Questionnaire: Representing the Role of Genes in Development (Discussion version)

Section A: Background of Respondent (cross [x] whichever applies)

		1			
1.	Current Disciplinary Location	2.	Area of Training		
a.	Medicine		Medicine		
u.	I. Molecular Medicine[]	a.	I. Molecular Medicine[]		
	II. Oncology[]		II. Oncology[]		
	III. Biochemistry []		III. Biochemistry []		
	IV. Pharmacology[]		IV. Pharmacology[]		
	V. Infectious Diseases []		V. Infectious Diseases []		
h.	Biochemistry	b.	Biochemistry		
.	I. Molecular []		I. Molecular[]		
	II. Cell[]		II. Cell[]		
	III. Protein[]		III. Protein[]		
	IV. Metabolism []		IV. Metabolism []		
С	Biological Sciences	С	Biological Sciences		
<u>ر</u> .	I. Genetics []	C.	I. Genetics []		
	II. Development[]		II. Development[]		
	III. Evolution, Taxonomy []		III. Evolution, Taxonomy[]		
	IV. Ecology []		IV. Ecology[]		
	V. Microbiology []		V. Microbiology[]		
А	Agriculture	Ь	Agriculture		
u.	I. Agricultural Genetics[]	u.	I. Agricultural Genetics[]		
	II. Animal Genetics []		II. Animal Genetics []		
	III. Animal Science []		III. Animal Science []		
	IV. Plant Breeding[]		IV. Plant Breeding []		
	Veterinary Science[]		Veterinary Science []		
f.	Pharmacology[]	f.	Pharmacology[]		
g.	Other[]	g.	Other[]		
3. Disciplines of Degree Undergraduate degree in					
a.	Gender	b. A	Age		
	i. female[]		i. 20-34[]		
	ii. Male[]		ii. 35-49[]		
			iii. 50-70[]		

Section B

(For questions 1-5: First, mark [x] every answer with which you agree in the left-hand column of boxes. Second, if you were to choose the 'best' answer, which one would that be? Mark (x) a single box in the right-hand column.) [bracketed comments added for this discussion]

1.	In short: What is a gene?	
1.	That which makes the difference between two phenotypes[GenePredictor] []	[]
A	nucleic acid sequence:	
2.	Any Nucleic acid sequence whatsoever. [EvolutionaryGeneConcept (EGC)][]	[]
3.	Nucleic acid sequence with a certain characteristic structure[Struct. GC]	[]
4.	Nucleic acid sequence with a certain characteristic function[Funct. GC]	[]
5.	A carrier of heritable information[Informational GC] []	[]
6.	A resource for Development[gene_Developmental Resource] []	[]
7.	Other[]	[]
2.	What is the biological function of a gene?	
	Causing a phenotypic outcome. [Weak genep] []	[]
	Determining a phenotypic outcome. [Strong gene _P] []	[]
	Coding for the primary structure of a protein. [Classical Molecular Gene (CMG)]	[]
	Providing a developmental resource, on a par with other (epigenetic and environmen	
	resources, for the construction of the organism. [Gene _D][]	[]
5.	Channelling and reinforcing epigenetic propensities, as opposed to specifying increm	
	alterations in morphology[]	[]
6.	Releasing and biasing the expression of latent morphogenetic capacities[]	[]
	Mechanism to buffer the development of established and ecologically successful	
	phenotypes against environmental perturbations and metabolic noise.	[]
[5.	+ 6. + 7.= Radical epigenetic gene concepts from Mueller/Newman]	
8.	Functional part, written in the sequence of nucleotide bases, of a program for	
	development. ['Developmental program' (Keller)][]	[]
9.	Other[]	[]
3	What makes two genes "homologous"?	
	Both have derived from a common ancestral gene (they are orthologous)[Evolutionary	
	Homology (EH)].	[]
2.	Both have an identical sequence of nucleotides.[Structural homology]	[]
	Both produce functionally equivalent molecular products.[Function (Analogy)][]	[]
4.	Both are situated at homologous sites on homologous chromosomes.[Position gene defined]	nition
	from classical genetics][]	[]
5.	Both are able to recombine with one another in practice. [EGC]	[]
6.	Both are able to recombine with one another in theory. [Liberal EGC] [[]
7.	Both have derived from a gene duplication (they are paralogous). [Serial Homology][]	[]
8.	Other[]	[]
4.	What is the methodological value of the gene concept?	
1.	A gene has instrumental utility in predicting a phenotypic outcome. [Gene _P] [[]

