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Abstract

Historically, a great deal of attention has been addressed to the ques-
tion of what it would take to test experimentally the metrical structure
of spacetime. Arguably, however, consideration of this question has been
at the expense of comparable investigations into what it would take to
test other structural features of spacetime. In this article, we critique and
expand substantially upon an article by Hadley [26], which constitutes
one of the best-known paper-length studies of what it would take to test
the orientability of spacetime. In so doing, we seek to clarify a number
of matters which remain unclear in the wake of Hadley’s article, thereby
allowing the literature on this topic to progress. More positively, we also
present, compare, and evaluate a number of other potential approaches
to testing the orientability of spacetime which have arisen in the recent
physics literature.
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1 Introduction

A central question in the foundations of spacetime theories is this: to which
spatiotemporal structures can we gain operational and empirical access—and
how exactly is said access secured? Historically, a great deal of attention has
focused on the question of our empirical access to the (Lorentzian) metrical
structure of our (assumed-to-be) general relativistic world. Synge, for example,
endorsed a ‘chronometric’ approach to addressing this question [51], 52]; in ex-
plicit contrast, Ehlers, Pirani and Schild [I6] proposed that the trajectories of
light rays afford empirical access to conformal structure, and the trajectories
of freely falling massive particles afford access to projective structure; together
(alongside some supposedly innocuous auxiliary assumptions), these fix (up to
a constant factor) the metrical structure of spacetime.

These issues are, by now, relatively (albeit not completely—see [11 [36]) well-
understood. However, one might find the focus on metrical structure in the
foregoing to be unduly blinkered: for surely one can likewise raise questions
regarding our empirical access to other aspects of the spatiotemporal structure
of the world. For example, one might wonder whether it is possible to access
empirically (and thereby test) the orientability of spacetime. It is upon this
question which we focus in this article.

Perhaps surprisingly, the issue of testing the orientability of spacetime has
not received a great deal of attention in the literature. A potted history divides
into three phases. First, the question of testing spacetime orientability was
raised in a number of influential works on global general relativity from the
late 1960s and into the 1970s—in particular [19, 20, 2], 22] 25] (we refer to
these works more specifically below). After this, little (to our knowledge) was
published on these issues until 2002, with the advent of an article by Hadley
[26]. In our view, Hadley is to be commended for revitalising such questions;
however, critical engagement with his article is sorely required, because many
of the details of Hadley’s remarks are, on reflection, severely problematic. The
third phase of the literature consists in a number recent and novel proposals for
testing the orientability of spacetime—see inter alia [4, 33, B4] (we discuss such
works more systematically in the body of this article).

With the foregoing in mind, we envisage the purpose of the present article to
be twofold. First: drawing on the literature from the first of the above stages,
we seek to overcome a number of confusions and unclarities which, in our view,
arise out of Hadley’s work in the second of the above stages, and which without
careful attention have the potential to stymie the literature. Second, we seek



to both survey and evaluate the various more recent proposals for testing the
orientability of spacetime which have been adumbrated in the third stage of the
history on this topic. Through achieving both of these goals, we seek to be in a
position to make fairly definitive statements regarding the prospects for testing
spacetime orientability, at least given the current state of play in physics.

The structure of the article is this. In we consider different possible
definitions of the orientability of spacetime, drawing in particular important
distinctions between ‘manifold orientability’, ‘time orientability’, and ‘space ori-
entability’ (throughout this article, we use ‘temporal orientability’ and ‘spatial
orientability’ interchangeably with ‘time orientability’ and ‘space orientability’,
respectively; when we say simply ‘orientability’ we refer collectively to all three
notions). Clarifying that these all constitute distinct notions of orientability is
important, for Hadley slides in his article between the notions in a way which
is liable to confuse. In §3] we consider the question of whether the orientabil-
ity of spacetime is to be considered a global or a local property—again, we
find Hadley’s claims here to be problematic. In we turn to the main event:
how can one test the orientability of spacetime? Here, we build upon the ex-
perimental setups proposed by Hadley in order to further the discussion. In
we consider whether results from quantum field theory (QFT) can provide
(indirect) evidence for the orientability of spacetime—here, we share Hadley’s
scepticism, albeit for different reasons than those which he adduces. In §6]
we assess whether Hadley’s concluding remarks on testing the orientability of
spacetime are acceptable. In {7} we turn to the prospects for the more recent
proposals for testing spacetime orientability which have arisen in the physics lit-
erature; generally, we find these to be more promising than the proposals made
by Hadley. We close in §8| by addressing directly the question of whether it is
indeed possible to test spacetime orientability.

2 Definitions of orientability

We begin with three well-known but inequivalent definitions of orientability.
The first applies to any differentiable manifold:

Definition 1 (Manifold orientability). A differentiable manifold M is manifold
orientable if and only if it admits a smooth non-vanishing top-ranked form.

For example, 4D Lorentzian spacetime (M, gqp) is orientable if and only if it
admits a smooth non-vanishing 4—f0rmE| Often in the literature, manifold ori-
entability is called simply ‘orientability’; however, in this article we will use the

ISometimes, such top-ranked forms are referred to as ‘volume forms’; however, it is impor-
tant to stress that such forms need have little to do with physical volumes, as read out by
material fields. Certain such forms are more natural than others in this respect: for example,
when working with (pseudo-)Riemannian manifolds, it is quite common to use the volume
form with the local coordinate expression \/|?|da:1 A -+ A dz™, which is the form ‘adapted’
to volumes given by the (pseudo-)Riemannian metric field. Even in this case, however, the
connection to volumes read out by material fields is not guaranteed: this is part of the moral
of the ‘dynamical approach’ to spacetime of Brown and Pooley [7, [8 [O], which we discuss
further below. For the purpose of this article and the above definition, it does not matter



longer nomenclature in order to avoid confusion with the two further notions of
orientability introduced below. It is also important to stress that manifold ori-
entability is a topological property, which does not depend upon any additional
specific structures defined on the manifold. Of course, one might be able to
redefine orientability in terms of these additional structures, but ultimately any
such definition would have to be equivalent to the original topological definition
of manifold orientabilityEHﬂ

The next two definitions of orientability concern not merely topological mat-
ters, but further geometrical fields defined on a Lorentzian spacetime in partic-
ular:

Definition 2 (Time orientability). A Lorentzian spacetime (M, ga) is time
orientable if and only if it admits a continuous non-vanishing timelike vector
field on M.

Definition 3 (Space orientability). A Lorentzian spacetime (M, gqp) of dimen-
sion n is space orientable if and only if it admits a continuous non-vanishing
field of orthonormal (n — 1)-ads of spacelike vectors on M.

There are three points to note here. First: for all three of these definitions,
there exist in the literature equivalent definitions—see [5] for presentations of
such definitions and proofs of their equivalence. (We will, indeed, make use of
one such alternative but equivalent set of definitions below.) Second: there is
some ambiguity in the literature between the above three definitions written
using the locution ‘it admits’, and the definitions written in terms of ‘there
exists’ (for the latter, see e.g. [38], p. 131]). On one reading of the latter locution
(which we take to be the intended reading), the two are synonymous. On another
reading, the second states that a Lorentzian manifold is time orientable (say) if
and only if there actually exists a certain timelike vector field on that manifold
(in other words, if and only if there actually exists a certain orientation on the
manifold, where the three salient notions of orientation are defined below)ﬂ
This second reading cannot be what is intended in these discussions, for it
would adjudicate (for example) that vacuum Minkowski spacetime (M, 14) is
not temporally orientable (for which, on this reading, one would need there
to exist an additional vector field £ on M such that 74,%¢® < 0). Third:

which top-ranked form one chooses—what matters is that the manifold in question admits of
such a form.

2We thank an anonymous referee for pressing us to be clear on this point.

3Volume forms are sometimes presented as being necessary for integration on manifolds—
see e.g. [63] Appendix B]. Given that non-orientable manifolds by definition do not admit of
top-ranked forms (‘volume forms—see footnote7 one might conclude that integration is not
possible on non-orientable manifolds. This, however, is not the case, for so-called ‘twisted
forms’ are definable on such manifolds, and one can use these objects to define integrals on
such manifolds. For further background on twisted forms, see [II]. We are grateful to an
anonymous referee for inviting us to discuss twisted forms.

