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Abstract:  

 

One of the critical issues in the philosophy of science is to understand scientific knowledge. This 

paper proposes a novel approach to the study of reflection on science, called “cognitive metascience”. 

In particular, it offers a new understanding of scientific knowledge as constituted by various kinds of 

scientific representations, framed as cognitive artifacts. It introduces a novel functional taxonomy of 

cognitive artifacts prevalent in scientific practice, covering a huge diversity of their formats, vehicles, 

and functions. As a consequence, toolboxes, conceptual frameworks, theories, models, and individual 

hypotheses can be understood as artifacts supporting our cognitive performance. It is also shown that 

by empirically studying how artifacts function, we may discover hitherto undiscussed virtues and 

vices of these scientific representations. This paper relies on the use of language technology to 

analyze scientific discourse empirically, which allows us to uncover the metascientific views of 

researchers. This, in turn, can become part of normative considerations concerning virtues and vices 

of cognitive artifacts. 

 

 

1. Cognitive artifacts in scientific practice: preliminaries 

 

One of the critical issues in the philosophy of science is to understand scientific knowledge, and in 

particular, various kinds of representations of this knowledge. In this paper, I offer a unified cognitive 

perspective on scientific representations by framing them in terms of cognitive artifacts. This 

perspective is best dubbed “cognitive metascience”: a study of the process and results of science that 

relies on the tools and methods of cognitive science of science. 

The notion of cognitive artifact was introduced in cognitive science to refer to entities that 

“maintain, display, or operate upon information in order to serve a representational function and that 

affect[s] human cognitive performance” (Norman, 1991, p. 11). The study of cognitive artifacts has 

begun under the auspices of distributed cognition (Hutchins, 1995; Norman, 1993), which takes a 

specific approach to cognitive processes. Distributed cognition does not constrain the research to 

individual properties of cognitive agents, but focuses its attention on larger cognitive systems, which 

comprise multiple agents and artifacts, such as the ones present in a research laboratory (Nersessian, 

2016). Nonetheless, philosophers investigating cognitive artifacts analyzed them predominantly in the 

context of the extended mind (Clark & Chalmers, 1998; Heersmink, 2013; Vaccari, 2017). The 

extended mind conception states that the mind may extend into what is traditionally conceived as the 

mind’s environment, incorporating external resources such as tools, language, or other external 

systems (Clark & Chalmers, 1998). While distributed cognition and the extended mind seem close in 

their rejection of the individual as the sole unit of analysis (Rupert, 2013), they should not be 

confused (Wachowski, 2018). According to the extended mind thesis, the individual mind remains at 

the center of a cognitive system; this individual-centered perspective is not endorsed by proponents of 

distribution. In line with the distributed approach, this paper is not targeted at the notion of mind at 

all, which implies that it is not committed to core claims of the extended mind. Instead, it tackles 
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scientific practice as a distributed cognitive practice, viewing cognition as essentially wide, i.e., 

including factors that go beyond intracranial processes (Miłkowski, Clowes, et al., 2018). 

 By following Norman’s account of cognitive artifacts, I also assume that they are essentially 

representational. Their representational nature was questioned by Heersmink (2013). His argument, in 

essence, is that there are non-representational cognitive artifacts, dubbed “ecological”, such as car 

keys left on someone’s desk as a reminder to return a rented DVD. However, Fasoli (2018) 

undermined Heersmink’s argument, simply by pointing out that car keys are used as signs in this 

example. They indicate that the DVD should be returned. Accordingly, there is no reason to suppose 

that there are cognitive artifacts without representational function. 

 The general assumption of this paper is that scientific knowledge representations are 

cognitive artifacts. While the claim that scientific representations serve a representational function and 

affect human cognitive performance might seem fairly bland, it will be argued that the cognitive 

approach may lead to novel insights. These involve, among other issues, normative features of 

cognitive artifacts. As will be shown, these insights can be derived from scientific communication, by 

relying on natural language processing. 

 The rest of the paper proceeds in the following way. In the next section, I argue that the 

functioning of cognitive artifacts in scientific practice should be understood in terms of computations 

over external representations. Section 3 provides a preliminary taxonomy of scientific representations 

that includes several dimensions: their format, their contribution to an aim of inquiry, their intended 

scope, and the degree to which they depend on data. Subsequently, it is argued that one can take a 

functional view on scientific representation. By empirically studying how artifacts function in 

scientific practice, we may discover virtues (and vices) of scientific representations. This is illustrated 

with the virtue of computational efficiency. In conclusion, future directions of work on cognitive 

artifacts in scientific practice are sketched. 

 

2. External representations in distributed scientific practice 

 

Cognitive artifacts in scientific practice are understudied. For cognitive scientists, mundane 

representational formats, such as written notes or databases, seem less worthy of inquiry than 

representations that were not studied extensively by philosophers of science, such as gestures. 

Philosophers of science, in turn, sometimes seem so perplexed by the immense variety of what 

scientists may mean by terms “theory” or “model”, that they become skeptical of whether these even 

exist (French, 2020). But there is some unity in all its diversity: They are all instances of physical 

cognitive artifacts. 

While “theory” or “model” may stand for particular instances of scientific representations, 

researchers often speak of them in a way that is relatively independent of their physical bearers. For 

example, when speaking of Newton’s theory of mechanics, physicists and philosophers rarely think of 

the first edition of his work that relied mostly on geometric diagrams. Instead, theories or models are 

typically identified in terms of their contents, and they may span multiple scientific publications, 

sometimes over a significant length of time (Hochstein, 2016). By following this usage, I assume that 

particular theories, models etc. are contents of cognitive artifacts, whereas by contents I understand 

sets of satisfaction conditions of these artifacts. 

