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I argue that background freedom in quantum gravity automatically leads to a dissociation of
the quantum state into states having a classical space. That is, interference is not completely
well-defined for states with different space geometries, even if their linear combination is.

Interference of states with different space geometry is still allowed at small scales, but precluded
at macro-scales. Macro-states, including measuring devices, appear classical.

The distribution of space geometries automatically gives the Born rule.
The dissociation entails a kind of absolute decoherence, making the ad-hoc wavefunction collapse

unnecessary. This naturally leads to a new version of the many-worlds interpretation, in which:
1) the classical space-states form an absolute preferred basis,
2) at any time, the resulting micro-branches look like classical worlds, with objects in space,
3) macro-branches stop interfering, even though micro-branches can interfere (as they should),
4) the space geometries converge at the Big-Bang, favoring macro-branching towards the future,
5) the wavefunctional becomes real by absorbing the phases in the global U(1) gauge,
6) ontologically, the wavefunctional consists of many gauged space-states, each of them counting

as a world by having local beables (the space geometry and the classical fields),
7) the density of the classical space-states automatically obeys the Born rule.

Keywords: Everett’s many-worlds interpretation; Born rule; quantum gravity; background-independence;
many-spacetimes interpretation.

I. INTRODUCTION

I argue that background-free approaches to quantum
gravity prevent most quantum state vectors from having
physically meaningful superpositions. Interference effects
require a way to relate the positions in space among dif-
ferent state vectors, but background freedom limits this
possibility. Linear combinations exist mathematically,
but interference effects are suppressed in most situations.

This leads to a new explanation of the emergence of
classicality at the macro level, and to a natural deriva-
tion of the Born rule as classical probabilities of states
with definite classical space. The resulting approach to
understand quantum mechanics works less naturally with
the wavefunction collapse, but very well with the many-
worlds interpretation, solving some of its main problems.

In Sec. §II I sketch the generic features of wavefunc-
tional formulations of background-free quantum gravity.
This leads to the notion of classical space-states, having
a definite classical space (or other structure assumed to
be more fundamental than the 3d manifold).

In Sec. §III I explain how background freedom makes
the state vector dissociate into classical space-states, by
limiting their ability to interfere.

In Sec. §IV I show how the distribution of space-states
into which the state vector dissociates gives the Born
rule. Each space-state either is absent from the wave-
functional, or it appears in it with equal amplitude but
varying density (see Fig. 2). The density can be made
real, by absorbing the phases into the U(1) gauge of the
classical fields defining the space-states.

In Sec. §V I argue that the space-states approach
works less well with the collapse postulate, but it works

naturally with the many-worlds interpretation, resulting
in a version of it named here the many-spacetimes inter-
pretation of quantum mechanics.
In Sec. §VI I explain how this contributes to solving

some of the main problems of the many-worlds interpre-
tation (Fig. 1), such as the existence of a preferred ba-
sis, the emergence of quasi-classical macro-worlds, the
existence of classical-like objects in space, the time-
asymmetry of the branching structure, classical proba-
bilities, the appearance of complex numbers in quantum
mechanics, and the ontology, including the local beables,
which justify counting each space-state as a world.
Sec. §VII concludes the article with a discussion.
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FIG. 1. Wavefunctional dissociation due to quantum-
gravitational background freedom. The micro-states (in
green) are space-states. They are very similar at the Big-
Bang, then background freedom makes them dissociate and
form a branching structure like in the many-worlds interpre-
tation. The dissociation is reversible at micro scales, allowing
interference, but it becomes irreversible when it manifests at
macro scales. The branching structure (in yellow) corresponds
to the macro-states (in blue). The distribution of space-states
per macro-state or branch gives the Born rule.
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II. SPACE-STATES IN QUANTUM GRAVITY

A. Classical space-states

We do not have yet a final theory of quantum gravity,
and even less so one that includes the other fields. But I
will assume that such a theory is possible.

Many of the currently known approaches to quantum
gravity admit Schrödinger wavefunctional formulations.

The Wheeler-de Witt equation

ĤΨ = 0 (1)

involves a wavefunctional Ψ = Ψ[γab] on the space
Riem(Σ) of all possible Riemannian geometries (Σ, γab),
where γab is the intrinsic metric tensor on a three-
dimensional manifold Σ. Equation (1) was obtained [20]
by quantizing the Hamiltonian formulation of classical
general relativity by Arnowitt, Deser, and Misner (ADM)
[3], where (Σ, γab) is a spacelike slice of the spacetime
manifold M = (Σ× R, gµν).

The quantization replaces the classical 3d metric γab
and its conjugate momentum πcd

γ by operators,γ̂ab(x)Ψ[γab] = γab(x)Ψ[γab],

π̂cd
γ (x)Ψ[γab] =

ℏ
i

δΨ[γab]

δγcd(x)
,

(2)

subject to the canonical commutation relations{[
γ̂ab(x), π̂

cd
γ (y)

]
= iℏδc(aδ

d
b)(x,y),

[γ̂ab(x), γ̂cd(y)] =
[
π̂ab
γ (x), π̂cd

γ (y)
]
= 0,

(3)

where x,y ∈ Σ and δ/δγcd(x) is the functional derivative.
The Wheeler-de Witt equation is a constraint equa-

tion, not an evolution equation, despite de Witt initially
calling it the Einstein-Schrödinger equation. It is com-
plemented by three other constraint equations that fac-
tor out the space diffeomorphisms. The wavefunctional
Ψ is a timeless solution. A proposal to decode a dynam-
ical solution, made by Page and Wootters [40], consists
of interpreting it as a quantum system |ψ(τ)⟩ entangled
with a clock |τ⟩, Ψ =

∫
R |τ⟩|ψ(τ)⟩dτ . This, and other

proposals to recover a dynamical solution, were assessed
critically in [27, 31]. According to Page and Wootters,
we can consider that the state of the universe at the time
t is represented by the vector Ψ(t) := |t⟩|ψ(t)⟩.

In the following we will assume the existence of a quan-
tum theory of gravity based on time-dependent states.

Ashtekar’s Hamiltonian formulation of classical general
relativity [4] is similar to ADM, except that instead of γ
and πγ , its variables are an su(2) connection, whose con-
jugate variable is a densitized frame field on Σ. At the
classical level the ADM formalism and the Ashtekar vari-
ables are equivalent. When quantized, the resulting op-
erators satisfy commutation relations similar to (3) [29].
Its quantization was interpreted by Rovelli and Smolin
in terms of loop variables [47].

