · z ≤ v · t(p) ≤ v · z, and so by
choice of z we must have z = t(p).

Let i1, ..., in be an enumeration of {1, . . . , n} such that zi1 ≤ · · · ≤ zin .
Then for any credence u satisfying Zero and Normalization:

LSIu z = zi1 +
n−1∑
j=1

(zij+1 − zij )u({ij+1, . . . , jn}).

Let r be any credence such that r(A) = p(A) if A 6= {i1} and 0 < r({i1}) <
p({i1}). Then r satisfies Zero, Normalization and Subadditivity, and is
regular, but is not a probability since

∑n
j=1 r({ij}) < 1.

Observe that LSIp z and LSIr z are equal, because our formula for LSIu z
does not depend on u({i1}), and {i1} is the only event p and r disagree on.

Recall that for any w ∈ Rn (identified with RΩ) and credence u we have:

LSIuw = −α+

∫ ∞
0

u({i : α+ wi > y}) dy,

where α is chosen so that α+wi ≥ 0 for all i. It follows that LSIr w ≤ LSIpw,
since r(A) ≤ p(A) for every A ⊆ Ω.

Let w = t(r). Then

LSIpw ≥ LSIr w ≥ LSIr z = LSIp z = v · z ≥ v · w = LSIpw.

Thus v · z = v · w, and hence by choice of z we must have w = z, so
s(r) = s(p). Moreover, p is truer than r at i1. �
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9.3. Strict truth-directedness. The credences C are the space of func-
tions from the powerset of Ω to [0, 1] and can be equipped in the natural

way with 2|Ω|-dimensional Euclidean topology. This agrees with the topol-
ogy on P ⊂ C that was used to define probability-continuity.

If a scoring rule is proper but not probability distinguishing, then it cannot
be quasi-strictly proper and also it cannot satisfy the domination thesis (4).
To see the latter point, observe that no score of a probability can be s-
dominated by the score of a probability given propriety, since if p were
s-dominated by q, then Eps(p) > Eps(q), contrary to propriety. So if the
score of a non-probability c equaled that of a probability, we wouldn’t have
the domination thesis for c.

Theorem 4. Let s be any proper truth-directed scoring rule defined on the
probabilities P on Ω where |Ω| = 2. Then s can be extended to a truth-
directed, proper but not probability-distinguishing scoring rule defined on all
of C. Furthermore, the extension can be taken to be a continuous function
from C to [M,∞] if s is probability-continuous.

Proof. Without loss of generality Ω = {1, 2}. Let pα be the probability such
that pα({1}) = α. Note that pα is truer than pβ at 1 if and only if α > β
and at 2 if and only if α < β.

Let α(c) = 1/2 + (c({1})− c({2}))/2 for any credence c. Now define

s′(c) = s(pα(c)) + c(∅) + 1− c(Ω)

for c ∈ C. Note that this agrees with the original definition on P, since if c
is a probability, α(c) = c({1}). For simplicity, write s in place of s′.

We now need to show that s thus extended is truth-directed, proper but
not quasi-strictly proper.

Propriety is easy. Let p be any probability and c any credence. If c
is a probability, we have Eps(p) ≤ Eps(c) by propriety restricted to the
probabilities. If c is not a probability, we have Eps(p) ≤ Eps(pα(c)) ≤ Eps(c),
since s(c) ≥ s(pα(c)) everywhere.

Lack of probability distinguishing follows from the fact that if c satisfies
Zero and Normalization but is not in P, then s(c) = s(pα(c)) everywhere.

We now prove truth-directedness. All we need to prove is that if c is
truer than d at 1, then s(c)(1) < s(d)(1); the case where c is truer than d
at 2 is essentially the same. Furthermore, by forming a chain of credences
between c and d that differ on only one set, we just need to prove that
s(c)(1) < s(d)(1) in each of the following cases:

(i) c and d agree on all events except ∅, where c(∅) < d(∅)
(ii) c and d agree on all events except Ω, where c(Ω) > d(Ω)

(iii) c and d agree on all events except {1}, where c({1}) > d({1})
(iv) c and d agree on all events except {2}, where c({2}) < d({2})
The inequality s(c)(1) < s(d)(1) is obvious in cases (i) and (ii).
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Now suppose we have case (iii) or (iv). In both cases we have α(c) > α(d).
Then pα(c) is truer at 1 than pα(d), and so by truth-directedness of s on P
we have s(c)(1) = s(pα(c))(1) < s(pα(d))(1) = s(d)(1).

Finally, the continuity claim is clear from our definition of the extension
s. �
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