4Here we are tracking a distinction between (a) a mathematician’s notion of existence (in
terms of definability), and (b) a more ‘physically relevant’ notion of existence in terms of
specific structures which are posited in one’s mathematics (e.g., a specific orientation) and
which are taken to have representational significance.



one could, in principle, consider versions of the latter two of the above three
definitions which are ‘topological’, in the sense that they say (for example) that a
differentiable manifold is time orientable just in case it admits a time orientable
Lorentzian metric (where, recall, time orientability in turn is to be cashed out
in terms of whether the Lorentzian manifold admits a continuous non-vanishing
timelike vector field). This approach is ultimately not relevant for the points
which we wish to make in this article, so we set it aside in what follows.

Distinguishing between these different kinds of orientability is essential not
only in order to ensure conceptual clarity, but also because the three notions
stand in non-trivial relations to one another. Before discussing such relations
further, we recall one definition and one result, to which we will appeal more
than once in the remainder of this articlef]

Definition 4 (Parallelisable manifold). A differentiable manifold M is paral-
lelisable if and only if it admits a set of smooth vector fields {Vi,...,V,} such
that, at every point p € M, the tangent vectors {Vi(p), ..., Vn(p)} form a basis
of the tangent space T, M.

Claim 1. FEvery parallelisable manifold is manifold orientable.

Proof. Let M be a parallelisable n-dimensional differentiable manifold. This
means that there exist smooth, non-vanishing vector fields {V1,...,V,,} on M
which for every point p € M form a basis of the tangent space 1), M at p. Then,
at every point p € M, there exist differential forms {w1,...,w, } such that they
give the basis of the dual space Ty M. The wedge product of these 1-forms
T =wi A... Awy, is a top-ranked form. Moreover, since {w1, ...,w,} form a basis
for Ty M, 7(V1,..., Va) = 1, so 7T is non-vanishing. Since the manifold M thereby
admits a non-vanishing top-ranked form 7, it is manifold orientable. O

Then, we have the following result, relating our three given notions of ori-
entability ¥

Claim 2. If a Lorentzian spacetime (M, gqp) is time orientable and space ori-
entable, then it is manifold orientable.

Proof. Consider a Lorentzian spacetime (M, gqp) of dimension n which is both
time orientable and space orientable. This means that there can be defined
on the manifold (i) a field of timelike vectors, and (ii) a field of (n — 1)-ads
of orthonormal spacelike vectors. Together, these give rise to a non-vanishing
continuous field of tetrads. Since the Lorentzian spacetime is n-dimensional,
and the tetrads are built up from n vector fields, tangent vectors belonging to
this field of tetrads form a basis of a tangent space at each point of this manifold.
Thus, the manifold is parallelisable, and so is orientable. O

5Whether a manifolds admits of n independent vector fields is not always obvious—for
example, it is pointed out at [2Z, p. 224] that S? x R? is such a manifold.

SFor further discussions on the relations between these notions of orientability, see [22]
pp. 227-228].



This result allows one to note cases in which time orientability comes apart
from space orientability—for there are cases in which a Lorentzian manifold is
(say) time orientable but not manifold orientable, and so cannot (by the above
result) be space orientable. For explicit presentations of such spacetimes (not
further relevant for our purposes in this article), see [40] 45].

(In the remainder of this article, for simplicity we specialise to the case of
4-dimensional Lorentzian manifolds—so, in the case of space orientability in
particular, we speak now of ‘triads’, rather than ‘(n — 1)-ads’.) Each of the
above three definitions of orientability above brings with it an associated notion
of an orientation{’]

Definition 5 (Manifold orientation). A manifold orientation T, of a differen-
tiable manifold M 1is the choice of a smooth non-vanishing top-ranked form on
M.

Definition 6 (Time orientation). A time orientation 7; of a Lorentzian space-
time (M, gap) 1s the choice of a continuous non-vanishing timelike vector field
on M. A tuple (M, gap, T¢) s a time oriented spacetime.

Definition 7 (Space orientation). A space orientation Ty of a Lorentzian space-
time (M, gap) is the choice of a continuous non-vanishing field of othonormal
spacelike triads on M. A tuple (M, gap, Ts) is a space oriented spacetime.

Having presented these definitions, let us return to Hadley. One potential
source of confusion which a reader might encounter on reading Hadley’s ar-
ticle is that although he begins by asking the following question: “how can
time-orientability be tested?” [26] p. 4565], he subsequently draws analogies
with Mébius bands, which are usually considered relevant to manifold (non-
Jorientability. (It is possible to define a time-oriented metric on a Mébius band
[41, p. 5].) Moreover, none of these notions of orientability are defined pre-
cisely in Hadley’s article. What is even more puzzling is that in the title of his
paper, Hadley advertises his project as relevant to some general notion of the
orientability of spacetime; however, the conclusion of his article consists in four
statements concerning only time orientability. It is, therefore, in the interests of
conceptual clarity that we have offered the above definitions, to which we will
refer back in the remaining sections of this article.

Although the definitions of both time and space orientability presented above
are those most commonly found in the literature, Hadley does not engage explic-
itly with them in his paper. Instead (and as we discuss in much greater detail

"The following are canonical definitions of manifold/time/space orientations which one
finds in the literature (see e.g. [40]), but it’s worth registering that there is something lacking in
them. Take a manifold/time/space orientation of one’s choice, according to these definitions.
Then apply (say) some constant scale transformation—is it really correct to say that these
are distinct orientations? So it would be better to speak in terms of equivalence classes of
orientations according to the below definitions, where elements of these classes are related
by irrelevant transformations, such as scale (more generally, any transformation for which
the determinant of the associated transformation matrix is positive will be irrelevant). (One
author to speak in terms of equivalence classes is Malament: see [38, p. 132].) We thank an
anonymous referee for helpful discussions here.



in the following section), his narration regarding testing orientability is based
on the idea of moving some salient objects qua probes, such as clocks or hands
(depending upon whether one is considering time or space orientability, respec-
tively) along particular closed spacetime trajectories. Since we engage with this
idea further below, at this point we need to demonstrate how it is related to
the default definitions of both time and space orientability given above. It is to
this task which we now turn.

We claim that time and space orientability can be defined also in the follow-
ing ways. (Here, we follow the lead of Geroch and Horowitz [22] pp. 225-226],
although we seek to define the following notions of time and space orientabil-
ity somewhat more rigorously than in their article.) The equivalence of these
two definitions to the original two definitions is proved explicitly below. Be-
fore presenting these alternative definitions, we present a general notion of the
transport of a rank (r,s) tensor T (here, indices omitted for clarity) along a
curve v C M: (We assume that the derivative operator at play in what follows
is the Levi-Civita operator V such that V,gp. = 0. Hence, transport is defined
with respect to the Levi-Civita connection.)

Definition 8 (Transport along a curve). Consider some rank (r, s) tensor T, a
curve 7y, and let X* be a vector field tangent to yv. Then, T is transported along
~ if and only if VxT = = for some rank (r,s) tensor =.

Note that the choice of = dictates exactly how the tensor T is transported
around the curve. Clearly, without further restrictions on Z, this notion of
transport is very general—indeed, it is intended to be so. Note also that this
definition reduces to the definition of parallel transport in the special case = = 0.
For our purposes, following [22, p. 225], we insist that the transport of the
relevant objects be continuous. With all this in hand, we can now give the
following alternative definitions of time and space orientability (cf. [22] pp. 225-
226]):

Definition 9 (Time orientability, loops). A Lorentzian spacetime (M, gqp) is
time orientable if and only for any closed curve v through any point p € M,
there is some timelike vector V¢ at p such that there is some way of continuously
transporting V¢ around v so that the original vector falls into the same lobe of
the light cone as the transported vector.