Scientific practice is a paradigmatic case of a distributed cognitive process. While deserving 

credit and asserting their primacy of discovery motivate individual researchers in their work, the work 

is only rarely, or ever, attributable fully to a single individual. Given the fact that cognitive labor is 

distributed among lab members, or among multiple collaborating teams, there is a crucial role to play 

for external representations. This is because they are easily shareable and provide the linchpin for the 

intersubjective validity in science. They also stabilize cognitive processes, allowing one to reliably 
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reproduce the same result over and over again. This contribution to individual cognition is 

underpinned by the fact that cognitive operations on external representation are less reliant on our 

scarce resources of working memory. 

 An example can be found already in the beginnings of the systematic study of geometry in 

ancient Greece (Hohol, 2020; Netz, 2011). The intersubjective validity of proofs relied on the 

combination of two specific cognitive artifacts: labeled geometric diagrams and formulaic language of 

proofs (Hohol & Miłkowski, 2019). Anyone familiar with such diagrams and language can reproduce 

the result of the cognitive process. This intersubjective reproducibility is one of the core features of 

reliable scientific knowledge. The role of external representations in cognitive processes is also to 

guide multiple agents in similar ways, which may sometimes obviate the need to account for 

individual differences between particular agents (Afeltowicz & Wachowski, 2015). Psychological 

differences among researchers do obviously exist, but they may be negligible factors in understanding 

the progress of reliable scientific processes such as the ones involved in Euclidean geometry. 

 But all this is not meant to suggest that having the right external representations is sufficient 

for someone to know Euclidean geometry. Actually, cognitive processes involved in geometric 

cognition intertwine internal and external representations. Such intertwining is a feature of distributed 

practice over shared external representations (Nersessian, 2016; Zhang, 1997; Zhang & Norman, 

1994).1  

Representations cannot do any cognitive work by themselves. They must be operated upon, or 

computed over, internally or externally. Otherwise, they cannot affect our cognitive processing. The 

notion of computation should be understood broadly, to include both analog and digital computation, 

and possibly mixtures of both, as all of these are found in cognitive practices. Nonetheless, we are still 

in the dark about many kinds of computational processing that underpin various types of cognitive 

practices. This is the case even for Euclidean geometry: we do not know how people perform 

computations over labeled diagrams by relying on the formulaic descriptions and what computations 

are even involved (Hohol & Miłkowski, 2019). The same applies to other cognitive artifacts: while we 

have mathematical models of verbal or logical reasoning (usually derived from formal logic), our 

understanding of cognitive processing involved in such reasoning is still largely lacking. In many 

cases, all we have are somewhat sketchy and biologically implausible neural network models 

(Stenning & Lambalgen, 2008). And we lack even sketchy models for such prevalent representational 

artifacts as communicative gestures, which also play a crucial role in scientific theorizing (Becvar, 

Hollan, & Hutchins, 2008). 

 What makes external cognitive artifacts easier to study than mental processes is that they are 

often (but not always) observable with the naked eye. Observability is the case for diagrams on paper, 

written notes on a blackboard, and gestures (Marghetis & Núñez, 2013). The procedures their users 

perform using these artifacts are also observable, and sometimes easily learnable this way. For 

example, it’s much easier to learn Euclidean geometry by observing how diagrams are drawn than by 

merely reading the static text. 

However, with the increasing complexity of representational systems, the transparency of 

processing may decrease. It is not as easy to understand logical operations simply by observing an 

avid reader of Principia Mathematica, and even harder to understand the operations of 

neurocomputational models by observing a human neurocognitive scientist operating a computational 

 
1 Arguably, Hutchins, in his (1995, p. 172), was skeptical of the notion of cognitive artifact because it 

seemed to imply that there is no role for internal processing (and applying the notion of “artifact” to 
such processing seems clumsy at best), and that one could ignore other cognitively significant 
external entities, such as stars in traditional maritime navigation, which are not artifacts either. Later 
work on cognitive artifacts, including the work of Hutchins, avoids such simplistic and implausible 
suggestions. 
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model. These may become obscure. In spite of being shareable, they may no longer be even 

reproducible (Miłkowski, Hensel, & Hohol, 2018). 

There are some preliminary attempts to distinguish cognitive artifacts (as external physical 

entities) from procedures, which include mental procedures (Heersmink, 2013, p. 468). However, 

without detailed and empirically validated computational models of how we use cognitive artifacts, 

such a distinction remains somewhat arbitrary. This is because the same result can be achieved using 

various algorithms operating on various kinds of data structures, and the very distinction between a 

data structure and an algorithm (or computational operation) does not actually exist in some kinds of 

computational models, such as Turing machines. This implies that our common-sense distinction may 

be equally inapplicable to the computational mechanism of our cognitive processing. 

 

3. A preliminary taxonomy of scientific cognitive artifacts 

 

In this section, a preliminary taxonomy of scientific cognitive artifacts will be presented. In contrast to 

previous work (e.g., Brey, 2005; Fasoli, 2018; Heersmink, 2013, 2021), this taxonomy does not aim to 

cover all kinds of cognitive artifacts, but is geared towards scientific practices. Moreover, the 

taxonomy does not map cognitive artifacts onto individual human cognitive capacities (such as 

memory or perception) or onto ways cognitive artifacts may interact with individual cognition (by 

substituting, complementing or constituting it). There are two reasons for this theoretical choice. First, 

our current understanding of human cognitive capacities seems to be insufficiently empirically 

grounded to guide our analysis of artifacts. As argued by Poldrack et al. (2011; see also Pessoa, 

Medina, & Desfilis, 2022), our main categories of cognitive function are still in their infancy and 

likely to be revised in the future. Second, the distributed cognition perspective does not make a single 

individual a natural unit of analysis, so it might be difficult to identify the relation of scientific 

artifacts to individual cognitive processes. Take, for example, a satnav device that uses GPS data to 

plan a route. Cognitive processes, such as spatial orientation, of end-users might be substituted by this 

device (Fasoli, 2018). But in scientific practice, devices are frequently tweaked, so the same computer 

system might be customized for special needs of, say, archeological research by augmenting the maps. 