We do not know with certainty that spacetime is con-
tinuous. Various discrete approaches to quantum grav-
ity are based on structures that can be represented as
graphs or hypergraphs that may have attached numbers
at their vertices and (hyper-)edges. For example, in the
causal sets approach [52], the vertices of the graph rep-
resent events (points from the spacetime manifold), and
oriented edges join pairs of events in causal relation, in
the sense that the first event is in the past lightcone of
the second one. The Regge calculus [46] is based on tri-
angulations of spacetime into 4-simplices further approx-
imated as flat. Distances are attached to the edges, and
the spacetime curvature is concentrated at 2-faces, and
expressed in terms of deficit angles etc. The causal dy-
namical triangulation approach is similar, but with fixed-
length edges [32]. Loop quantum gravity can be formu-
lated in terms of spin networks and spin foams. Spin net-
works are graphs with the edges labeled by half-integer
numbers corresponding to irreducible representations of
the Lie algebra su(2) [5, 41, 48]. Two spin networks at
different times are joined by a spin foam, a hypergraph
used in the path integral formulation of the theory.
All these graph or hypergraph structures are

background-independent. They don’t need to be embed-
ded in space or spacetime, but they can also be seen
as equivalence classes of (hyper)graphs embedded in the
space Σ or in the spacetime M , where two such embed-
ded structures are equivalent if a diffeomorphism of the
background manifold can transform one into another.
Many of these discrete approaches use Feynman’s path

integral quantization, but at the end a complex coefficient
is associated to each classical basis state, so they admit
a Schrödinger representation too.
I will assume that quantum gravity can be described

by a theory admitting a wavefunctional representation.
Let CS be the set of classical space configurations.

These may be the diffeomorphism equivalence classes
of Riemannian geometries (Σ, γ), or more fundamental
structures approximated by such geometries at low ener-
gies. For example, if quantum gravity is one of the dis-
crete theories whose classical configurations are labeled
(hyper)graphs, these will be the elements of CS .
While much of the following works well with both con-

tinuous and discrete spacetimes, we will see that contin-
uous spacetimes have some advantages.
I will assume that there is a Schrödinger formulation

of quantum gravity in terms of wavefunctionals over CS ,
where CS is endowed with a measure µS . The states
of the universe are represented by unit vectors Ψ in the
Hilbert space HS spanned by states |γ⟩, where γ ∈ CS

stands for (Σ, γab) or the (hyper-)graph structure if the
underlying quantum gravity theory is based on such a
structure, with the Hermitian scalar product

⟨Ψ|Ψ′⟩ :=
∫
CS

Ψ∗[γ]Ψ′[γ]DµS [γ]. (4)

For matter quantum fields I will assume, like in the
quantum field theory on the Minkowski spacetime, that
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there is a formulation in terms of wavefunctionals on the
classical configuration space of classical fields on Σ. The
classical fields include bosonic fields, which commute,
and fermionic fields, which are expressed using Grass-
mann numbers because they anticommute at equal times,
see e.g. [25, 28]. All other variables needed to specify how
the 3d geometries integrate into 4d manifolds, for exam-
ple the shift and lapse variables, will be included as well
in the configuration space of classical fields. If space is
a (hyper)graph γ ∈ CS , I assume that matter can be de-
scribed, in principle, by attaching various quantities or
other mathematical structures to the elements of γ.

Although ultimately the quantum field equations are
those to be obeyed, each classical matter field has to be
defined on an underlying classical space γ. To express
this dependence, I will denote classical matter fields by
ϕγ . In quantum field theory on flat space the Fock ba-
sis consists of linear combinations of classical states |ϕ⟩,
where ϕ is a classical field on the space R3 [25]. Let us
assume, for each fixed γ ∈ CS , the choice of such a basis
(|ϕγ⟩)ϕγ∈C

γ
M
, where the elements of Cγ

M label the basis in
a way dependent on γ ∈ CS .

Let us summarize all of the above into the following

Assumption 1. The complete state of the universe is
represented by a wavefunctional on a configuration space

C :=
⋃

γ∈CS

{γ} × C
γ
M , (5)

endowed with the measure µ related to the measures µS

on CS and µγ
M on C

γ
M by Dµ[γ, ϕγ ] = DµS [γ]Dµ

γ
M [ϕγ ].

Let the Hilbert space of such wavefunctionals be H ∼=
HS ⊗HM , with the Hermitian scalar product

⟨Ψ|Ψ′⟩ :=
∫
C

Ψ∗[γ, ϕγ ]Ψ
′[γ, ϕγ ]Dµ[γ, ϕγ ]. (6)

If the manifold C would be infinite-dimensional, no
Lebesgue measure µ could be defined on it. But the
classical fields and metrics are constrained by the clas-
sical equations, and this severely restricts the dimension
of C. In addition, the diffeomorphism and gauge degrees
of freedom are also factored out. There are also physical
reasons to assume that dimC < ∞, due to the entropy
bound [9, 10], and also severe constraints related to the
arrow of time [66]. So I will assume that dimC < ∞, so
that it admits a measure µ.

B. Macro-states and ontic micro-states

Macro-states correspond to equivalence classes of
micro-states. Since different macro-states are distin-
guishable, there is a set of commuting projectors (P̂α)α∈A

on H, so that [P̂α, P̂β ] = 0 for any α ̸= β ∈ A, and⊕
α∈AP̂αH = H. Any macro-state is represented by a

subspace of the form P̂αH. We call quasi-classical the

states belonging to macro-states P̂αH.

Since all projectors P̂α commute, there are bases of

H consisting of common eigenvectors of (P̂α)α∈A. Since
both γ and ϕγ are classical, it makes sense to assume that

the states |γ, ϕγ⟩ are quasi-classical, i.e. |γ, ϕγ⟩ ∈ P̂αH
for some α. This expresses the idea that

Observation 1 (Macro classicality). At the macro level,
the world looks like the classical world.

This justifies the following

Assumption 2. The basis (|γ, ϕγ⟩)(γ,ϕγ)∈C consists of
quasi-classical states, i.e. for any |γ, ϕγ⟩ there is an α ∈ A

so that |γ, ϕγ⟩ ∈ P̂αH.

The existence of a basis of quasi-classical states is guar-
anteed by the existence of the macro-projectors. As-
sumption 2 specifies that such a basis can consist of states
with classical geometry and classical matter fields.

Definition 1. States of the form |γ, ϕγ⟩ will be called
space-states, and also ontic states for reasons that will be
explained later.

We expect that a space-state immediately evolves into
a linear combination of space-states. Dissociation and re-
association happen continuously. However, at the macro
level, the state may remain quasi-classical under uni-
tary evolution for longer time intervals. This accounts
for the fact that macroscopic systems do not evolve all
the time into linear combinations of macro-states like the
Schrödinger cat, although unitary evolution may lead to
such linear combinations during quantum measurements.