Let us turn now to the alternative definition of spatial orientability. In
three spatial dimensions, there exist exactly two classes of triads of orthonormal
spacelike vectors such that they cannot be superimposed by any rigid motion [5]
p. 23]; call these classes ‘left-handed’ and ‘right-handed’; the property of falling
into one of these classes we will call ‘handedness’. Given this, we can then give
the following alternative definition of spatial orientability:

Definition 10 (Space orientability, loops). A Lorentzian spacetime (M, gqp) is
space orientable if and only if for any curve vy through any point p € M, there
18 some orthonormal triad of spacelike vectors at p such that there is some way
of continuously transporting that triad of vectors around -y so that the triad does
not change its handedness.



We claim that these are admissible definitions of both time and space ori-
entability, in the sense that they are equivalent to those introduced earlier (for
the special case of n = 4, although the equivalence for n can be proved mutatis
mutandis):

Claim 3. A Lorentzian manifold is time orientable in the original sense (Def. @)
if and only if it is time orientable in the loops sense (Def. @

Proof. Let (M, gay) be a Lorentzian spacetime.

(=) Take points p,q € M. Since the Lorentzian manifold admits a continu-
ous non-vanishing timelike vector field, for a curve from p to ¢, there exists a
timelike vector V* € T,,M such that continuously transporting X“ along this
curve from p to g does not change the lobe of the light cone into which it falls.
Taking now some other curve between p and ¢, the same point applies. From
both curves one can then obtain a closed curve, such that the continuous trans-
port of some timelike vector along this closed curve does not change the lobe of
the light cone into which the timelike vector falls.

(<) Suppose that for any closed curve 7 through any point p € M, there is
some timelike vector V' at p such that there is some way of continuously trans-
porting V¢ around v so that the original vector falls into the same lobe of the
light cone as the transported vector. Then, for every such +, there is some
continuous non-vanishing timelike vector field on «. But the union of all loops
v encompasses every point on M, so M admits of a continuous non-vanishing
timelike vector field, as can be seen by taking the union of those vector fields
defined on each 7 (or those vector fields multiplied by a minus sign, as appro-
priate).

O

Claim 4. A Lorentzian manifold is space orientable in the original sense (Def. @
if and only if it is space orientable in the loops sense (Def. @/

Proof. Let (M, gap) be a Lorentzian spacetime.

(=) Take points p,q € M. Since the Lorentzian manifold admits a continu-
ous field of orthonormal spacelike vectors, for a curve from p to ¢, there exists a
triad of spacelike vectors Y; * € T,M (i = 1,2,3) such that continuously trans-
porting these Y; ¢ along this curve from p to ¢ does not change their handedness.
Taking now some other curve between p and ¢, the same point applies. From
both curves one can then obtain a closed curve, such that the continuous trans-
port this triad of spacelike vectors along this closed curve does not change its
handedness.

(<) Suppose that for any curve v through any point p € M, there is some
orthonormal triad of spacelike vectors at p such that there is some way of con-
tinuously transporting that triad of vectors around -~ so that the triad does not



change its handedness. Then, for every such ~, there is some continuous field
of triads of orthonormal spacelike vectors on . But the union of all loops
encompasses every point on M, so M admits of a continuous non-vanishing field
of triads of orthonormal spacelike vectors, as can be seen by taking the union of
those triads defined on each v (or those triads with one leg multiplied by a minus
sign, as appropriate, in order to render them all of the same handedness). O

To summarise the results of this section, we have: (a) distinguished between
manifold, time, and space orientability, (b) clarified the interrelations between
these notions, (c) introduced associated notions of orientations, (d) introduced
alternative definitions of time and space orientability in terms of the transport
of vectors around closed loops. With all of this machinery in hand, we turn
now to the question of whether the orientability of a manifold (in each of the
above three senses) should be considered a ‘local’ or a ‘global’ property of that
manifold.

3 Local and global properties

One significant preliminary question with which Hadley engages is this: is the
orientability of spacetime a local or a global property? In order to answer this
question, we follow Manchak [39] p. 11]. First, recall the following definition of
local isometry:

Definition 11. (Local isometry) Lorentzian spacetimes (M, gqp) and (M, g.,)
are locally isometric if and only if for each point p € M there is an open set
O C M containing p and an open set O C M’ such that (O, gap) and (O', g.;)
are isometric, and vice versa with the roles of (M, gqp) and (M', g.,) exchanged.

(This definition has the disadvantage that it is specific to Lorentzian metric
theories. It could, however, be adapted straightforwardly to e.g. Newton-Cartan
theory—on which see [38] ch. 4].)

With this definition in hand, one can then, again following Manchak, define
local and global spacetime properties as follows:

Definition 12. (Local and global properties) A spacetime property is local
if and only if, given any pair of locally isometric spacetimes, one spacetime has
the property if and only if the other one does as well. A spacetime property is
global just in case it is not local.

Using these definitions, let us consider whether the three notions of ori-
entability considered in the previous section qualify as local or as global. (As an
aside, note that establishing exactly when locally isometric spacetimes are—or
can be—globally inequivalent is a complicated issue, part of what is known as
the ‘Equivalence Problem’ in differential geometry. For further background on
this issue, see [2] [30] BT, 37]E|)

8We are grateful to an anonymous reviewer for helping us to navigate the literature on this
topic.



One can demonstrate easily that all three notions of orientability are global
properties of spacetime [39, p. 62]. Consider a 2-dimensional Minkowski space-
time (M, nqp) in coordinates (¢,z). It is obviously time orientable. Consider
now a spacetime obtained from this one by removing all points such that |z| > 1
and identifying the edge (¢, 1) with (—¢, —1). Although both spacetimes are lo-
cally isometric, the second fails to be time orientable (what we have construed,
in essence, is a Md&bius band in the temporal direction). Therefore, time ori-
entability is a global spacetime property. A similar example can be constructed
for space orientability. Indeed, manifold orientability is also a global property of
spacetime. To see this, consider again the same example: although both space-
times are isometric, the second also fails to be manifold orientable. Therefore,
manifold orientability is a global spacetime property.

We have thus demonstrated that all senses of orientability discussed above
are global properties of spacetime (in the sense used in [39]). Indeed, Hadley
himself seems to admit this, when he writes: “orientability is a global rather
than a local property” [26l p. 4566]. Given this, however, it is all the more
surprising that Hadley uses the term ‘orientability’ not only with reference to
spacetime in its entirety, but also with respect to spacetime regions. What is
more, as we discuss in the following section, the possibility of speaking about
orientability confined to some spacetime region is indeed the core idea underlying
his proposed experiments for testing these properties. For this reason, we should
dwell on what can be understood by a spacetime region and the localisability
of non-orientability to such a region.

The notion of a ‘spacetime region’ should be understood, roughly speaking,
as some subset of points that are in the vicinity of each other, e.g. in the sense
of London being in the region of England. In particular, in the way in which
Hadley is using this phrase in his article, any such set of points can be considered
to be a spacetime region, and surveyed for its orientability. However, since
all three varieties of orientability are properties of a manifold (a Lorentizan
manifold in the case of time and space orientability), the only way in which
we can understand the notion of localising non-orientability to such regions is
to construe them as sub-manifolds, and to consider the orientability (in each
of the above three senses) of these sub-manifolds on its own terms. In other
words, technically speaking, one would not be considering localising the non-
orientability of M to some region of M (as already discussed, since orientaibility
of M is a global property, this makes little sense), but rather considering whether
these regions—again, understood as manifolds unto themselves—are orientable.

This being said, the following result does, perhaps, afford a more precise
means of speaking of the localisability of the non-orientaibility of a manifold:

Claim 5. Let M be an n-dimensional manifold, and let S C M be an n-
dimensional submanifold of M. If S is not manifold orientable, then M is not
manifold orientable.