2	C
۷.	Central concept in evolution: allows i) shortcut definition of evolution as change in gene frequency and ii) a general conception of evolution as gene selection.
[Ge	ne Selectionism]
	Studying the biological role of a particular gene, which involves locating it within the
	contexts in which it is biologically active, helps to elucidate the complex molecular
	nathways in which it is an interactant [Geneal]
4	pathways in which it is an interactant. [Gened] [] [] A convenient entry point to functionally conserved multi-molecular modules as units of
т.	development, morphology, variation and innovation[] []
[Ge	netic Module Concept: Moss, Gerhart and Kirshner]
	'Gene' functions to remind modern geneticists of what it is that makes a region of nucleic
٥.	acid 'interesting', or of what constitutes 'meaningful structure' in the genome. []
ſΡh	<u>tralist Gene</u> Concept <u>Keller</u>]
	A gene draws our attention to a collection of useful functional domains (exons) which can
	be combined in different ways. [Genetic ModuleConcept] [] []
7.	A handy and versatile term whose meaning is determined by the context in which it is
•	used. [Pluralist Gene Concept, Porter, in Neumann-Held.]
8	Other:[] []
٥.	
5.	At length: What is a gene:
1.	The functional and physical unit of heredity passed from parent to offspring[] []
[(P1	re-) Mendelian 'Gene' Concept]
2.	A stretch of DNA sequence that codes for a particular protein that has a particular
	function.[CMG. Official definition from 'The National Human Genome Research Institute'.]_[] []
3.	A package of information that contains and implements a particular instruction[] []
	Formational gene]
4.	A gene is defined by its relationship to a phenotype regardless of the specific molecular
	sequence and the whole developmental mechanisms involved. [Gene _P] []
5.	A developmental resource defined by its specific molecular sequence and functional
	template capacity but which is indeterminate with respect to the phenotypic outcomes to
	which it will contribute. [Gene _{D.}]
6.	A segment of chromosome. Some genes direct the synthesis of proteins, while others have
	regulatory functions.[CMG. Definition of 'Gen Technology in Australia', website of CSIRO.][] []
7.	A process that includes DNA sequences and other components which participate in the
. •	time and tissue specific expression of a particular polypeptide product[] []
ſmo	plecular process gene concept, Neumann-Held]
	Any stretch of DNA, beginning and ending at arbitrarily chosen points on the
	chromosome, that segregates and recombines with appreciable frequency. [] []
[EC	GC - Williams]
9.	A functional unit and part of the processes that specify cellular and intercellular organisa-
	tion, defined by the action of a complex self-regulating system for which the inherited
	DNA provides the crucial raw material. [GeneD, as formulated by Keller] []
10.	Other:[] []
	t] t]
6.	Which pairs of nucleotide sequences count as "the same gene"?
	very question is to be considered separately. Cross those descriptions that seem to you
	describe two copies of the same gene.)
1.	Any two identical nucleotide sequences, beginning and ending at arbitrary points, at
	givalent loci on homologous chromosomes in different cells of the same organism[]
	is tested whether arbitrary sequences qualified as genes, as suggested by Williams, Dawkins. 5-8]