Researchers are often bricoleurs and reuse existing artifacts for new purposes or redesign them. 

 Instead, there will be four dimensions of artifacts in our taxonomy: (1) their representational 

format, (2) their role vis-à-vis the general aims of inquiry, (3) their intended scope, and (4) the degree 

to which they are accounted for in terms of data. The taxonomy is not a complete classification, but 

only a first step towards this goal. This is because of the virtually infinite variety in representational 

practices in science. 

 Let me start with a representational format. Charles Peirce famously defended a taxonomy of 

all signs into indexes, icons, and symbols (Short, 2007). In contemporary debates, these original terms 

are not always used, but the spirit is still there: indexes are understood as indicators or receptors, 

which mean X because they correlate with X; icons are structural representations that mean X because 

they resemble X; and symbols are just conventional representations, linguaform or similar. The 

problem with the distinction is that many consider receptors as extreme cases of structural 

representation (Facchin, 2021; Morgan, 2013; Nirshberg & Shapiro, 2020), which blurs the 

boundaries between these. Moreover, there are some distributed representations that do not seem to be 

fully iconic, because their component parts need not carry any representational function (Haugeland, 

1998). And there are complex hybrid formats, such as labeled diagrams in geometry or maps with 

arbitrary symbols and linguistic descriptions, that do not fit into just one category of signs. Thus, one 

should not assume that there cannot be hybrid formats that add conventional elements to natural signs. 

 The vehicles of these signs vary considerably. Some of them rely on human perceptual 

modalities, especially visual, auditory, and tactile. Gestures of other researchers can be seen. Pops of 
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an electrode can be heard when a neuron fires. And the feel of a special control button may be 

distinctive. Beyond these vehicles, basically any kind of intermediary relatively stable physical 

process can bear information, but will usually require translation to the perceptually available format 

for human researchers. (Sometimes no such translation may be required, e.g., if research is fully 

automated, cf. (Fodor, 1991)). 

 One may be surprised to note that there is such diversity of representational formats and 

vehicles. But depending on the representational format, some but not all problems can be actually 

solved (Larkin & Simon, 1987). Even if contentwise representations may be equivalent, they are not 

cognitively equivalent, and finding an appropriate format is often the most important step toward 

solving a difficult problem. 

 To summarize, the format of representation may rely on only natural sign relation 

(resemblance or correlation), be fully conventional, or hybrid. This gives us a tripartite distinction, 

albeit slightly different from the Peircean one: 

 
 The second dimension of the taxonomy is the relationship to the general aims of inquiry, 

understood, following Laudan (1977), in terms of problem-solving. Traditionally, it is assumed that 

these aims are to describe, predict, explain, and control phenomena. But this list is a mere typology of 

aims. In addition, there are some more complex aims. For example, a team may wish to reproduce a 

certain experiment to find out whether its results were fabricated. Obviously, this would imply that 

some experiment must be performed, based on previous description and some predictions made, to be 

compared against the experimental results. Nonetheless, the specific aim of reproducing the previous 

research is lost in this analysis. This is because the list of aims does not include any metascientific 

goals, such as comparing experimental results, performing meta-analyses, or closely reproducing or 

conceptually replicating experiments. It also does not include relationships between the aims or 

inquiry-supporting aims: one of the elementary aims of many research projects is to test hypotheses, 

but to do that, predictions inferred from hypotheses must be compared against descriptions of 

phenomena (usually as measured empirically). In this case, two major aims are linked together. 

Moreover, testing may also rely on a specific experimental protocol that is followed closely to make 

results intersubjectively reproducible. Again, relying on experimental protocols is not included in any 

of the major aims, but it is crucial for intersubjective reliability. In lieu of a complete taxonomy of 

possible goals of inquiry, I will simply assume here that there is a fifth goal, which can be 

conceptualized as supporting reliable research (including all kinds of inferential practices). 
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 In her influential work on the research laboratory, Nersessian (2016) distinguished three kinds 

of cognitive artifacts: devices, instruments, and equipment. Basically, these distinctions can be easily 

mapped onto this dimension of the current taxonomy: devices are models that serve predictive and 

explanatory aims; instruments are measuring tools, which allow researchers to describe phenomena; 

and equipment is in the service of control or auxiliary experimental labor (fifth goal). 

The third dimension of the taxonomy is the intended scope, which will be understood as the 

number of observable phenomena that are represented in a given cognitive artifact. The scale should 

start from 0, since purely mathematical or logical research may target no observable phenomenon at 

all.2 Scientific representations need not be declarative; there could be, for example, certain techniques 

or methods enshrined in experimental protocols, which are not, strictly speaking, true or false. But 

they have some ontological commitments (for example, about certain experimental materials) and 

satisfaction conditions that specify correctness criteria for following a certain protocol. 