C. Space-states are fundamental

Just because physicists first discovered classical
physics, and later quantum theory, and formulated the
latter by quantizing the former, it does not mean that
quantum theory requires classical physics to exist. The
universe is what it is, and it is fundamentally quantum.
However, the Hilbert space is too symmetric as it is,

and without the existence of preferred structures that
break its symmetry, there would be no relation between
Hilbert space vectors and physical reality, nor between
Hermitian operators and physical observables. Physical
properties cannot simply emerge from the abstract state
vector, even if the Hamiltonian is known, because if they
would, infinitely many entities with the very same prop-
erties, but able to represent completely different physical
realities, would emerge as well [63, 67]. Therefore, the ba-
sis (|γ, ϕγ⟩)(γ,ϕγ)∈C is special among the others, because
of its physical meaning. This justifies

Assumption 3. The space-states are fundamental, in
the sense that, by their physical meaning, they are special
among the other states represented by H.
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As explained earlier, the states γ are not necessarily
Riemannian geometries, they can be other structures ap-
proximated at low energies by such geometries. What is
important is that they have a special physical meaning,
in the same sense in which, in nonrelativistic quantum
mechanics, the position operators and their eigenvectors
have a special physical meaning compared to other oper-
ators or vectors in the Hilbert space. Similar considera-
tions hold for the matter fields.

III. DISSOCIATION INTO SPACE-STATES

A. Background freedom

To construct the configuration space C, we eliminated
the unphysical degrees of freedom due to diffeomorphisms
and global gauge transformations. For example, two met-
ric tensor fields on Σ may look different, but a coordinate
transformation, which corresponds to a diffeomorphism
of Σ, may be able to map them into one another, show-
ing that they are isometric. For this reason, we took as
classical states the equivalence classes of metrics on Σ
under diffeomorphisms. Matter fields also have “internal
background freedom” (gauge freedom).

Similarly if space is a discrete structure like the ones
that can be represented by graphs or hypergraphs from
§IIA, the configuration space consists of such structures
based on their internal relations, not as particular embed-
dings in a 3d manifold. But let us state this explicitly,
since it will be central in the article:

Assumption 4. Our theory is background-free.

The case for background freedom was made for exam-
ple by Smolin [51]. General relativity already shows that
the structures have to be relational: we use coordinates,
but they are not absolute, they are just ways to assign
numbers to points in space or spacetime. The hole argu-
ment [39, 53] shows that taking the points of the under-
lying manifold as having an independent reality from the
intrinsic relations introduced by the metric tensor leads
to indeterminacy in a supposedly deterministic theory.

This is why many of the approaches to quantum grav-
ity seem to require background freedom, or even have it
built-in. This is true for the formulation based on the
Wheeler-de Witt equation (1), the discrete approaches
based on (hyper)graphs discussed earlier, like causal sets,
Regge calculus, causal dynamical triangulations, loop
quantum gravity etc. For a discussion of background in-
dependence in string theory see Witten [76].

B. Background freedom and dissociation

In general, we make no difference between the concepts
of linear combination and superposition, except maybe
that a linear combination is understood as the mathe-
matical expression of a superposition, which is a physical

concept related to the position in space and phenomena
like interference. And they usually coincide.
In nonrelativistic quantum mechanics, any two wave-

functions can be superposed in space, because the under-
lying geometry is the same, and the reference frames are
the same. In the wavefunctional formulation of quantum
field theory, the local information about the wavefunc-
tional of a scalar field is obtained by using local opera-
tors at x ∈ Σ = R3, definable in function of the operators
φ̂(x) and π̂φ(x) (to be rigorous, one uses operator-valued
distributions, applied to a sequence of test functions that
converge uniformly to the Dirac distribution δx).
In background-dependent theories of quantum gravity

we can define local operators in a similar way, in function
of the operators γ̂(x) and π̂γ(x), and φ̂α(x) and π̂φα

(x)
for each component φα of the matter field φ, where α
stands for the spin and the internal degrees of freedom
of the field.
But in background-free quantum gravity, local oper-

ations on space, and therefore superpositions, do not
always make sense, even if the linear combinations are
always defined. If the theory is background-free, a dif-
ference appears when we apply local operators to lin-

ear combinations. Any local operator Â(x) depends on
x, but background freedom prevents uniquely matching
points from Σ for |γ, ϕγ⟩ to points from Σ for |γ′, ϕ′γ′⟩,
because in general γ ̸= γ′. The situation is even more
visible in background-free theories where (Σ, γ) is re-
placed by a labeled (hyper)graph, because in this case
correspondences between the vertices of different (hy-
per)graphs are not even possible in general.
A correspondence between the points of Σ for |γ, ϕγ⟩

and those of Σ for |γ′, ϕ′γ′⟩ requires (Σ, γ) and (Σ, γ′) to
be isometric. Sometimes such a correspondence exists
only between some open regions of Σ. So the dissocia-
tion is not always ensured, and we will see that this is
essential. Because local operators and superpositions are
not completely well-defined in the absence of a common
background, we arrived at the following:

Key observation 1. Background freedom implies the
dissociation of the wavefunctional into space-states.

The dissociation is not necessarily complete, and vari-
ous cases are captured in the following definition.

Definition 2. Two state vectors |γ⟩|ΨM ⟩ and |γ′⟩|Ψ′
M ⟩

are locally associable if there exist two non-empty open
subsets U,U ′ ⊆ Σ and an isometry between (U, γ) and
(U ′, γ′). If U = U ′ = Σ, they are globally associable.
Two state vectors are dissociated if they are not glob-

ally associable. They are partially dissociated if they are
locally but not globally associable. They are completely
dissociated if they are not associable (globally or locally).

In the discrete case, in Definition 2, (local) isometries
are replaced by (local) isomorphisms between the labeled
(hyper)graphs γ and γ′.
It is possible for space-states to reassociate, at least

partially, as it can be seen by using the path integral
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formulation. This allows quantum interference to exist
at micro scales, and it is the key to understanding why
our quantum world looks quantum at small scales, and
classical at macro scales.

When the system evolves into associable states, the
association is allowed only if it is consistent with the dy-
namics, which is given by a local Hamiltonian [25].

It is interesting to compare dissociation induced by
background freedom with Penrose’s gravitational deco-
herence. According to Penrose [43], “I envisage that
nature feels uncomfortable about ‘linearly superposing’
space-time geometries which differ significantly from one
another and, instead, prefers to settle for (i.e. to ‘reduce’
to) essentially just one of the geometries involved.” Then,
he proposes that this requires a nonlinear collapse due to
the gravitational entropy. Later he justifies the collapse
by invoking the existence of different time parameters for
the superposed spacetimes [44].

By contrast, the dissociation induced by background
freedom proposed in this article is simply due to the ab-
sence of a correspondence between the points in different
spaces in the absence of common background. The dis-
sociation is accepted, and no change of the Schrödinger
wavefunctional equation is postulated to get rid of it.

For 4d-spacetimes, background freedom may lead to
an even stronger dissociation than for spaces. However,
because we start with Hamiltonian approaches to quan-
tum gravity, and it is expected that space-states evolve
into linear combinations of space-states, dissociation of
space-states is sufficient here.