Proof. Suppose for contradiction that M is manifold orientable but that .S is not
manifold orientable. Since M is manifold orientable, it admits a non-vanishing

10



n-form w. As a result, w|g is a non-vanishing n-form on S. Thus, S is manifold
orientable. Contradiction, so M is not manifold orientable. O

The idea would be this (throughout this paragraph, by ‘orientability’ we
mean specifically manifold orientability, for concreteness and simplicity). If a
given non-orientable manifold M contains a non-orientable proper sub-manifold
S C M, then (by stipulation) the non-orientability of M can be localised (at
least) to S. In our view, this is a legitimate and precise way of speaking; it
is, indeed, our best attempt to make sense of statements by Hadley such as
“Mathematically, orientability is a global property of spacetime. ... However, a
non-orientable region could be microscopic in size” [26] p. 4566]. However, it is
not clear that these observations are of any help when it comes to testing the
orientability of M by way of probing sub-regions of M, as Hadley discusses in his
proposed experimental setups in the following section of his article, and as we
evaluate below. One reason for this is that some non-orientable manifolds (in the
sense of manifold orientability) only contain non-orientable submanifolds which
are in no interesting sense more ‘local’—for example, the only non-orientable
proper sub-manifolds of the Mobius band (setting aside removing finite sets
of points) are ‘thinner’ Mobius bands; in this case, the non-orientability of
the original manifold is not localisable in a way which would allow for the
performance of only local experiments to adjudicate on this property. Another
reason is that, even if a non-orientable manifold M contains a non-orientable
proper sub-manifold S, it cannot be precluded ab initio that testing the (non-
)orientability of M requires carrying out experimental tests outside of S. Thus,
again, more needs to be said to bridge the gap between speaking of sub-manifolds
in this way, and questions of testing the orientability of spacetime—what is the
relevance of the former to the latter supposed to be?

4 Testing orientability

Before addressing the question of how to test temporal orientability (which
Hadley declares to be his main project in the relevant section of his article),
Hadley first considers the same question with respect to testing spatial ori-
entability. We follow suit, by first considering spatial orientability in be-
fore turning to temporal orientability in We also present some reflections
on testing manifold orientability in

4.1 Testing spatial orientability

Hadley first considers how one might test experimentally the spatial orientability
of a Lorentzian manifold. (NB: as already flagged, Hadley does not define either
of these notions—but we will take it that he intends the canonical definitions
given above.) The setup is this. Consider some Lorentzian spacetime (M, gqsp),
and some persisting spatial region R which “is not [space] orientable” [20] fig. 1].
(NB: there is a typo in the caption of this figure in Hadley’s article.) By this,

11



Hadley means that a handed object such as (naturally) a hand (which, following
Hadley, we will idealise as an orthonormal triad of spacelike vectors) sent into
this region will return with reversed handedness. There are several points to
make about whether such an experiment really does afford the possibility of
testing spatial orientability.

The first is this. Hadley speaks of R as being the region in which spatial
non-orientability is ‘localised’ (see [26] fig. 1]); however, we have already seen in
the previous section that there are reasons to question the coherence of localising
a global property of spacetime. If one considers both definitions of time (and
space) orientability, it is evident that they do not refer to regions. In particular,
in the case of Def. |2l and Def. |3 one considers vector fields which are defined on
the entire manifold, and in the case of Def. [9]and Def. [I0] orientability is defined
with reference to closed curves, i.e. loops. Therefore, in the charitable reading of
Hadley’s experiments, one can talk about the orientability with respect to loops,
but there is no straightforward sense in which one can speak of the orientability
of regions (except, as already discussed, when those regions are considered as
sub-manifolds). In some region one can have loops that are both orientation-
preserving and orientation-reversing, e.g. on the Mobius band. Moreover, even
if one finds a loop which reverses (say) time orientation, and takes a region
which is given by this loop, it does not mean that the non-time-orientability is
confined to this region. Therefore finding a loop which partially passes through
region R and does not preserve orientation does not constitute evidence for the
non-orientability of R, which is a central premise of Hadley’s experiments.

Setting this aside, the second (more philosophical/foundational) point to
be made is the following. One might wonder how the connection between the
behaviour of one particular physical system (e.g. a hand, idealised—as men-
tioned above—as a triad of orthonormal spacelike vectors) and a property of
a Lorentzian spacetime is to be substantiated. In particular, there are two
questions:

1. How is one to know that other physical systems behave in a similar man-
ner?

2. Even granting this, what is the connection between the behaviour of such
objects and properties of spacetime?

On the first question: one has to make a universal extrapolation to the effect
that all other handed objects behave in a similar manner having traversed R.
Depending upon the number of probes sent into this region, and the results re-
turned by these probes (do the change handedness on return, or do they not?),
one will secure a greater or lesser degree of confidence that handedness change
on traversing R is indeed a universal property of material fields. Without dis-
missing it is unproblematic, let us simply grant the first universal extrapolation
in what follows. Turning to the second question: even if all probes do behave as
described above on traversing R, what is the connection between these probes
and the structure of spacetime? If one thinks of the structure of spacetime as
completely autonomous of the behavior of material fields, then one might ar-
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gue: very little. However, it is not obvious that this view—dubbed in [4§] an
‘unqualified geometrical approach’—is compelling, for it would seem to render
miraculous the coincidence of (say) spacetime symmetries and symmetries of
the laws governing material fields (cf. [49]).

Two more compelling views here are the following: first, what was dubbed
in [48] a ‘qualified geometrical view’, according to which material bodies behave
as they do in virtue of coupling in their dynamical equations to pieces of au-
tonomous spatiotemporal structure; second, a ‘dynamical view’, most famously
associated with the writings of Brown and Pooley [7, 8, [9] (see [10, 29] for recent
reviews; the position is also anticipated in the physics literature in articles such
as [18]E[)7 according to which spatiotemporal structure just is a codification of
the behaviour of material bodies. For the purposes of this article we need not
get further into the weeds of philosophical discussions of the nature of space-
time; suffice it to say that, on either of these approaches, one may well have a
means of answering the latter of the two questions posed above.

To illustrate this point, set aside for one moment the question of testing the
orientability of spacetime, and assume a ‘God’s eye view’, from which one sees
that all handed objects traversing region R reverse their handedness (See Fig.[1)).
In this scenario, one can either account for this handedness switch of these
material bodies, as per the above ‘qualified geometrical approach’, by appeal to
their coupling to a background spatiotemporal structure; or, alternatively and
as per the above ‘dynamical approach’, simply state that a non-space orientable
spacetime codifies this behaviour of material bodies. In either case, one can
infer properties of spacetime from such behaviour.

The situation, however, is complicated when one does not assume such a
‘God’s eye view’ perspective. When one releases a probe of a certain handedness
and later witnesses it return with the opposite handedness, there are numerous
questions to be addressed. First: how is one to infer, on the basis of that probe
alone, that the handedness change of the object was due to its traversing the
(spatially distant) region R? More importantly, even setting this aside, it is
not clear how the behaviour of a single probe warrants an inference to whether
the spacetime manifold in its entirety admits a continuous non-vanishing triad
of spacelike vectors. Indeed, suppose that at every instant one emitted probes
towards R, which were subsequently returned with opposite handedness (see
Fig. . In that case, insofar as the entire region to the left of R is populated
with probes of the same handedness, one might think that one can infer that
spacetime—or at least the region to the left of R (construed as a sub-manifold
unto itself)—is orientable. Indeed, note that the haecceitistic identity of these
probes is irrelevant for drawing this conclusion.

4.2 Testing temporal orientability

Turn now to Hadley’s discussions regarding testing the temporal orientability
of spacetime. Roughly, the setup is the same as above: one supposes that there

9We are grateful to an anonymous referee for pointing us to this latter reference.
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Figure 1: A ‘God’s eye view’ of a situation in which handed objects (here, Ls,
standing in for left hands) are emitted from source, traverse some region R, and
leave that region as objects of the opposite handedness (here, T's, standing in
for right hands). In this case, one might say that the behaviour of these objects
is a result of their coupling to a spatiotemporal structure which is not spatially
orientable (per the qualified geometrical view), or that such spatiotemporal
structure is a codification of the behaviour of these material objects (per the
dynamical approach).
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Figure 2: A situation in which an observer at x = 0 emits handed objects (here,
Ls, standing in for left hands), which traverse region R and which subsequently
return to the observer as objects with opposite handedness (here, as I's, standing
in for right hands). In this case, the region between x = 0 and R is known to
be populated with Ls, in which case an inference on the basis of the observer’s
neighbourhood to the spatial orientability of the manifold appears justifiable.
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is some region R in which the temporal non-orientability can be ‘localised’
(just as above, it is questionable that this makes sense, given that temporal
orientability is again a global property of spacetime—but we will likewise set
this concern aside in the following). Then, one idealises a clock as a time-
like vector (the length of which corresponds to the rate of ticking of the clock:
an idea going back at least to Weyl—see [3] and references therein). Setting
aside the above philosophical concerns regarding, inter alia, the universality
of the recorded effects in the experiments countenanced by Hadley—concerns
which apply mutatis mutandis in the case of testing temporal (rather than spa-
tial) orientability—Hadley raises additional considerations in the case of testing
temporal orientability, upon which we will now focus.