 
 Finally, the fourth dimension specifies the degree to which the contents of the artifact can be 

accounted for only in terms of data, experimental or observational. This is meant to describe the 

degree to which a given artifact is theoretical in its nature. However, in contrast to the intended scope, 

there is likely no external representation that can be entirely accounted for in terms of data because 

“raw data” is an oxymoron (Gitelman, 2013). There are always theoretical choices involved in 

structuring the artifact, for example, in choosing the representational format, which are not simply 

“out there” to be discovered. While it may seem difficult to operationalize this dimension, as long as 

we take “data” to mean “data we have already garnered” (which is sometimes called “the ground 

truth” in the data science community), this degree can be understood in terms of the epistemological 

relationship of licensing inferences (deductive or statistical). A given artifact can be less or more 

reliant on the data we already know, and the degree to which it can generate new outputs to be 

compared to some future data specifies its degree of theoretical ladenness. Purely mathematical 

theories are again a special case because they are never compared against any ground truth. In this 

respect, they are infinitely theoretical, while having zero intended scope. 

 
 To make this proposal a bit more concrete, let us see how it could be applied to scientific 

practice in more detail. To the best of my knowledge, there is no systematic study of all kinds of 

external representations in scientific practice. But some initial insights can be found in communicative 

practices of researchers. For example, by looking at a large corpus of English academic writing, one 

could inquire into objects of verbs that are specifically used to speak of defending or proposing 

 
2 Alternatively, because mathematical truths hold in all possible worlds, one could claim that their scope is maximal; but they 

never hold of anything in particular, so it seems more apt to leave the zero as their intended scope. 
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certain representations, such as propose. Figure 1 shows the result of analyzing the objects of the verb 

propose in a large 2-billion token corpus of English academic writing, produced from open access 

journals indexed in the Directory of Open Access Journals (DOAJ). This corpus is available in the 

state-of-the-art corpus analysis software SketchEngine, which allows its users to analyze 

characteristic formulaic expressions (called “collocations”) and semantic relations. As can be easily 

seen, multiple kinds of representations are cited (with some noise, note the presence of antenna).  

 

 
Figure 1: Objects of the verb propose as found in the DOAJ Corpus. 

 

On Figure 1, one can see that the most typical kinds of entities proposed by researchers are methods, 

algorithms, and approaches. The exact location of a given representation in the taxonomy introduced 

here can be provided only for particular tokens because types are often underspecified in many 

respects. While algorithms are rarely represented in the format that relies on resemblance (with some 

exceptions, as one can actually depict a causal structure of a computational mechanism to represent a 

computational model), and typically specified in symbolic programming languages, it is impossible to 

determine a priori how any algorithm is related to the aims of the inquiry, intended scope, or its 

theoretical character. 

In previous work, we have argued that the popular predictive processing (PP) account of 

cognition (Clark, 2016) is not a theory but at best a conceptual framework (Litwin & Miłkowski, 
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2020). We have distinguished among toolboxes, frameworks, theories, and models. The distinction 

can be easily understood by pointing out that mathematical toolboxes are not dependent on any 

ground truth (they can be freely reinterpreted, which is the case for PP work, as we have insisted), 

while frameworks have both a large scope and contain placeholders that allow researchers to relate 

mathematical details to data. In contrast, theories are much more detailed (no placeholders anymore) 

but retain large scope, whereas models, at least in cognitive science, focus on individual cognitive 

tasks: they are both available for validation against empirical data and limited in their intended scope. 

Similarly, the taxonomy may be used to analyze individual hypotheses stated in science. For example, 

the hypothesis that there are at least three pathways in vision processing (Pitcher & Ungerleider, 

2021) is stated in natural language (conventional format). Its aim is to explain features of visual 

processing (and functional brain anatomy), whereas its scope is the whole visual system in the brain. 

Quite clearly, it is highly data-reliant, meaning that it should be empirically verifiable (which is 

consistent with the fact that it also has goals of describing, predicting, and explaining facts). 

 Having briefly discussed how the suggested taxonomy can be used, let us now turn to the 

relationship between the function of cognitive artifacts and their virtues. 

  

4. From function to virtue, and back 

 

This section introduces a novel method for the study of virtues of cognitive artifacts. The taxonomy 

provided in the previous section describes cognitive artifacts along four dimensions. One of them, 

namely the relationship to aims of inquiry, is not only functional but also provides a way to evaluate 

the performance of a given artifact. For example, descriptive artifacts have the function of describing 

phenomena. They function correctly if they describe them accurately (at least to a certain degree); 

otherwise, they are dysfunctional. This functionality can also be described in terms of virtues that 

have been studied by philosophers of science (Kuhn, 1977). Indeed, accuracy was one of the five 

virtues analyzed by Kuhn. He also insisted on consistency, scope (unification), simplicity, and 

fruitfulness (Kuhn, 1977, p. 332). 

 These virtues can be analyzed and taxonomized conceptually. In fact, most conceptual studies 

take their lead from Kuhn’s proposal (e.g., Keas, 2018). Only recently, pioneering empirical studies of 

how researchers appeal to virtues have been performed (Mizrahi, 2021). Mizrahi, by performing a 

plain text search over JSTOR articles in multiple scientific disciplines, found that depending on the 

kind of scientific representation, different virtues are ascribed: models are treated differently from 

theories or hypotheses. The taxonomy introduced in the previous section suggests that there could be 

even more differences in how virtues (and vices) are assigned because various kinds of 

representations play different roles in scientific practice. Accuracy is obviously not a virtue of a 

purely formal model (with zero intended scope), for example.  