IV. PROBABILITIES FROM COUNTING
SPACE-STATES

A. Taking dissociation seriously

Every vector |Ψ⟩ from H has the form

|Ψ⟩ =
∫
C

c[γ, ϕγ ]|γ, ϕγ⟩Dµ[γ, ϕγ ], (7)

where c[γ, ϕγ ] = Ψ[γ, ϕγ ] ∈ C, γ ∈ CS , and |ϕγ⟩ belongs
to the basis (|ϕγ⟩)ϕγ∈C

γ
M

which may depend on the ge-
ometry γ.
We may be tempted to simply proclaim the Born rule,

asserting that the probability density is

P [γ, ϕγ ] = |c[γ, ϕγ ]|2. (8)

But let us resist this for a while, and explore the con-
sequences of the dissociation. If we explore the conse-
quences of a physical principle, we should do it in its own
terms, and if the result contradicts the observations, we
should drop the starting principle.

The dissociation into space-states suggests:

Principle 1. Each space-state is either not present in
|Ψ(t)⟩, or it is present once (i.e. it cannot be “half-
present”, even if eq. (7) may suggest this possibility).

This “either-or” is vague at this point, but it will be
clarified later in this Section. At any rate, it may seem
to contradict everything we know. However, we will get
quantum theory back, with the familiar complex num-
bers, which will receive a geometric meaning in terms of
a global gauge, and, if C is continuous, with the Born rule
as we know it, but resulting from counting space-states.

B. Making the wavefunctional real

Background freedom implies that the quantum state
dissociates automatically into space-states, but since the
coefficients c[γ, ϕγ ] from eq. (7) are complex numbers,
we need to understand their meaning.
Let us express the complex coefficients c[γ, ϕγ ] from

eq. (7) in the polar form

c[γ, ϕγ ] = r[γ, ϕγ ]e
iθ[γ,ϕγ ], (9)

with r[γ, ϕγ ] ≥ 0.
If ϕγ transforms nontrivially under a global U(1) gauge

transformation, let eiθϕγ represent a global gauge trans-
formation of ϕγ . The particular form of the action of eiθ

on ϕγ depends on the geometric meaning of the field, but
I will use a uniform notation for this action.
The classical fields ϕγ and eiθϕγ are physically equiva-

lent, and we denote this by ϕγ ≈ eiθϕγ . The state vectors
|ϕγ⟩ and eiθ|ϕγ⟩ are distinct vectors, but they represent
the same physical state, |ϕγ⟩ ∼ eiθ|ϕγ⟩.
This suggests the following interpretation:

Key observation 2. If the matter fields admit a non-
trivial global U(1) gauge symmetry, we can make for any
θ ∈ R the identification

eiθ|γ, ϕγ⟩ ≡ |γ, eiθϕγ⟩. (10)

The identification (10) is consistent with the fact that
eiθ|γ, ϕγ⟩ and |γ, eiθϕγ⟩ represent the same physical state,
accounting for the fact that the physical equivalence of
the classical fields ϕγ and eiθϕγ corresponds to the phys-
ical equivalence of the state vectors |ϕγ⟩ and eiθ|ϕγ⟩. We
summarize this in the commutative diagram (11).

ϕγ |ϕγ⟩

eiθ |ϕγ⟩

eiθϕγ
∣∣eiθϕγ〉

≈

quantization

∼

≡

quantization

(11)

This works for fields that admit an U(1) symmetry, like
charged fields, gauge potentials, and spinor fields, but it
is sufficient that ϕγ includes one such field.
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Then, eq. (7) becomes

|Ψ⟩ =
∫
C

r[γ, ϕγ ]|γ, eiθ[γ,ϕγ ]ϕγ⟩Dµ[γ, ϕγ ]. (12)

We see that, whenever a physical classical field con-
tributes to |Ψ⟩, it contributes only once, with a uniquely
determined gauge eiθ[γ,ϕγ ] and real coefficient r[γ, ϕγ ]. As
|Ψ⟩ evolves in time, the gauge and r[γ, ϕγ ] can change.
It remains to explain the relation between r[γ, ϕγ ] and

the probability density of ontic states, in accord with
Principle 1.

C. Emergence of the Born rule

Now that we have seen that gauge freedom allows the
coefficients in the linear combination (7) to be real num-
bers, let us see what their meaning is and how it relates
to probabilities.

I will assume that the configuration space C is continu-
ous. This likely requires that Σ is a 3d manifold. I show
that, under this assumption, the Born rule emerges by
“counting” space-states. In fact, since the basis is con-
tinuous, it is uncountable, so in fact we will use measures
as in classical probabilities. A more detailed discussion
can be found in [65].

Let us choose all fields ϕγ so that θ[γ, ϕγ ] = 0 in eq.
(9). We denote for simplicity ξ := (γ, ϕγ).
First, we notice that a state vector of the form |Ψ⟩ =

1√
n

∑n
k=1 |ξk⟩, where (|ξk⟩)k∈{1,...,n} are distinct basis

vectors, leads to the Born rule. If P̂α is a macro projec-

tor and nα basis vectors composing |Ψ⟩ belong to P̂αH,

then ⟨Ψ|P̂α|Ψ⟩ = nα/n. Therefore, the Born rule simply
coincides with the usual counting rule “probability is the
ratio of the number of favorable outcomes to the total
number of possible outcomes”. But only a small subset
of the possible state vectors have this form, so this idea
fails if the basis is discrete.

However, this idea works in the continuous case, since
the basis vectors can be distributed with nonuniform den-
sity. More precisely, if r[ξ] := r[γ, ϕγ ] from eq. (12) is
µ-measurable, we can define a new measure

Dµ̃[ξ] := r[ξ]Dµ[ξ], (13)

and obtain

|Ψ⟩ =
∫
C

|ξ⟩Dµ̃[ξ]. (14)

Since r[ξ] is µ-measurable, the measure µ̃ is absolutely
continuous with respect to µ.

We can verify that using the measure µ̃ in the uniform
form of |Ψ⟩ from (14) gives the same norm as using the
measure µ in the usual form. Consider a macro projec-

tor P̂α so that the macro-state P̂αH is the closure of a

subspace spanned by (|ξ⟩)ξ∈Cα
, where the set Cα is µ-

measurable. Then,∣∣∣∣∫
Cα

|ξ⟩Dµ̃[ξ]
∣∣∣∣2 =

(∫
Cα

⟨ξ|Dµ̃[ξ]
)(∫

Cα

|ξ′⟩Dµ̃[ξ′]
)

=

∫
Cα

(∫
Cα

⟨ξ|ξ′⟩Dµ̃[ξ′]
)

Dµ̃[ξ]

=

∫
Cα

(∫
Cα

⟨ξ|ξ′⟩r[ξ′]Dµ[ξ′]
)

Dµ̃[ξ]

=

∫
Cα

r[ξ]Dµ̃[ξ] =

∫
Cα

r2[ξ]Dµ[ξ]

= ⟨Ψ|P̂α|Ψ⟩.
(15)

Therefore, using the measure µ̃ gives the same result,
as it is to be expected. But, in addition, it allows the in-
terpretation of |Ψ⟩ as a densitized set of classical states.
Since an agent or observer supervenes on a classical state,
it makes sense to interpret the agent’s ignorance of the
micro-state on which it supervenes as a classical proba-
bility [65]. This gives the Born rule in accord to Principle
1 (Fig. 2).