Hadley first considers an approach to testing temporal orientability accord-
ing to which a future-directed timelike vector (idealising a clock ticking with
positive intervals) is sent to region R; if this probe returns but is now past-
directed (idealising a clock ticking with negative intervals—i.e., a clock ticking
backwards), then one might think that one has (modulo the concerns raised in
the previous section) tested the temporal orientability of spacetime (and found
the spacetime to not be temporally orientable).

Hadley, however, maintains that such an experiment does not successfully
test the temporal orientability of spacetime, writing: “This is not a demonstra-
tion of non-time-orientability, because in this experiment, the clock increases
in value and then decreases. At some point in the path it attains a maximum
reading and at that point it does not define a time direction” [26] p. 4568]. It is
not entirely clear what Hadley means by this, but plausibly the idea is that, if
this probe is emitted as a future-directed timelike vector, and returns as a past-
directed timelike vector, then (assuming continuity) at some point it must have
been of zero length, thereby ‘not defining a temporal direction’. We have three
responses to this line of thought. First: it is not clear why this failure precludes
one from concluding that the spacetime under consideration does not admit a
future-directed timelike vector field—which is the issue of relevance to temporal
orientability. Second: surely an analogous argument would apply in the case
of spatial orientability: if a triad of vectors is emitted with one handedness,
and returns with another, then (again, assuming continuity), for some leg of
the triad there must have been some point at which it vanished, thereby failing
to define a spatial orientation at that point. Thus, it is not clear why Hadley
considers the case of testing temporal orientability to be different from the case
of testing spatial orientability in this regard. Third: Hadley has said nothing to
justify this (implicit) assumption of continuity: could the temporal orientation
of the probe not switch discontinuously as it traverses its path through R and
back to the origin?

Instead of the above, Hadley maintains that a true test of temporal ori-
entability would take the following form. Once again, send a probe (i.e. a clock,
idealised as a timelike vector) into region R; in this case, the clock would re-
turn by literally moving backwards in time; in other words, the situation could
be construed as a clock-anticlock annihilation event (see [20] fig. 3]). Hadley
claims that this cannot, however, be understood as affording direct evidence of
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the temporal non-orientability of spacetime, for this reinterpretation in terms of
a clock-anticlock annihilation event is invariably available; moreover, such tests
thereby require access to anticlocks—i.e., clocks comprised of antiparticles—
which are not (it is fair to say!) easy to come by in the actual world [26]
p. 4569].

Hadley’s reasoning here strikes us as a red herring, for it is not at all clear why
one requires the second of his two setups in order to infer the existence (or lack
thereof) of a continuous timelike vector field on the manifold. For this purpose
(notwithstanding the various general concerns we have raised in the foregoing),
in our view, Hadley’s first proposed experiment is perfectly sufficient.

We will close by making two side remarks on Hadley’s discussions of temporal
orientability. First: Hadley speaks of, for example, cases in which “the observer
sees the time values increasing on the clock” [26] p. 4568], and moreover claims
that “the existence or otherwise of a time reversing region is dependent upon
the observer” [26] p. 4570]—but it is not obvious that speaking of observer-
dependent effects does anything but muddy the waters from the point of view
of assessing whether certain experimental setups provide evidence for temporal
orientability, given that this is, of course, a frame- and observer-independent
notion. Second (and, of course, less importantly): the second of the two setups
considered by Hadley—in which objects traverse region R and ‘thereafter’ pro-
ceed to move backwards in time—is (for what it is worth!) a central plot point
of the recent Hollywood movie Tenet [43]: while, of course, stimulating in itself,
to repeat: the connections between such setups and temporal orientability in
the technical sense given above remain unclear on the basis of Hadley’s article.

4.3 Testing manifold orientability

Hadley’s proposed experiments for testing temporal or spatial orientability rest
on the idea of transporting vectors around closed loops. There is no reason why
such proposals cannot be extended to tetrads; thus, there is no reason why such
experiments could not also (at least in principle) be used to test the manifold ori-
entability of spacetime. (Relatedly, one can also test this property via Claim
having tested antecedently both temporal and spatial orientability.) Of course,
the concerns raised above regarding (a) the significance and meaningfulness of
relativising orientability to regions such as R, and (b) the general connections
between material bodies and the structure of spacetime, will still apply in this
case. Moreover: insofar as one of the legs of the tetrads under consideration
in this case will correspond (at least on a Lorentzian manifold) to a temporal
direction, Hadley might argue that ascertaining whether there is orientability
in this direction requires recourse to his second type of experiment discussed in
the case of temporal orientability. For the reasons already articulated, we are
sceptical that any such recourse is required.
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5 Considerations from QFT

All of the foregoing regards the possibility of what one might call a direct test
of the orientability of spacetime: particular experimental setups which yield
affirmative /negative answers on that matter. In §4 of his article, Hadley turns
to what one might call indirect tests of spacetime orientability: particular the-
oretical constructions, motivated and developed on the basis of (aggregates of)
other empirical data, which nevertheless yield an affirmative/negative answer
to the question of whether spacetime is or is not orientable.

In particular, Hadley focuses on our modelling of the behaviour of spinorial
matter in curved spacetimes (in these passages, Hadley is drawing upon earlier
work by Geroch [19] 20} 21]). Standardly, it is taken to be the case that, in
order to describe the behaviour of (say) spin—% particles in curved spacetimes,
one must generalise the flat-spacetime Dirac equation to those settings using
tetrads e, (and their inverses), writing (in the massless case)

Z"Yaeaﬂvuz/’ =0. (1)

Note that tetrads can be defined only on parallelisable manifolds. But now recall
from above that every parallelisable manifold is orientable. Thus, as Hadley
points out (albeit without explicit reference to parallelisability), one might cite
the foregoing as indirect evidence that spacetime is manifold orientable: the
existence of fermions implies parallelisability, which in turn implies manifold
orientability. However, there are several points to make here.

First: Hadley seems to have switched here from discussions of temporal ori-
entability to discussions of manifold orientability. Since we have already seen
that these notions are independent, it is not clear that the above observations
bear any relevance to the matter of testing the temporal orientability of space-
time (except via connections such as that articulated in Claim , as he claims.

Second: In 1965, Ogievetsky and Polubarinov developed an alternative ap-
proach to modelling fermions in curved spacetimes which does not require
tetrads (we call this alternative approach the ‘OP spinor formalism’). Instead—
and here we follow Pitts’ discussion of the Ogievetsky-Polubarinov approach [46]
rather than the original work [44], the latter of which uses a square root of the
metric rather than the object 7#¥ discussed below—the ‘orthodox’ curved space-
time Dirac operator v%e,*V, is replaced with the operator v,7*V,, where 7*”
is the ‘symmetric square root of the conformal metric density’ §*. For an ex-
plicit presentation of this (non-linear) geometric object, see [46]—but the salient
point here for our purposes is easy to state: if one works in the OP spinor for-
malism, then one does not require tetrads, and hence (on the assumption of
the universality of physical laws) parallelisable manifolds, and hence orientable
manifolds, in order to model fermions in curved spacetimes. Thus, this alter-
native formalism demonstrates that the existence of fermions does not provide
uncontroversial indirect evidence for the (manifold) orientability of spacetime.
(Indeed, one might find the OP formalism attractive, in the sense that it does
not involve making—perhaps surprising—assumptions about global topology in
order to do local physics, even assuming the universality of physical laws.) Of
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course, this still leaves open the possibility that spinors in the OP formalism
might not be definable on all manifolds (including, perhaps, non-orientable man-
ifolds) for other reasons—in this sense, the possibility of spinors on all manifolds
remains an open question—however, it is to show that the argument running
from the spinor formalism to parallelisability to orientability does not go through
completely uncontroversiallym