Needless to say, Kuhn’s catalog is not particularly systematic. Clearly, it is not a logical 

classification, which is exhaustive, whose categories are mutually exclusive and each is non-empty. In 

subsequent work, multiple other virtues were introduced. For example, Keas (2018) insists that one 

important virtue is applicability, which can be attributed to scientific representations aimed at control. 

De Regt (2017) analyzes visualizability as the virtue contributing to the intelligibility of scientific 

theories (at least according to some of their proponents). While these particular virtues extend the 

received list of virtues, a descriptively adequate account of scientific practice requires a more 

systematic treatment. 

It should now be apparent that the previous section hints at a possible departure point: by 

systematically looking at various kinds of representations, we could study their functionality. 

However, this proposal might seem somewhat abstract without any specific suggestions regarding the 

methods of performing such studies. Here is one such suggestion: scientific communication is 
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arguably at the core of scientific practice – and by focusing on how researchers describe the practice, 

we could at least get a “native understanding” of their conceptual world. Current language technology 

is particularly apt for this purpose (Lean, Rivelli, & Pence, 2021; Pence & Ramsey, 2018). This is 

because researchers, quite obviously, discuss the properties of scientific representations that they 

work with. The sheer amount of scientific communication makes it, however, humanly impossible to 

trace all such discussions systematically by actually reading or hearing all relevant instances. We need 

an alternative way to get a general overview first, and provide evidence for generalizations (Moretti, 

2000; Piper, 2020). Here, language technology can help. Digital philosophy of science can rely on 

natural language processing tools. By studying the cognitive underpinnings of metascientific 

discourse, philosophers can thus contribute to cognitive metascience. 

Before introducing a small case study of the use of language technology to discover virtues, 

several caveats are in order. It would be naive to assume that scientific publications faithfully report 

the process of discovery. Scientific communication is constrained by multiple conventional factors, 

with each writing genre incurring its own biases. For example, typical scientific papers are structured 

into sections in a way that rhetorically suggests a clear-cut disconnect between results and their 

theoretical interpretation. Medawar (1963) went so far as to say that this “misrepresents the processes 

of thought that accompanied or give rise to the work that is described in the paper”. Peer-reviewed 

publications might also avoid harsh language when criticizing previous work or, alternatively, 

exaggerate their novel insights by excessively criticizing others (Jurgens, Kumar, Hoover, McFarland, 

& Jurafsky, 2018). Negative results are difficult to publish, which also biases the view of the 

conceptual world of science in scientific papers, reporting results that, on average, turn out to be false 

(Ioannidis, 2005). Finally, some aspects of communication cannot be captured in print at all, such as 

gestures in a lab (Becvar et al., 2008). 

While some of these objections might be somewhat exaggerated, they should be treated 

seriously. Their significance depends, however, on how one relies on language technology in studying 

artifacts. My assumption is that language technology should be treated heuristically, as a tool for 

systematic discovery of features inherent in patterns of scientific writing. These features may be then 

analyzed conceptually and become parts of epistemological argument. 

In the short study presented in Section 5, the issue of possible bias inherent in the data is 

arguably negligible. But there is a way to avoid detrimental biases in cases where they could impact 

results. When using language technology to analyze scientific discourse, one should not constrain the 

analysis to a single writing genre or a single field. Various genres have their own conventions and 

biases. Textbooks and science outreach (such as blogs or podcasts) may oversimplify issues, while 

referee reports might emphasize nuances. Blog authors tend to write about issues that are not 

explicitly treated in scientific papers because these are shared knowledge. In short, one should include 

various genres in the analysis.  

In addition, various fields also display diversity in their epistemic standards, which can also 

fluctuate over time. Thus, a comparison across scientific fields or various research traditions can lead 

to the discovery that there are some patterns of scientific practice that differ across them. As soon as 

reproducibility problems were discovered in medical sciences and psychology, these have become 

analyzed in other fields, such as computational neuroscience. These differences may then be put under 

closer scrutiny to understand rationales for maintaining certain epistemic standards. 

To sum up, by juxtaposing diverse independent data, one may expect the plausibility of 

results to increase. The same epistemological point has long been appreciated by many philosophers, 

who coined different terms to talk of the same phenomenon: “convergence of independent evidence”, 

“convergent validation” (Campbell & Fiske, 1959), “triangulation” (Davidson, 1991), “robustness 

analysis” (Wimsatt, 2007) are all instances thereof. In the machine learning community, a similar 

argument has been made with recourse to “error diversity”: when we have multiple, comparable 

https://www.zotero.org/google-docs/?Mb0jPf
https://www.zotero.org/google-docs/?iq07Rs
https://www.zotero.org/google-docs/?iq07Rs
https://www.zotero.org/google-docs/?fyVopy
https://www.zotero.org/google-docs/?Wc7RfR
https://www.zotero.org/google-docs/?Wc7RfR
https://www.zotero.org/google-docs/?TxGA4i
https://www.zotero.org/google-docs/?CU0rb5
https://www.zotero.org/google-docs/?zp0BOv
https://www.zotero.org/google-docs/?HkpOIP
https://www.zotero.org/google-docs/?bztUxV
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independent models of the same target, we can hope to offset errors that are almost always present in 

any model (Brown, Wyatt, Harris, & Yao, 2005). 

Let me reiterate that language technology does not obviate human judgement. While currently 

available textual resources exceed by a wide margin what we had at our disposal only a few decades 

ago, computational processing remains somewhat brittle, even if exceeding human performance in 

some very specific tasks in limited domains. The validity of results achieved must be confirmed in 

one way or another by appealing to human qualitative judgements, which remain the so-called ground 

truth for language models. Thus, this research methodology connects both quantitative and qualitative 

aspects. 