That’s all. The role of the new measure is just to show
that the states satisfy Principle 1, it does not change
the original measure, it only expresses it differently, so
that the probabilities become apparent. A more detailed
explanation of this derivation of the Born rule can be
found in [65].

Note that it is not necessary to prove the Born rule
for individual particles or subsystems, it is sufficient to
prove it for macro-branches or macro-projectors, and the
measure of micro-branches per macro-branch gives the
Born rule.

A. Constant density, varying amplitude

B. Constant amplitude, varying density
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e

FIG. 2. The Born rule from counting space-states.
A. The usual interpretation of a wavefunction as a linear com-
bination of basis state vectors of different norms.
B. The interpretation of the wavefunction in terms of constant
norm basis state vectors, but with inhomogeneous density.

Therefore, the numbers from eq. (12) have a direct
meaning: Principle 1 combined with the gauge freedom
allows the interpretation of the states |Ψ⟩ as consisting of
space-states that are either present or not. We obtained
the Born rule from “counting” space-states.
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Key observation 3. If C is continuous, any state vec-
tor |Ψ⟩ ∈ H consists of mutually orthogonal space-
states whose density is |Ψ[γ, ϕγ ]|Dµ[γ, ϕγ ]. Then, for the
macro-projectors (P̂α)α∈A, the Born rule results as the
probability density of space-states in the classical sense.

Remark 1. Note that the derivation of the Born rule
from this Section is not limited to the case when the
basis states are space-states [65]. What is important is
that the basis is continuous, that the basis vectors be-
long to macro-states, and that they can support agents
or observers. In quantum field theory in the Schrödinger
wavefunctional representation, one can use the classi-
cal field configurations to obtain the basis. But space-
states have the advantage of dissociating in a natural
way, and of including gravity. Moreover, the space-states
consist of local beables, which are γ and ϕγ (see Sec.
§VIG). This justifies considering these states as support-
ing agents that can reason about the statistics of the
micro-states.

V. COLLAPSE POSTULATE OR
MANY-WORLDS?

Let us see how dissociation into space-states works
with quantum measurements, and whether it works bet-
ter by assuming the collapse postulate or with the many-
worlds interpretation.

A measuring device is a quantum system in a quasi-
classical state. When interacting with the observed sys-
tem, assumed to be microscopic in the sense that it is
not directly observable, the combined system evolves into
a linear combination of macroscopically distinct states.
Each of these states contains the observed system in a
different state, and the pointer of the measuring device
indicating that state. So the Schrödinger equation pre-
dicts that two or more stories describing the measure-
ment are simultaneously true. But we never observe such
linear combinations: after the measurement, the pointer
state is always in a definite macro-state.

QM Problem 1. Why do all linear combinations appear
to be possible at micro-scales, but not at macro-scale?

To resolve this problem, in standard quantum me-
chanics one invokes the collapse postulate [72], which
simply states that quantum measurements suspend the
Schrödinger evolution, so that from the linear combina-
tion we keep only the term that corresponds to one of
the possible pointer states, removing the others.

In doing this, standard quantum mechanics assumes,
without explaining it, the pre-existence of measuring de-
vices in quasi-classical states. But, since most quantum
states are linear combinations of quasi-classical states, we
have the following problem:

QM Problem 2. Why is the measuring device already
in a quasi-classical state?

The collapse postulate purports to solve QM Problem
1 by assuming implicitly that QM Problem 2 is already
solved. However, both problems can be solved simul-
taneously, by extending the collapse postulate to apply
not only to measurements, but whenever a quantum sys-
tem becomes a linear combination of states that belong
to distinct macro-states. Then, when any quantum sys-
tem is no longer quasi-classical, the collapse postulate is
triggered and only one of the macroscopic possibilities
remains [62].
A problem with the collapse postulate is that the

Schrödinger equation is considered valid in some situa-
tions, and suspended in other situations.
There seems to be a double standard here. On one

hand, linear combinations and entangled states appear
and evolve in parallel as long as no observation is made,
and the experiments are consistent with this. On the
other hand, if we measure them, since we do not observe
more parallel sets of outcomes simultaneously, we allow
only one of the histories, and censor all the other ones,
by appealing to the collapse postulate.
We can try to use the space-states approach to solve

QM Problems 1 and 2 at once, by reformulating the col-
lapse postulate in the following way:

Tentative Postulate 1 (Space-states Collapse Postu-
late). During the evolution of the system, the space-
states may become irreversibly dissociated into two or
more sets of space-states, determined by the macro pro-
jectors. Let us call these sets macro-branches. When
this happens, only one of the macro-branches remains,
and the others disappear. The probability is given by
the ratio between the measure of the space-states in the
remaining macro-branch to the total measure of space-
states before the collapse.

This Tentative Postulate seems to provide a basis to
explain macro systems, including measuring devices. If
so, it can solve both QM Problems 1 and 2 at once.
But dissociation and reassociation happen all the time.

Reassociation allows interference effects, but when disso-
ciation is irreversible, these effects are suppressed auto-
matically. Therefore, the collapse is still arbitrary, there
is still no clear rule when it should be invoked. When no
measurement is made, multiple space-states are allowed
to coexist, dissociate and associate in interference pat-
terns in the wavefunctional. But when a measurement is
made, only a subset of the space-states seem to remain,
based on macroscopic criteria. Some linear combinations
of space-states seem to be “more equal” than others. Dis-
sociation makes this arbitrariness more evident, because
the micro-branching is well-defined by the geometry com-
pared with the usual superpositions, yet the space-states
are kept or removed as it is more convenient.

Remark 2. If we assume collapse and try to explain the
Born rule by counting space-states as in Sec. §IV, we will
have to accept that the wavefunction consists of many
micro-states that exist simultaneously, and part of them
are eliminated by every collapse. But this would make
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quantum mechanics with the collapse postulate a strange
version of the many-worlds interpretation, in which some
of the micro-branches are removed with every collapse,
and others are kept, based on purely macroscopic criteria.
Those space-states that are kept have to belong to the
same macro-state, one cannot just keep space-states from
different macro-states.

These remarks immediately prompt the following:

Key observation 4. Tentative Postulate 1 is unneces-
sary, because once the dissociation becomes irreversible,
the macro-branches evolve independently and no longer
interfere, and no space-states from different macro-
branches associate again. This avoids the necessity to
remove space-states based on macroscopic criteria.

Therefore, since once dissociation becomes irreversible
at macro scales the macro-branches no longer reassociate
anyway, the space-states approach works more naturally
with the many-worlds interpretation (MWI) rather than
with the wavefunction collapse.