Third: Hadley is also critical of the above argument from the existence of
fermions to the (manifold) orientability of spacetime; however, the specific ar-
guments which he adduces are different from those which we have provided
above. Instead, Hadley writes that “the argument relies on a realist inter-
pretation of the wavefunction and the false assumption that a wavefunction is
defined at each spacetime point. In fact a wavefunction is a function defined on
a 3N-dimensional configuration space where N is the number of particles” [20],
p. 4570]. We have three points to make on this argument from Hadley. (I) To
the extent that Hadley claims to be dealing with classical theories, it is not clear
why or how these observations regarding quantum mechanical wavefunctions is
relevant. (II) One should surely take it that realism about the objects of physics
is a presupposition of all of these debates—in this sense, it is, again, not clear
why the observation that this argument presupposes realism is specifically prob-
lematic. (III) Even setting aside the above two points, Hadley is not correct that
the above argument presupposes “the false assumption that a wavefunction is
defined at each spacetime point”. The reason for this is that there exist, in the
foundations of quantum mechanics, many different ways of understanding the
physical status of the wavefunction. According to ‘wavefunction realism’; the
wavefunction is indeed an object on a (very high) 3N-dimensional space, con-
strued of as physically real (see e.g. [42] for a recent book-length presentation
of this view). However, an alternative approach—‘spacetime state realism’—
maintains that the wavefunction is a (density matrix valued) field on spacetime.
(For a defence of this view, see [54]; for a review and analysis of this debate in
its entirety, see [53), ch. 8].) Hadley claims that the indirect argument to ori-
entability from the existence of fermions presupposes problematically the second
of these views (although, to be explicit: it is not clear why this is indeed so),
yet does not engage with interpretative options in the foundations of quantum
mechanics which render this view (at least prima facie) viable.

6 Hadley’s concluding remarks

In the closing section of his article, Hadley arrives at the following conclusions
[26, p. 4571]:

The following statements can all be supported by the arguments
above.

(i) Spacetime is not time-orientable. Particle-antiparticle annihi-
lation events are evidence of this.

10We are grateful to an anonymous referee for discussion on the content of this paragraph.
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(ii) A failure of time-orientability and particle-antiparticle annihi-
lation are indistinguishable. They are alternative descriptions
of the same phenomena.

(iii) Time-orientability is untestable.

(iv) Non-time-orientability cannot be an objective property of space-
time because the outcome of our test would depend upon the
observer.

Based on our above discussions, let us evaluate each of these in turn. First:
claim (i) is problematic, for it seems to contradict Hadley’s previous claims
made in the body of his article, that since (he argues) experiments testing tem-
poral non-orientability can always be reconstrued as clock-anticlock (a fortiori
particle-antiparticle) annihilation events, we cannot infer the temporal non-
orientability of spacetime from such experiments. Further, claims (i) and (ii) are
in tension with claim (iii): contrary to this point, it is not the case, for Hadley,
that temporal orientability is untestable, but rather that such tests always have
alternative interpretations. Finally, claim (iv) seems straightforwardly to con-
tradict the technical definition of temporal orientability, and should therefore,
in our minds, be set aside.

7 Other approaches to testing orientability

Our central goal in this article up to this point has been to clear up the con-
ceptual confusions implicated in Hadley’s discussion of the possibility of testing
the orientability of spacetime, in order to allow the literature on these issues to
move forward. As of yet, however, we have mentioned little about other possible
means of testing the orientability of spacetime. In this section, we present and
assess three candidate approaches to doing so—some drawn from very recent
literature in physics.

7.1 Parity violation

One of the better-known arguments to the effect that one may be able to
test the orientability of spacetime via local physical experiments appeals to
the well-known fact that the weak interactions violate parity symmetry (see
e.g. [19, 25 57]). Assuming—to use now philosophers’ parlance—that every
dynamical symmetry should have an associated spacetime symmetry (cf. [14]
ch. 3]), one can conclude that the fact that the dynamics of the weak interac-
tions violate parity symmetry implies that there must be an associated piece
of spacetime structure which violates said symmetry: this, of course, is an
orientation (for philosophical discussion of this argument, also with reference
to the substantivalism/relationism debate, see [27] 28, 47]). Since an orienta-
tion presupposes orientability (in the relevant sense), parity violation of the
weak interactions would at least appear to imply the orientability of space (and
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thereby—via results such as Claim [2}to also have implications for temporal
and manifold orientability).

Is it so? This question has been taken up in [I5] pp. 144-145], and more re-
cently in [5] §6.3]; here it suffices for us to summarise some of the most important
and salient issues:

1. To think that local physical experiments have some bearing upon the ori-
entability of spacetime presupposes some connection between local dynam-
ics and spatiotemporal structure—cf. our above discussion of dynamical
versus geometrical approaches to spacetime. (Since the discussions there
carry over to the present case, we will not labour such issues further here.)

2. One must assume that the results of one’s local physical experiments hold
everywhere in the manifold, if one is to make this extrapolation to the
spatial orientability of that manifold. Earman [I5 p. 145] calls this an
application of Dicke’s strong equivalence principle (cf. [13, pp. 4-5]); in our
view, it is more straightforward to view it as an application of inductive
reasoning of the kind already discussed in 4

3. As Earman has pointed out [I5 pp. 145-147], whether one can directly
read off parity violation (and so spatial orientability) from experiments
such as that of Wu [56] (viz., the classic experimental setups which are
typically taken to demonstrate parity non-conservation) in fact implicates
one in substantive assumptions regarding other symmetries: in partic-
ular, charge inversion (‘C’) and time inversion (‘T’) symmetries. This
dampens—but does not completely undermine—the force of what can be
inferred from such experiments.

In sum: granting certain assumptions regarding the connections between
dynamics and spacetime, and granting certain inductive extrapolations from
the results of local physical experiments to the entire manifold, one can indeed
make inferences regarding the orientiability of spacetime from the results of
experiments such as that of Wu (which typically, and most straightforwardly, are
taken to demonstrate parity non-conservation); that being said, and as Earman
has elaborated, one’s drawing of such inferences is not completely devoid of
conceptual difficulties.

7.2 Quantum electrodynamic fluctuations

In this section, we wish to expose to the philosophical community another (very
recent!) proposal for a possible local experimental test of spacetime orientability,
elaborated in [4} 33 34HE| On this approach, one begins by considering quantum
electrodynamic fields on manifolds with distinct spatial topologies. When one
computes the two-point function (E;(x,t)E;(x’,t")) for the electric field E;, one

11We are grateful to an anonymous referee for drawing our attention to this work.
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obtains (see [6])

a 0 d 0
) (! 1Y) — sl 4 Lol gl
(E;(x,t)E;(x', ")) o2, —ax;D(x,t,x , 1) pn —at/D(x,t,x ,t). (2)

In Minkowski spacetime with the usual simply-connected spatial topology E3,
the Hadamard function D(x,t;x’,t') takes the form

1
4 (At2 - |Ax|2) ’

D(x,t;x' ') =

(3)

where At := ¢t — ¢ and |Ax]* = (z—2)° 4+ (y—¢)* + (z — ). Impor-
tantly, however, this function differs for manifolds with other, alternative spa-
tial topologies, including non-orientable topologies—see [33] p. 5]. This, in turn,
can lead to tangible empirical consequences, in terms of e.g. the mean square
velocity dispersion of charged particles [33] p. 6].

We see nothing problematic with the mathematical and physical reasoning
deployed by the authors of the above-described works; thus, we agree that the
foregoing seems to afford a means of testing the orientability of spacetime via
local experiments. Indeed, this approach appears superior to that discussed in
insofar as one does not need to make the inductive extrapolation that such
results obtain everywhere in order to arrive at the conclusion that spacetime is
non-orientable (in contrast to point (2) in §7.1)); moreover, there do not appear
to be other straightforward ways of interpreting such results which are consis-
tent with spacetime orientability (in contrast with point (3) in §7.1). (That
being said, the general points about dynamical versus geometrical approaches
to spacetime outlined in point (1) of continue to hold in this case.)