A full systematic treatment of virtues (and vices) of various cognitive artifacts goes beyond 

the scope of this paper, but it will be instructive to provide one complete example of a virtue that was 

hitherto neglected by philosophers of science: computational efficiency of models.  

 

5. Computational efficiency: a virtue of computational models 

 

To discover virtues ascribed to scientific representations, one can study formulaic aspects of 

natural language (Wray, 2012). In particular, one can extract collocations, usually understood as a 

sequence of words that occur together more often than would be expected by chance alone (for a 

recent review, see (Gablasova, Brezina, & McEnery, 2017)). Scientific language is highly formulaic, 

not only because of the technical terminology but also owing to specific syntactical patterns (e.g., 

marking inferences explicitly, not avoiding word repetition for more clarity etc.). In short, our 

attention should turn to collocations of terms for referring to various kinds of representations. Take 

model: arguably, the adjectives that are used to predicate qualities of models (i.e., predicate adjectives 

of model, as in model is …) can be candidate expressions that stand for virtues of models. To analyze 

predicate adjectives, one can rely on SketchEngine, which is a state-of-the-art corpus analysis and 

lexicography system (Kilgarriff et al., 2014). The specific feature of SketchEngine that is useful for 

this purpose is the availability of word sketches, or collocations defined over surface grammar 

patterns. SketchEngine supports multiple languages and hosts several hundred language corpora, with 

accompanying word sketch grammars that usually contain a definition of predicate adjective. 

For the purpose of this study, I will rely on the largest English corpus of scientific writing, 

which is based on open access journal papers, indexed in DOAJ, which was already mentioned in the 

previous section. Its primary advantage is the size, while the sample of papers is driven mostly by the 

easy availability of contents for further processing. This can lead to questions about whether it is not a 

biased sample. In fact, it is, but the bias can be innocuous for my purposes here. This is because here 

my aim is only to demonstrate that scientific discourse can be used as evidence for virtues that are 

rarely if ever mentioned in epistemological analyses. I do not mean to say that this sample is indeed 

representative for all fields of inquiry. Table 1 provides a list of 100 most salient predicate adjectives 

of model (ordered by their collocation score).  

 

Keyword Gramrel Collocate Frequency Score 

model adjective predicates of X 116774 2.370 

  able 8243 9.620 

https://www.zotero.org/google-docs/?NoIqLr
https://www.zotero.org/google-docs/?beOlE3
https://www.zotero.org/google-docs/?zUQI1V
https://www.zotero.org/google-docs/?03HTzT
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capable 3229 9.000 

suitable 2869 8.990 

good 3017 8.870 

appropriate 1633 8.480 

useful 1907 8.460 

applicable 1502 8.370 

accurate 1303 8.250 

significant 2651 8.150 

valid 1218 8.120 

simple 1160 8.020 

sensitive 1692 8.010 

consistent 2502 7.940 

similar 3674 7.770 

robust 901 7.690 

available 3728 7.590 

such 7226 7.490 

correct 700 7.440 

adequate 687 7.440 
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close 1157 7.400 

unable 765 7.360 

superior 673 7.290 

different 1574 7.170 

complex 710 7.110 

equivalent 632 7.070 

difficult 839 6.980 

successful 517 6.950 

reliable 491 6.920 

dependent 922 6.900 

identical 632 6.870 

flexible 443 6.850 

necessary 1013 6.830 

relevant 627 6.830 

easy 514 6.770 

sufficient 620 6.760 

realistic 394 6.730 

small 1082 6.700 
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preferred 434 6.700 

due 3180 6.650 

effective 616 6.630 

linear 410 6.630 

large 937 6.610 

comparable 602 6.580 

corresponding 744 6.520 

important 942 6.490 

stable 468 6.480 

efficient 417 6.460 

acceptable 344 6.430 

compatible 357 6.380 

independent 502 6.330 

high 1654 6.310 

essential 522 6.300 

possible 512 6.300 

subject 374 6.280 

reasonable 297 6.270 
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low 1144 6.260 

satisfactory 292 6.240 

feasible 311 6.220 

likely 804 6.210 

general 274 6.170 

more 510 6.160 

nonlinear 245 6.030 

specific 394 5.990 

less 539 5.920 

equal 450 5.920 

relative 498 5.900 

predictive 221 5.840 

inadequate 211 5.800 

crucial 252 5.690 

perfect 191 5.690 

insensitive 195 5.670 

unique 221 5.620 

representative 229 5.610 
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simulated 178 5.560 

analogous 185 5.550 

great 410 5.510 

m1 166 5.510 

complete 189 5.480 

expensive 180 5.480 

straightforward 171 5.460 

attractive 172 5.450 

insufficient 179 5.450 

ideal 164 5.450 

free 209 5.430 

helpful 169 5.420 

critical 217 5.370 

detailed 153 5.370 

valuable 157 5.360 

preferable 151 5.330 

popular 151 5.320 

fitting 141 5.290 
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used 140 5.230 

deterministic 136 5.230 

tractable 135 5.230 

unlikely 164 5.210 

interesting 150 5.210 

unknown 197 5.190 

clear 176 5.160 

bad 140 5.150 

deficient 143 5.140 

 

Table 1: Top 100 predicate adjectives of “model” (this is the grammatical relation, or “Gramrel”, 

under study). The column “Frequency” lists absolute frequency of a given collocate, while “Score” 

provides a numerical score, computed in terms of logDice, which is an association score of 

expressions used in SketchEngine. 