The key idea of MWI is to take the Schrödinger equa-
tion seriously, without introducing any ad-hoc rule that
applies only to macro scales. This implies that all pos-
sible components of the total wavefunction continue to
exist after the measurement, but thanks to decoherence,
they no longer “see” each other. The linearity of the
Schrödinger equation allows the macroscopically distinct
states that result from a quantum measurement by uni-
tary evolution to be independent, but in addition, they no
longer interfere. The wavefunction is branching so that
the different branches occupy different regions in the con-
figuration space. Interference is suppressed because the
copy of any agent or measuring device in one branch is
unable to detect anything from another branch, so the
branches no longer “know” about one another. And the
branches become macroscopically distinct, in the sense
that they correspond to projections of the state vector

on different macro-states P̂α1
H, . . . , P̂αn

H.
Decoherence into macro-branches seems to explain the

existence of measuring devices and to solve the measure-
ment problem without violating the Schrödinger equation
by invoking an ad-hoc wavefunction collapse.

There are several problems that are not solved, at least
not in a generally accepted way or so that it does not re-
quire a complete reinterpretation of well-established con-
cepts like probabilities. They will be discussed in Sec.
§VI, where I will propose that these problems are solved,
or at least alleviated, by the dissociation into space-
states, which provides an absolute form of decoherence.

VI. THE MANY-SPACETIMES
INTERPRETATION

We think that we are forced to suspend the Schrödinger
equation as a result of measurements, because we observe
only one of the stories that the Schrödinger equation de-
scribes as taking place in parallel. But could we observe

more than one of these stories at once? The Schrödinger
equation predicts that even the observers would be “mul-
tiplied”, each of its instances participates in one of the
stories and not in the others, of which they are oblivious.
Everett noticed the perfect symmetry of the situation,

and saw no reason to favor the story in which one gets
an outcome against the competing stories. He proposed
to trust the Schrödinger equation and accept that all
stories continue to happen independently, once they are
separated [21, 22]. Schrödinger himself proposed earlier,
along the same lines, something that he worried may
“seem lunatic” [7, 19, 50].
The result of Everett’s realization is the many-worlds

interpretation (MWI) of quantum mechanics. But there
are still open questions in MWI. Various proposals were
made to solve them, and some researchers think they are
solved. Others think that they cannot be solved and even
that MWI does not deserve to be taken seriously.
In this Section I argue that the space-states approach

solves some of these problems, or provides a more natural
way to solve them. This leads to a variant of the many-
worlds interpretation, which may be called “the many-
space-states interpretation”, but I will call it the many-
spacetimes interpretation (MSTI).

A. Preferred basis: space-states

Let us start with a problem whose solution is the key
to solving other problems.

MWI Problem 1 (Preferred basis). In what basis does
the branching take place, so that the worlds appear clas-
sical at the macro level?

Presumably, decoherence makes a preferred basis
emerge [33]. However, there has to be more to the pre-
ferred basis than that it simply “emerges”. Otherwise, if
a preferred basis emerges, either for the entire universe,
or for a subsystem, infinitely many others emerge, and
they are physically distinct, leading to physically differ-
ent worlds [63].
In nonrelativistic MWI, it is expected that the pre-

ferred basis is related to the positions in the configura-
tion space, or the positions and momenta in the phase
space. Accordingly, the branches no longer interfere be-
cause they no longer overlap in the configuration space.
The MSTI answer is based on the form of “absolute de-

coherence” provided by the dissociation into space-states
enforced by background freedom:

MSTI Answer 1 (Preferred basis). The dissociation
of the state vector automatically selects as the preferred
basis the ontic space-states basis.

B. Macro world. Quasi-classicality as classicality

A related problem is the following
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MWI Problem 2 (Macro world). How does the
classical-looking macroscopic world emerge from the
wavefunction?

Often, Problem 2 is considered solved by decoherence
[30, 33, 77], which appeared in the first place to solve it.

Without denying its importance, the process of dissoci-
ation strengthens the idea of decoherence, by introducing
a notion of “absolute decoherence”, solving the problem.

MSTI Answer 2 (Macro world). Each macro world cor-
responds to multiple ontic space-states that belong to the
same macro-state, because they are not distinguishable
at the macro level.

Multiple space-states can form macro-states (Assump-
tion 2). Since each space-state is also quasi-classical, and
since they are not distinguished by the macro projectors,
they can account for the macro world.

C. Objects in space

Another problem is that the wavefunction is not de-
fined on space, but on the much larger configuration
space. This disturbed Schrödinger [6], Lorentz ([45], p.
44), Einstein [23, 26], Heisenberg, Bohm [14] etc. This is
true for the wavefunction of any state vector in the total
Hilbert space.

MWI Problem 3 (Objects in space). Given that the
wavefunction is defined on the high-dimensional config-
uration space, how do familiar, classical-looking objects
localized in space emerge from the wavefunction?

The wavefunction, being an element of a representation
of the Galilei or the Poincaré group [75], is intrinsically
associated to space or spacetime. Therefore, properly an-
alyzed, it satisfies all expectations of standard geometric
objects in space or spacetime [64]. Moreover, if one thinks
that this is not sufficient, and the wavefunction should
be expressed as classical-like fields in space or spacetime,
this is also possible, albeit in an inaesthetic way that at
least serves as a proof of concept [61].

But even if the wavefunction is, in the sense of group
theory or as fields, an object in space, in general it does
not look like the familiar, classical-looking objects we see.

Decoherence might lead to branches that look like fa-
miliar, classical-looking objects localized in space. Wal-
lace [74] thinks that the branches form patterns in the
sense of Dennett [17], but are these patterns classical-
looking enough?

Observation 2 (Schrödinger atoms in space). Let us
start with a simple atom, consisting of n electrons, n
protons, and n′ ≈ n neutrons. Each of the nucleons
consist of three quarks, but the things are more com-
plicated, since there is a practically infinite number of
virtual quarks and gluons involved, and the interactions
between nucleons involve exchange of mesons. But, due

to the quarks’ large masses compared to the electron’s
mass, and to their confinement to the short range of
the strong interaction, the nucleus of the atom can be
very well localized in space. Let us consider an atom
in a state that is a solution of the stationary Schrödinger
equation. Decompose the wavefunction as eigenfunctions
of the particle number operator with integer eigenvalue k.
These components are very well localized around a point
(x, y, z)k in the configuration space of k particles. The
electrons are spread on a wider region than the nucleus
particles, with an amplitude that vanishes very quickly
as we move away from (x, y, z)k. But they are still very
peaked around (x, y, z)k. Since the solution is stationary,
the atom is very well localized. Its position (x, y, z) de-
couples from the other quantum numbers, so it behaves
like a one-particle wavefunction with many “internal”
degrees of freedom defining a “rigid object” consisting
mainly of the orbitals.
This picture can form the basis for describing molecules

and larger objects as localized objects in space. The
wavefunction, even without decoherence, is a superpo-
sition of products of such bound states and free particle
states. Decoherence is expected to decompose the wave-
function into branches that look quasi-classically in this
way (Problem 2), and nothing else is needed.