2.	Two transcription units of identical nucleotide sequence at equivalent loci on
	ologous chromosomes in different cells of the same organism.
	crol - a clear-cut example of two copies of the same gene. 11-2]
3.	Two transcription units of identical nucleotide sequence on non-homologous
chro	mosomes in the same organism[] uence alone' criterion: is possibility of recombination with its former alleles necessary? 4-7]
	Two identical transcription units of identical nucleotide sequence, which lead to the same
	functional protein[]
	Two identical transcription units of identical nucleotide sequence, which are translated
	into the same polypeptide chain, regardless of how it is folded[]
	Two identical transcription units of identical nucleotide sequence, which produce the
	same final transcript, regardless of what happens to this transcript[]
	Two identical transcription units of identical nucleotide sequence, which produce the
	same primary transcript, regardless of what happens to this transcript[]
	: To test the importance of sharing functional molecular products of different proximity.)
	Two transcription units of identical nucleotide sequence which produce the same final
	transcript but contain different introns. []
	question had a typo and was meaningless]
	Two transcription units of identical nucleotide sequence whose final transcript contains
	lifferently spliced exons[]
	identical final transcript necessary to count as 'the same gene'?]
	Two transcription units of identical nucleotide sequence at equivalent loci on
	homologous chromosomes in different cells of the same organism, one of which has its
	exons scrambled in its final transcript (as happens in ciliates)[]
	identical final transcript necessary to count as 'the same gene'? 7-5]
	Two transcription units of identical nucleotide sequence with different promoters but
	with identical levels of transcription. []
	ing whether the 'same sequence' criterion extends outside the transcribed region. 7-6] Two transcription units of identical nucleotide sequence with different promoters and
	different levels of transcription.
[Coul	desternal factors causing different amounts of product to be produced prevent two otherwise identical
	sequences from being 'the same gene'? 5-8]
	Two transcription units which differ only in a single silent mutation
	question and the next tested whether a 'same sequence' criterion was absolute. 8-5; 7-5]
	Two transcription units which differ in a number of silent mutations, not affecting the
	level of expression[]
	Two transcription units which differ in a number of silent mutations, affecting the level
	6 1 10 1
[Coul	of expression significantly[] d differences in level of expression alone make two sequences 'different genes'? 3-10]
	Two otherwise identical transcription units containing different nonsense mutations both
	of which destroy the corresponding enzyme's catalytic activity[]
	d different sequences be the same gene due to their identical developmental effect? 6-6]
	Two transcription units which differ so as to produce a single substitution in the amino
	acid sequence but with no observable developmental effect[]
	question tested whether a 'same amino acid sequence' criterion was absolute. 5-7]
	Two transcription units with identical sequences but which produce different polypep-
	tides due to differences in the genetic code (eg., between mitochondria and nuclei)[]
	se sequence or amino acid sequence more important for classifying genes? 3-10]
	Two allelic transcription units differing in sequence, each of which has an identical
m. a	phenotypic effect. [] e phenotypic effect the defining character of a gene (or an allele)? 3-10]
20 20	e phenotypic effect the defining character of a gene (or an allele)? 3-10] Two transcription units of identical publication sequence, one of which is found on a free
	Two transcription units of identical nucleotide sequence, one of which is found on a free transpage and one of which is found in normal genemic DNA.
	transposon and one of which is found in normal genomic DNA[]

Questionnaire: Representing the role of genes in development. Draft, Karola Stotz, 25/10/99

[Test of the importance of a sequence's context. 8-4]
21. Two identical nucleotide sequences, one is an active coding sequence, the other is split
into two (non-functional) pieces by an insertion[]
[Another test of the importance of contextual effects. 2-9]
22. Two transcription units of identical nucleotide sequence that have evolved independently
in different taxa through convergent evolution[]
[Is common descent necessary for two sequences to be 'the same gene'? 5-6]
© Karola C. Stotz, Paul E. Griffiths, Robin C. Knight 1999.
Not to be reproduced without permission