 

Fairly low down the list, one can find efficient, with over 400 instances of usage (per 3 billion tokens), 

but relatively high association score.3 Two facts should be noted: other corpora of academic English 

available through SketchEngine do not list efficient among the collocates of model, but they are often 

many magnitudes of order smaller, and DOAJ is the only gigacorpus, sporting billions of tokens. 

What makes the DOAJ corpus special, however, is not only its size but relatively recent provenience, 

as compared to other resources. Thus, it should make us both suspicious of the collocate, and eager to 

investigate what actual linguistic patterns are responsible for this score. In addition, Table 1 includes 

many collocates that can be best described as noise for the purposes of this study: m1 is most likely an 

unformatted indexed variable m1, which is not a predicate; such is not a term for a homogenous 

property of any model (in contrast to general), but simply a function word that introduces an 

enumeration or complex phrase (viz., such as, such that). Some do not carry much information about 

virtues either (e.g., high, unknown, or great), and these adjectives may stand for various attributes of 

models. 

 
3 There are several ways association scores are computed for collocations. Many scores used in collocation research depend 

on the notion of mutual information, but these scores remain valid only within a single corpus on which they were computed. In 
contrast, the score used by SketchEngine, logDice, remains relatively independent of a given corpus (Rychlý, 2008). 

https://www.zotero.org/google-docs/?XAKsjE
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 Let us now consider several examples of phrases that mention efficiency of models in DOAJ. 

Some uses seem uninformative: “The sexual model was much less efficient at maintaining species 

despite the higher rate of species formation” (a paper from PLoS Computational Biology), “We 

emphasize that the model is fairly efficient” (from Natural Hazards and Earth System Sciences). But 

another pattern is easily found in the concordance as well: “Its simplifying assumptions make the 

model computationally efficient.” (International Journal of Rotating Machinery), “These models are 

computationally efficient but contain certain inaccuracies especially in the areas of geometrical 

discontinuities.” (Lecture Notes in Engineering and Computer Science), “Both models are 

computationally efficient and produce results that are correlated with subjective results.” 

(Radioengineering). The recurring pattern shows a multi-word expression computationally efficient, 

used to ascribe a particular quality to computational models. 

 Computational models are merely a specific subclass of all cognitive artifacts used in 

modeling, which are again just a subclass of all possible cognitive artifacts. Let us first situate them in 

our taxonomy. Their format varies depending on the methodology used. There are symbolic 

computational models, which are purely conventional. Some models have been argued to feature 

structural representations (for example, in predictive processing, cf. (Gładziejewski, 2016)), and some 

might be hybrid. They may also serve various aims, from description, prediction, explanation, to 

control (in engineering). Some may also play supportive roles, for example, by providing 

combinations of results from multiple models to offset their individual errors. They can be purely 

formal, but also aim at an arbitrary number of phenomena. Finally, these models can be entirely 

speculative or be derived from data to some extent. In other words, there is a rich variety of various 

kinds of computational models and particular subclasses of computational models occupy almost any 

location in the taxonomy. Hence, an important question is whether there are any deep epistemological 

generalizations that can be made about them. Are there any specific virtues or vices related to 

computational modeling? 

This question is all the more significant because their prominence in science and engineering 

cannot be denied, in particular in the era of deep learning. We experience a steady increase of 

computational power and growing use of computational modeling in various branches of inquiry. No 

wonder that older and smaller corpora of academic writing do not mention computational modeling 

and its features frequently because modeling of this kind was not as widely available in the 1980s or 

1990s. They simply reflect the scientific practice of their day, which did not include deep learning 

methods. As a consequence, they cannot shed light on our question, in contrast to DOAJ, which seems 

to imply that computational efficiency is a virtue of computational models (but it does not imply, of 

course, that it is a virtue of any cognitive artifact).4 

Let me elaborate. A mere description of a linguistic pattern – that efficient is a collocate of 

computational model – is insufficient to justify the normative claim that the efficiency of 

computational models is indeed a virtue. This claim can be, however, justified by showing that 

scientific problems of computational modeling can be solved better by more efficient models rather 

than by less efficient ones. The normative nature of the claim lies in the fact that to achieve their goals 

(of inquiry), scientists perform particular actions and the selection of this action remains rational as 

long as they indeed contribute to achieving these goals. In other words, this claim is an instrumental 

norm: it concerns the choice of a particular means to achieve a certain goal, rather than goals 

themselves. This may be summarized in the following argument schema: 

 
4 It is arguable that efficiency is the virtue that all computations over cognitive artifacts should have. 
However, only some cognitive artifacts–typically some computational models–perform computations 
by themselves, and for that reason, can inherit the virtue of efficiency. In other cases, we can ascribe 
complexity or simplicity to the artifact, but efficiency only to the computational operations available to 
manipulate it. See also the final paragraph of this section. 

https://www.zotero.org/google-docs/?xht7cx
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1. X wants to achieve their goal g1. 

2. If X selects the means m1 rather than m2, X will achieve their goal g1 with a 

significantly greater success rate rather than otherwise. 

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

  Thus, faced with the choice between m1 and m2, X should select m1. 

 

Let me apply this argument to the example of computational efficiency: suppose X has two models to 

choose from, m1 and m2, whereas m1 is 150% less computationally efficient, but 1500% more detailed 

(this is also found on the list) than m2. Depending on the overall context of modelling, the overall 

success rate may be computed in various ways, which is affected by the weights assigned to efficiency 

and level of detail. In the case of models that are used for making fast decisions (e.g., in controlling 

real-time factors in rescue robots), the level of detail might be assigned lower weight, and m2 should 

be selected. In actual scientific practice, the overall success rate usually involves fairly complex trade-

offs among multiple virtues. 