There is one further point to make here. As the authors of [33] note, “In
the physics at daily and even astrophysical length and time scales, we do not
find any sign or hint of nonorientability” [33, p. 12]. This, however, does not
necessarily imply (to continue with the kinds of case countenanced in [ [33]
34]) that the spatial topology of the universe is indeed E?, for it may be that
the scales over which such local manifestations of non-orientability arise are
too small (e.g., sub-Planckian) or too large (e.g., cosmological) or otherwise
experimentally problematic (e.g., behind black hole horizons) for the effects of
non-orientability to be detectable. This notwithstanding, effects such as that
discussed in this section do appear to afford an in principle—if not in practice—
means of testing spacetime orientability. (For some further discussion related
to this point, see [5], ch. 7].)

7.3 Circles in the cosmic microwave background

We turn now to a third and final possible means of testing spacetime orientability
via local experiments. It has long been understood that signatures of certain
topological properties of spacetime (including non-orientability) may manifest
themselves in the structure of the CMB (see [17, 32 85, 50]). In particular,
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one expects that, in non-trivial spatial topologies, there will arise correlated
circles of temperature fluctuations in the microwave background. Although no
such circles have been observed up to this point, the authors of [23] point out
that experimental results up to the present day are still consistent with non-
trivial spatial topologies. That is, they pose—and ultimately answer in the
affirmative—the following question:

Assuming that the negative result of the general search ... can be
confirmed through a similar analysis made with data from Planck
and future CMB experiments, an important remaining question that
naturally arises here is whether there still are nearly flat, but not
exactly flat, universes with compact topology that would give rise
to circles in the sky whose observable parameters A and 8 would fall
outside the parameter range covered by this more general search.
23, p. 2]

Here, there are parallels with e.g. the experimental search for SUSY in particle
detectors: experimental null results may whittle the region of parameter space
in which the target phenomenon is possible, but they do not necessarily falsify
the possibility of that phenomenon. Of course, there are interesting questions
in this vicinity regarding the point at which one may simply reject the pos-
tulation of the phenomenon in question, should one continue to obtain such
null results. This, however, is tangential to our purposes in this question: the
point is that observations of the CMB do have the potential to give evidence
of the non-orientability of spacetime; moreover, such experimental approaches
would appear to have the same advantages over the methods discussed in
(i.e., those appealing to parity violation) as those discussed in (i.e., those
making use of certain local quantum electrodynamical effects), in the sense that
they appear to warrant the conclusion that spacetime is non-orientable from a
single local spacetime region; moreover, they are not straightforwardly amenable
to re-interpretation as results in some orientable spacetime.

8 Close

Our first goal in this article has been to improve in various ways upon Hadley’s
analysis of the question of whether it is possible to test the orientability of
spacetime. First: by providing precise definitions of three different notions of
orientability—wiz., manifold, temproal, and spatial. Second: by clarifying the
sense in which orientability can be considered a global versus a local property
of spacetime. Third: by arguing that while Hadley’s experimental setups are
prima facie sensible proposals for testing the orientability of spacetime, (a) they
place undue focus on regions, (b) they do not engage sufficiently with various
foundational and philosophical questions regarding the connection between the
outcomes of such experiments and the nature of spacetime, and (c) they take a
particular form in the case of temporal non-orientability which is, in our view,
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a red herring. Fourth: by clarifying whether results from QFT (and, in partic-
ular, the existence of spinors) provide indirect evidence for the orientability of
spacetime—on this front, we share Hadley’s scepticism, albeit for very different
reasons than those which he adduces.

Our second goal in this article has been more positive: to systematise, eval-
uate, and compare various other proposals for testing the orientability of space-
time. Having now done so, we see that—modulo in particular certain philosoph-
ical assumptions regarding the connection between spacetime and the dynamics
of material bodies, as well as certain inductive extrapolations that (i) the re-
sults which one has observed for one type of material field apply to all other
material fields, and (ii) the results of physical experiments which one secures in
one spacetime region obtain also in all others—it is indeed in principle (if not
in practice: recall e.g. our discussion of relevant scales in possible to test
various of the different salient notions of orientability which we have considered
in this article.

As already discussed in the introduction to this article, the question as to
whether it is possible to test the orientability of spacetime is but one (signif-
icantly under-explored) topic in the general field of how we are to gain oper-
ational and empirical access to the nature of spacetime: surely an important
matter to be addressed, if we are to be confident in our ability to grasp the
fundamental nature of the physical world. (In general, this field goes under the
name of the ‘epistemology of spacetime’: see [12] [24] for reviews.) We hope that
our constructive dialogue with Hadley’s article, as well as our systematisation
of the other extant literature on this topic, will help to further discussions of
these issues; and, of course, we invite other authors to consider further ways
in which such topological and geometrical properties of spacetime (and others
besides) can be tested experimentally.

Acknowledgements

We are grateful to Niels Linnemann, Tushar Menon, to the two anonymous
referees, and to the audience of the Oxford PoP-Grunch seminar for helpful
feedback on material related to the content of this article. J.R. thanks the
Leverhulme Trust for their support.

Conflicts of interest

There are no conflicts of interest associated with this article.

Data availability statement

Data sharing is not applicable to this article as no data sets were generated or
analysed during the associated study.

24



References

[1]

[10]

[11]

[12]

[13]
[14]

Emily Adlam, Niels Linnemann and James Read, “Constructive Axiomatics
in Physics Part II: The Ehlers-Pirani-Schild Axiomatisation in Context”,
2022. (Unpublished manuscript.)

J. E. Aman, R. A. d’Inverno, G. C. Joly and M. A. H. MacCallum,
“Progress on the Equivalence Problem”, in B. F. Caviness (ed.), EURO-
CAL 85: Proceedings of the European Conference on Computer Algebra,
Linz, Austria, vol. 2, pp. 89-98, Berlin and Heidelberg: Springer Verlag,
1985.

John L. Bell and Herbert Korté, “Hermann Weyl”, in E. N. Zalta (ed.), The
Stanford Encyclopedia of Philosophy, 2015.

C. H. G. Bessa and M. J. Reboucas, “Electromagnetic vacuum fluctua-
tions and topologically induced motion of a charged particle”, Classical
and Quantum Gravity 37, 125006, 2020.

Marta Bielinska, Testing Spacetime Orientability, B.Phil. thesis, University
of Oxford, 2021. (Available on request from the author.)

N. D. Birrel and P. C. W. Davies, Quantum Fields in Curved Space, Cam-
bridge: Cambridge University Press, 1982.

Harvey R. Brown, Physical Relativity: Space-Time Structure From a Dy-
namical Perspective, Oxford: Oxford University Press, 2005.

Harvey R. Brown and Oliver Pooley, “The Origins of the Spacetime Met-
ric: Bell’s Lorentzian Pedagogy and its Significance in General Relativity”,
in Craig Callender and Nick Huggett (eds.), Physics Meets Philosophy at
the Plank Scale, Cambridge: Cambridge University Press, 2001.

Harvey R. Brown and Oliver Pooley, “Minkowski Space-Time: A Glorious
Non-Entity”, in Dennis Dieks (ed.), The Ontology of Spacetime, Elsevier,
2006.

Harvey R. Brown and James Read, “The Dynamical Approach to Space-
time Theories”, in E. Knox and A. Wilson (eds.), The Routledge Companion
to Philosophy of Physics, pp. 70-85, London: Routledge, 2021.

William L. Burke, Applied Differential Geometry, Cambridge: Cambridge
University Press, 2008.

Neil Dewar, Niels Linnemann and James Read, “The Epistemology of
Spacetime”, Philosophy Compass 17(4), ¢12821, 2022.

R. H. Dicke, Experimental Relativity, New York: Gordon & Breach, 1964.
John Earman, World Enough and Space-time: Absolute Versus Relational
Theories of Space and Time, Cambridge, MA: MIT Press, 1989.

25



[15]

John Earman, “Kant, Incongruous Counterparts, and the Nature of Space
and Space-time”, Ratio 13, pp. 1-18. Reprinted in J. van Cleve and
R. E. Frederick (eds.), The Philosophy of Right and Left: Incongruent
Counterparts and the Nature of Space, Dordrecht/Boston/London: Kluwer
Academic Publishers, pp. 131-151, 1991.