Maudlin [34–36] and Norsen [38] think that Problem
3 is not solved, and that it is hard to solve it even if
Problems 1 and 2 would be. They contrast this with
the pilot-wave theory (PWT) [13], which includes, along
with the wavefunction, point-particles at definite po-
sitions in space, and with the Ghirardi-Rimini-Weber
(GRW) interpretation [24], where the wavefunction col-
lapses around definite points of the configuration space,
appearing nearly classical.
Their arguments can be seen as relying on the idea

that the primitive ontologies of the GRW interpretation –
the mass density ontology (GRWm) but especially Bell’s
flash ontology (GRWf) [12] – and PWT are very simi-
lar to the classical ones. This similarity also seems to
help solving the other problems of the PWT and GRW
interpretations. But for PWT to work, the wavefunction
governing the motion of the particles has to be itself well
localized around the points of the configuration space,
otherwise the macroscopic objects like chairs and tables,
expected to be stable, can explode or transform into com-
pletely different configurations. Also, in the GRW inter-
pretation, to avoid the tails of the wavefunction (which
gives the probability density for the spontaneous localiza-
tion) from allowing the next collapses to lead to abrupt
changes in the way the world appears at the macro level,
the wavefunction has to decohere as well and its branches
have to become well localized in the configuration space.
Therefore, the MWI Problem 3 applies to PWT and
GRW as well. Decoherence and the localized descrip-
tion of the atom from Observation 2 are needed by PWT
and GRW as much as it is needed by MWI.
But an important lesson that can be learned from their

arguments is that classical physics is clearer, and so any
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interpretation of quantum mechanics that is closer to
classical physics has an important advantage.

This suggests the following heuristic rule

Rule of Thumb 1. If a solution is considered to work
without problems in classical physics, and if it can be
applied to an interpretation of quantum mechanics, it
should also be considered to work without problems in
that interpretation of quantum mechanics.

We can see that the MSTI Answers 1 and 2 already
align MWI to this Rule of Thumb, except that the clas-
sical objects are fields and not point-particles. But it is
hard to see how the beables localized to points in space
from PWT and GRWf continue to remain as such once
we advance these interpretations to quantum fields.

It is therefore desirable to have a solution of Problem 3
along the Rule of Thumb 1 as in the PWT and GRW in-
terpretations, but without adding more structure. Back-
ground freedom automatically makes this possible.

The representation of the wavefunction in terms of
fields on space given in [61] is too dependent on nonrela-
tivistic quantum mechanics, even if it works for the Fock
space of quantum field theory too. In the case of quan-
tum gravity, it works only if the theory is background-
dependent.

But the wavefunctional formulation allows for a sim-
pler and more adequate answer:

Observation 3. On each space (Σ, γ), since |Ψγ⟩ :=∫
C

γ
M
c[ϕγ ]|ϕγ⟩Dµγ

M [ϕγ ], it automatically consists of many

classical fields ϕγ ∈ C
γ
M , each of them having attached

a complex number c[ϕγ ]. But since in the polar form

c[ϕγ ]r[ϕγ ]e
iθ[ϕγ ] the factor eiθ[ϕγ ] can be removed by re-

placing ϕγ with its gauge transformed eiθ[ϕγ ]ϕγ (§IVB),
and since r[ϕγ ] is just a density factor (§IVC), what we
have is just a collection of classical fields. States like those
containing atoms, molecules, or larger quasi-classical ob-
jects are densitized sets of such classical fields, because
the Fock space basis can be obtained from the wavefunc-
tional classical basis [25].

In addition,

Observation 4. In the wavefunctional formulation, the
Hamiltonian is explicitly local on Σ [25].

Observations 3 and 4 lead to

MSTI Answer 3 (Objects in space). The space-states
consist of classical fields on space. The dynamics is local.
Densitized sets of such states form MWI worlds only if
their dissociation is not manifest at the macro level.

D. Branching asymmetry from Big-Bang symmetry

Another problem is the following

MWI Problem 4 (Branching asymmetry). Why is the
branching happening only towards the future, and why
do the branches remain separated?

This is also often claimed to be solved by decoherence,
but since the Schrödinger equation is time-symmetric,
without very fine-tuned initial conditions of the universe,
decoherence would equally predict branching towards the
past. Interference with branches previously separated
would affect the probabilities and violate the Born rule.

In the standard framework of the many-worlds inter-
pretation, Wallace acknowledged the problem of branch-
ing asymmetry, analyzed it, and concluded that it cor-
relates with the thermodynamic arrow of time [74]. For
the importance of the thermodynamic arrow of time in
relation to branching asymmetry, but also for unfore-
seen complications, see [66]. But we do not have an ex-
planation for the thermodynamic arrow of time either,
although the second law of thermodynamics is a well-
established empirical fact.

The dissociation into space-states allows us to make
progress, by relating branching asymmetry with the cos-
mological arrow of time. This arrow of time points in the
time direction in which the universe expands. The closer
the state of the universe is to the Big-Bang, the more
homogeneous and isotropic the universe is. Moreover, as
the singularity is approached, space contracts.

A possible assumption is that the Big-Bang is a point,
the singularity. This would be problematic, since if Σ
is a lower-dimensional set at t = 0, we will need to ex-
plain how it evolves into a 3d manifold. To avoid this,
one usually assume that the singularity is removed from
spacetime, or that quantum gravity eliminates it.

An alternative option is to embrace it, because the
space components of the metric tensor tend to 0 as t↘ 0,
but the topology of space does not contract to a point, it
is still the 3d manifold (Σ, γab(x) ≡ 0). By avoiding the
assumption that the topology derives from distance, we
can obtain equations for general relativity that continue
to be valid under more general conditions, including at
a large class of singularities. For this we need an al-
ternative formulation of semi-Riemannian geometry and
Einstein’s general relativity, which is equivalent to these
ones outside the singularity, but well-defined and free of
infinities at the singularity. This was achieved and shown
to work in many situations in which non-singular semi-
Riemannian geometry is not defined [54, 56, 59]. More-
over, when it is valid at the Big-Bang, it automatically
satisfies Penrose’s Weyl curvature hypothesis, whose mo-
tivation was in the first place to connect the cosmological
and the thermodynamic arrows of time [42, 55].

Then, there is only one possible space-state at the Big-
Bang, (Σ, γab(x) ≡ 0). The condition of validity of sin-
gular general relativity from [56] also requires that the
matter fields are homogeneous at the Big-Bang [57].

As t ↘ 0 the system may be chaotic, as in the Mix-
master model [37] or the Belinski–Khalatnikov–Lifshitz
model [11]. Then, while at the singularity there is still
only one possible space-state, it can be approached in
different ways as t↘ 0. However, the limit γ → 0 forces
the solutions to depend on a small number of parameters
as they converge to the unique space (Σ, γab(x) ≡ 0).
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This severe constraint of the initial conditions for
(Σ, γab) implies that the branching structure of the wave-
functional is extremely asymmetric in time. This sug-
gests a possible reason why, at macro scales, branching
happens only towards the future.