Note also that X could find another means, m3, to achieve their goal g1, or even give up on 

achieving g1. The conclusion of this argument schema relies on the fact that m1 is sufficient to achieve 

g1 (and more reliable than m2) and that’s basically all there is to this methodological kind of 

epistemological normativity (Miłkowski, 2010). 

 By finding that researchers mention efficiency when speaking of models, one can presuppose 

that, at least implicitly, they might endorse computational efficiency as the effective means for 

modeling. The endorsement may also be explicit. For example, this is the case for the state-of-the-art 

models for automated image classification in the ImageNet database: the current leader of the 

ImageNet Classification leaderboard (Soo Ko, 2019), EfficientNet-B7, is designed to be more 

computationally efficient and accurate at the same time (Tan & Le, 2020). By knowing this, we may 

presuppose that researchers, as rational agents, endorse the claim that efficiency is a virtue of 

computational models (at least for image classification). As long as being more efficient turns out to 

be more helpful in modeling rather than the disregard of efficiency, it is actually a virtue as much as 

simplicity or fruitfulness are also such virtues. 

 To sum up our inquiry at this point: we have found that there are some virtuous aspects of 

functionality of computational models. A possible objection that could be raised at this point is 

whether these aspects are already covered by extant taxonomies of virtues. 

 One could try to subsume computational efficiency under at least three virtues: simplicity, 

consistency, and applicability. Simplicity is one of the classical virtues in Kuhn’s catalog. The 

problem, however, with subsuming efficiency under simplicity is that computational efficiency may 

require giving up on syntactic simplicity (this is known in terms of space-time tradeoff or time-

memory efficiency tradeoff, cf. (Hellman, 1980). In other words, there is no guarantee the simplest 

possible model is the most efficient one; frequently, the relationship is inverse (depending on the 

details of the algorithm of the model). This is why one could believe that efficiency is a case of 

another virtue: consistency. After all, we know that more efficient models are better than non-efficient 

ones. The issue with this concept is that one could rephrase other virtues in the same way (e.g., scope: 

it’s better to have models of larger than smaller scope, etc.). While one could treat another, related 

computational property of models, tractability (found in Table 1 simply as tractable), as a requirement 

with which any computational model should be externally consistent (in particular in cognitive 

science, see (Frixione, 2001; Van Rooij, 2008)), efficiency is not an absolute requirement, and one 

could arguably prefer simplicity to efficiency. Finally, efficiency might be considered to be subsumed 

under applicability, because more efficient models are more applicable in practice. Yet, again, this is a 

simplification: applicability is understood by Keas as providing guidance for successful action or 

https://www.zotero.org/google-docs/?Llmd8I
https://www.zotero.org/google-docs/?Ee9lCj
https://www.zotero.org/google-docs/?dLbtk2
https://www.zotero.org/google-docs/?npP59n
https://www.zotero.org/google-docs/?JFSRdq
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enhancing technological control. Computational efficiency, however, might increase applicability 

only for models that are already in the service of successful action or that enhance our technological 

control. A purely speculative theoretical model without any application whatsoever can be as well 

computationally efficient. 

 Hopefully, this short justification suffices to state that “computational efficiency” stands for a 

specific virtue of computational models that should have been included among chief virtues. This is 

because the functionality of computational artifacts depends on their efficiency. Inefficiency, in other 

words, is usually a vice because inefficient models are, ceteris paribus (remember the trade-offs 

between virtues!), dysfunctional. 

 Before I conclude, let me note briefly that efficiency cannot be ascribed to all kinds of 

models. For example, it would be a category mistake to ascribe computational efficiency to animal 

models in life sciences: while these models are sometimes painstakingly engineered to instantiate 

particular biological features, their own functioning cannot be understood in purely computational 

terms (of course, setting aside an extremely risky hypothesis that everything instantiates at least one 

computational mechanism; see (Piccinini & Anderson, 2018)). This is because animal models do not 

instantiate computations that are essential for modeling target phenomena: we need some additional 

mechanism to perform computations over representations of animal models to infer properties of 

phenomena under study. 

 

6. Conclusion 

 

 After having introduced a novel taxonomy for scientific representations, I defended the view 

that understanding actual scientific practice can shed light on what should be considered a virtue or 

vice. One of the methods that can be used for that purpose is to rely on language technology to extract 

linguistic patterns describing features of cognitive artifacts involved in scientific inquiry. By 

systematically relying on the functional relationship between the use of a given artifact and the 

general goal of inquiry, one can substantiate normative claims about virtues and vices of various 

artifacts. This is the focus of the cognitive metascience approach to scientific practice. 

In this paper, I relied on collocation extraction for this purpose, but insights into scientific 

practice need not be restricted to explicit linguistic patterns. An exciting future perspective is to 

complement empirical hands-on research on scientific practice (e.g., from Science and Technology 

Studies) with big data processing to understand how certain practices might be reflected by science 

communication. Arguably, however, the most important tasks for future studies are (1) to distinguish 

distinct kinds of scientific artifacts depending on their features included in the proposed taxonomy, 

and (2) to provide a systematic study of their virtues and vices. Moreover, the very process of 

scientific inquiry and its aims require a much more extensive analysis in terms of problem-solving 

than could be provided here for reasons of space. 

To sum up, the aim of this paper was to defend the view that scientific representations are 

cognitive artifacts, whose functioning depends on computations (analog, digital, or both) we may 

perform on/using them. Their correct functioning depends on their having certain crucial features, 

which instantiate epistemic virtues (or, alternatively, vices, if they do not function properly). 
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