Jiirgen Ehlers, Felix A. E. Pirani and Alfred Schild, “The Geometry of Free
Fall and Light Propagation”, in L. O’Reifeartaigh (ed.), General Relativity:
Papers in Honour of J. L. Synge, Oxford: Clarendon Press, pp. 63-84, 1972.

George F. R. Ellis, “Topology and Cosmology”, General Relativity and
Gravitation 2(1), pp. 7-21, 1971.

Peter G. O. Freund, Amar Maheshwari and Edmond Schonberg, “Finite-
Range Gravitation”, The Astrophysical Journal 157, pp. 857-867, 1969.

Robert Geroch, Singularities in the Space-time of General Relativity,
Ph.D. thesis, Department of Physics, Princeton University, 1967.

Robert Geroch, “Spinor Structure of Space-Times in General Relativity.
I”, Journal of Mathematical Physics 9, 1968.

Robert Geroch, “Spinor Structure of Space-Times in General Relativity.
117, Journal of Mathematical Physics 11, 1970.

Robert Geroch and Gary T. Horowitz, “Global Structure of Spacetimes”,
in S. W. Hawking and W. Israel (eds.), General Relativity: An Einstein
Centenary Survey, Cambridge: Cambridge University Press, pp. 212-293,
1979.

G. I. Gomero, B. Mota and M. J. Rebougas, “Limits of the Circles-in-
the-Sky Searches in the Determination of Cosmic Topology of Nearly Flat
Universes”, Physical Review D 94, 043501, 2016.

Jeremy Gray and José Ferreirés, “Epistemology of Geometry”, in
E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, 2021.

Stephen W. Hawking and George F. R. Ellis, The Large Scale Structure of
Space-time, Cambridge: Cambridge University Press, 1973.

Mark J. Hadley, “The Orientability of Spacetime”, Classical and Quantum
Gravity 19, pp. 4565-4571, 2002.

Carl Hoefer, “Kant’s Hands and Earman’s Pions: Chirality Arguments for
Substantival Space”, International Studies in the Philosophy of Science 14,
pp. 237-256, 2000.

Nick Huggett, “Reflections on Parity Nonconservation”, Philosophy of Sci-
ence 67, pp. 219-241, 2000.

26



[29]

Nick Huggett, Carl Hoefer and James Read, “Absolute and Relational
Space and Motion: Post-Newtonian Theories”, in E. N. Zalta (ed.), The
Stanford Encyclopedia of Philosophy, 2021.

Anders Karlhede, “A Review of the Geometrical Equivalence of Metrics in
General Relativity”, General Relativity and Gravitation 12(9), pp. 693-707,
1980.

Anders Karlhede, “The Equivalence Problem”, General Relativity and
Gravitation 38(6), pp. 1109-1114, 2006.

Marc Lachieze-Rey and Jean-Pierre Luminet, “Cosmic Topology”, Physics
Reports 254, pp. 135-214, 1995.

N. A. Lemos and M. J. Rebougas, “Inquiring electromagnetic quantum
fluctuations about the orientability of space”, European Journal of Physics
C 81:618, 2021.

N. A. Lemos, D. Miiller and M. J. Rebougas, “Probing spatial orientability
of Friedmann—Robertson—Walker spatially flat spacetime”, Physical Review
D 106, 023528, 2022.

Janna Levin, “Topology and the Cosmic Microwave Background”, Physics
Reports 365, pp. 251-333, 2002.

Niels Linnemann and James Read, “Constructive Axiomatics in Physics
Part I: Walkthrough to the Ehlers-Pirani-Schild Axiomatisation”, 2021.
(Unpublished manuscript.)

M. A. H. MacCallum, “Classifying Metrics in Theory and Practice”, in
V. De Sabbata and E. Schmutzer (eds.), Unified Field Theories of More
Than 4 Dimensions Including Exact Solutions. Proceedings of the Interna-
tional School of Cosmology and Gravitation, pp. 352-382, Singapore: World
Scientific, 1983.

David B. Malament, Topics in the Foundations of General Relativity and
Newtonian Gravitation Theory, Chicago, IL: University of Chicago Press,
2012.

John Manchak, Global Spacetime Structure, Cambridge Elements: Philos-
ophy of Physics, Cambridge: Cambridge University Press, 2020.

Ettore Minguzzi, “Lorentzian Causality Theory”, Living Reviews in Rela-
tivity 22(3), 2019.

Ettore Minguzzi and Miguel Sanchez, “The Causal Heirarchy of Space-
times”, in H. Baum and D. Alekseevsky (eds.), Recent Developments in
Pseudo-Riemannian Geometry, Zurich: European Mathematical Society
Publishing House, pp. 299-358, 2008.

27



[42]

[43]
[44]

[45]

[46]

Alyssa Ney, The World in the Wave Function: A Metaphysics for Quantum
Physics, Oxford: Oxford University Press, 2021.

Christopher Nolan (director), Tenet, Warner Bros. Pictures, 2020.

V. L. Ogievetsky and I. V. Polubarinov, “Spinors in Gravitation The-
ory”, Soviet Physics, Journal of Experimental and Theoretical Physics 21,
pp. 1093ff. (Russian volume 48, pp. 1625ff.), 1965.

Physics StackExchange, “Is Time Orientability Independent of Space Ori-
entability?”, https://physics.stackexchange.com/questions/666643/
is-|time-orientability-independent-of-space-|orientability. Ac-
cessed September 2021.

J. Brian Pitts, “The Nontriviality of Trivial General Covariance: How Elec-
trons Restrict ‘Time’ Coordinates, Spinors (Almost) Fit into Tensor Cal-
culus, and 1—76 of a Tetrad is Surplus Structure”, Studies in History and
Philosophy of Modern Physics 43, pp. 1-24, 2012.

Oliver Pooley, “Handedness, Parity Violation, and the Reality of Space”, in
K. Brading and E. Castellani (eds.), Symmetries in Physics: Philosophical
Refiections, Cambridge: Cambridge University Press, 2003.

James Read, “Explanation, Geometry, and Conspiracy in Relativity The-
ory”, in C. Beisbart, T. Sauer and C. Wiithrich (eds.), Thinking About
Space and Time: 100 Years of Applying and Interpreting General Relativ-
ity, Einstein Studies series, vol. 15, Basel: Birkhauser, 2020.

James Read, Harvey R. Brown and Dennis Lehmkuhl, “Two Miracles of
General Relativity”, Studies in History and Philosophy of Modern Physics
64, pp. 14-25, 2018.

Glenn D. Starkman, “Topology and Cosmology”, Classical and Quantum
Gravity 15, pp. 2529-2538, 1998.

J. L. Synge, Relativity: The Special Theory, Amsterdam, 1956.
J. L. Synge, Relativity: The General Theory, Amsterdam, 1964.

Robert M. Wald, General Relativity, Chicago, IL: University of Chicago
Press, 1984.

David Wallace and Christopher G. Timpson, “Quantum Mechanics on
Spacetime I. Spacetime State Realism”, British Journal for the Philoso-
phy of Science, pp. 697-727, 2010.

David Wallace, The Emergent Multiverse: Quantum Theory According to
the Fverett Interpretation, Oxford: Oxford University Press, 2012.

28


https://physics.stackexchange.com/questions/666643/is-
https://physics.stackexchange.com/questions/666643/is-
time-orientability-independent-of-space-
orientability

[56] C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, R. P. Hudson, “Ex-
perimental Test of Parity Conservation in Beta Decay”, Physical Review
105(4), pp. 1413-1415, 1957.

[57] Ya. B. Zal’dovich and I. D. Novikov, “The Hypothesis of Cores Retarded
during Expansion and the Hot Cosmological Model”, Journal of Experi-
mental and Theoretical Physics 6, pp. 236-238, 1967.

29



	Introduction
	Definitions of orientability
	Local and global properties
	Testing orientability
	Testing spatial orientability
	Testing temporal orientability
	Testing manifold orientability

	Considerations from QFT
	Hadley's concluding remarks
	Other approaches to testing orientability
	Parity violation
	Quantum electrodynamic fluctuations
	Circles in the cosmic microwave background

	Close