MSTI Answer 4 (Branching asymmetry). Branching
happens only towards the future because at the Big-Bang
the space-states have a very small number of degrees of
freedom and all converge to the same initial space-state
(Σ, γab(x) ≡ 0).

This answer is of course incomplete. We do not know
why the initial state had to be the Big-Bang, and it is not
even sure that there was a singularity, many researchers
think that quantum gravity will be able to remove it. But
singular general relativity suggests that singularities are
not necessarily ill-behaved, they can even solve notorious
problems in quantum gravity [58, 60].

E. Probabilities from continuity

When a quantum measurement is made, the probabil-
ity to obtain a certain outcome is given by the Born rule
to be the square of the projection of the state vector.
Different outcomes may therefore have different proba-
bilities. However, in MWI, there is only one branch for
each of these outcomes. A direct counting argument im-
plies that all outcomes should be obtained with the same
probability, contrary to the Born rule.

MWI Problem 5 (Probabilities). Why are the prob-
abilities proportional to the squared amplitudes of the
branches?

There are various proposed solutions, based on many-
minds [1], decision theory [18, 73], measure of existence
[68] etc. For a review see [71]. Proposals that some-
how the amplitude of a branch yields probability have
merits and led to interesting insights into the nature of
probability [74]. But if probabilities could be obtained in
the old-fashioned way, for example by branch counting of
a more refined branching structure (Saunders advocates
this [49]) or ideally as the ratio of the number of favor-
able outcomes to the total number of possible outcomes,
the result would be more palatable, without necessarily
contradicting other proposals.

These proposals are well justified, but it may help to
have a solution based on micro-state or micro-branch
counting, according to the Rule of Thumb 1. A micro-
branch counting method would, preferable, rely on an
absolute notion of micro-branches. MSTI does just this:

MSTI Answer 5 (Probabilities). “Counting” space-
states allowed to have an inhomogeneous density gives
probabilities proportional to the squared amplitudes.
Taking each space-state into account is justified by the
fact that only those states have local beables, see §VIG.

This may provide a concrete realization of other pro-
posals, without necessarily rejecting them.

F. Real wavefunction

The Rule of Thumb 1 also suggests the following

MWI Problem 6 (Real-number-based probabilities).
It is true that the norm of the (complex) wavefunction
is real. But is there a deeper reason why we get real
probabilities?

MSTI suggests a solution according to the Rule of
Thumb 1 for this too:

MSTI Answer 6 (Real-number-based probabilities).
The wavefunctional is real, and the phases only repre-
sent a global U(1) gauge choice for the classical fields in
the space-states. The real coefficients are the densities of
the space-states composing the wavefunctional.

G. Ontology

Sometimes it is said that the wavefunction does not
have “enough ontology”, that it lacks local beables (in
space).

MWI Problem 7 (Ontology). What is the ontology of
MWI? What are the local beables?

A primitive ontology similar to that of GRWm (see
§VIC) can work for MWI [2], by using as local beables
the mass or charge density, solution originally proposed
by Schrödinger to interpret the wavefunction. But it can
be argued that this adds new ontology besides the wave-
function, and that the same can be said if we take the
center of mass of the atoms as the local beables in MWI.
Some researchers consider that the abstract state vec-

tor and the Hamiltonian are sufficient to specify the on-
tology of MWI, and from it one can derive an essentially
unique space, the tensor product structure, the preferred
basis, and all there is to be known about the universe
[16]. But if any of these structures can be derived from
the state vector and the Hamiltonian, infinitely many
other physically distinct solutions exist [63]. So a pre-
ferred basis or another structure should exist.
And indeed, other researchers consider that not merely

the abstract state vector is needed, but the wavefunction,
i.e. the state vector expressed in space, and this is suffi-
cient to specify the complete ontology [69, 70].
Despite this, and despite the arguments from [64] and

the local representation of the wavefunction from [61],
researchers like Maudlin [34–36] and Norsen [38] consider
that MWI does not have a primitive ontology (in terms
of local beables).
But in every micro-world in MSTI there are local be-

ables, just like in classical physics.

MSTI Answer 7 (Ontology). Although the wavefunc-
tional is all there is [69], the space-states have a privileged
ontic status, so I call them ontic states. This is necessary,
because the ontology cannot be the abstract state vector
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[63], but the wavefunction, which presuposes a preferred
basis. Each of the ontic states consists of a space (Σ, γ),
on which classical fields ϕγ are defined. Each ontic state
appears at most once in the composition of the wave-
functional, with a nonuniform density. The distribution
gives the real wavefunctional, and a global gauge gives
the phase of each term in the wavefunctional. The local
beables are the classical fields ϕγ and γ defined on the 3d
manifold Σ, so they are defined only for space-states. The
space-states, having definite local beables, correspond to
(micro-)worlds. This justifies counting them to obtain
the probabilities.

Since local beables exist as classical fields, the Rule of
Thumb 1 was followed. What can be more classical than
the classical itself?

VII. DISCUSSION

It is uncommon to use the wavefunctional formulation
of quantum field theory in the interpretation of quantum
mechanics. It is more common to take nonrelativistic
quantum mechanics as a benchmark for these interpreta-
tions. But the wavefunctional formulation is natural too,
if not even more natural, and it is more realistic.

Observation 5. When we perform a quantum measure-
ment of a smaller system, we never observe directly its
state, only the pointer state of the apparatus, which is
macroscopic. A measuring device is dedicated to a par-
ticular location and type of quantum field (or subsystem
in general), not to a particular particle (or subsystem).
The result of any measurement translates into a change
in the macro-state of the universe. All these are described
adequately by the wavefunctional of the entire universe.

Wheeler and Everett considered MWI as the interpre-
tation of quantum mechanics that is suitable for quantum
gravity [8, 15]. According to DeWitt [20], p. 1141:

Everett’s view of the world is a very natural
one to adopt in the quantum theory of grav-
ity, where one is accustomed to speak without
embarrassment of the ‘wave function of the
universe.’ It is possible that Everett’s view is
not only natural but essential.

Here, we have seen that background free quantum
gravity solves some foundational problems of quantum
mechanics, and especially of MWI. It even suggests a ver-
sion of MWI, which is MSTI, as the more natural inter-
pretation of quantum mechanics. The relation between
quantum gravity and MWI is therefore reciprocal.

Finally, I argued that MSTI solves some of the main
problems of standard quantum mechanics and MWI. The
strategy to make this interpretation more palatable was
to highlight similarities with classical physics, based on
the Rule of Thumb 1. It turns out that, except for the
existence of a multiplicity of worlds, MSTI is a more

classical-like version of MWI, with respect to the appear-
ance of classicality, the existence of local beables, the
probabilities, and even the understanding of the complex
numbers inherent to the theory.
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