
STRICT DOMINANCE AND SYMMETRY

ALEXANDER R. PRUSS

Abstract. The Strict Dominance Principle that a wager always paying
better than another is rationally preferable is one of the least contro-
versial principles in decision theory. I shall show that (given the Axiom
of Choice) there is a contradiction between Strict Dominance and plau-
sible isomorphism or symmetry conditions, by showing how in several
natural cases one can construct isomorphic wagers one of which strictly
dominates the other. In particular, I will show that there is a pair
of wagers on the outcomes of a uniform spinner which differ simply in
where the zero degrees point of the spinner is defined to be but where
one wager dominates the other. I shall also argue that someone who ac-
cepts Williamson’s famous argument that the probability of an infinite
sequence of heads is zero should accept the symmetry conditions, and
thus has reason to weaken the Strict Dominance Principle, and I shall
propose a restriction of the Principle to “implementable” wagers. Our
main result also has implications for social choice principles.

1. Introduction

The Strict Dominance Principle is among the least controversial principles
in decision theory: When one wager beats a second no matter what happens,
the first wager certainly looks more rational than the second. Dominance is
useful for arguments when one cannot assume that both sides of a discussion
accept more controversial decision-theoretic principles, but where one can
argue that some credential or decision-making process is irrational because
it yields an outcome sure to be worse than another process’s outcome. Thus,
dominance has been used in pragmatic and non-pragmatic arguments for the
rational requirement of probabilistic consistency in credences (e.g., [4], [8],
[9]) and is of course central to discussions of the Newcomb Problem. Even
Dutch Book arguments that show that some process leads to acceptance
of a series of wagers that together result in a sure loss (e.g., [1], [13]) may
just be a special case of dominance arguments, in that arguably what is
objectionable about accepting a Dutch Book is that one is accepting a set
of wagers that are collectively dominated by the status quo.

I shall argue, however, that there is a cost to the Strict Dominance Prin-
ciple: someone who affirms it needs to either deny plausible symmetry prin-
ciples or opt for a controversial narrowing of decision theory to what one
might call “implementable wagers”. Our main example of where symmetry
and strict dominance conflict involves a paradoxical wager similar to the
case of Vitali sets, whose existence is famously proved with the Axiom of
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Choice, and hence our paradoxical wager will not be one where we have an
explicit mathematical construction.

Suppose we have a sample space Ω of possible states. A wager W will
be a real-valued function on Ω whose values represent utilities and which
is bounded, i.e., there is a finite number M such that |W (ω)| < M for all
states ω. The reason for the restriction to bounded wagers through most
of the paper is to avoid paradoxes involving unbounded wagers, such as
St. Petersburg.

There are several concepts of dominance. Given wagers W1 and W2, we
say that:

(1) W2 strictly dominates W1 if and only if W2(ω) > W1(ω) for all ω
(2) W2 weakly dominates W1 if and only if W2(ω) ≥ W1(ω) for all ω

with the inequality being strict for at least one ω
(3) W2 non-strictly dominates W1 if and only if W2(ω) ≥ W1(ω) for all

ω.

Additionally, if there is a credence function P from some algebra of subsets
of Ω to [0, 1], then we say:

(4) W2 almost strictly dominates W1 with respect to P if and only if
W2(ω) ≥W1(ω) for all ω and the inequality is strict except on some
set A ⊆ Ω with P (A) = 0.1

Strict dominance entails almost strict dominance and, if P satisfies the ax-
ioms of finitely additive probability2, then almost strict dominance entails
weak dominance. These conditions naturally extend to unbounded wagers.

Write W1 wW2 to mean that W2 is non-strictly preferred by the agent in
question to W1, and W1 ≺W2 provided that the agent strictly prefers W2 to
W1, i.e., that W1 wW2 but not W2 wW1. Write W1 ≈W2 provided that the
agent is indifferent between W1 and W2, namely W1 w W2 and W2 w W1.
It is usual to assume that w is a partial preorder, which is a reflexive and
transitive relation, and often decision theorists assume preference structures
that are total preorders, which have the additional property that at least
one of W1 w W2 and W2 w W1 holds for any wagers W1 and W2. However,
our main results will not need reflexivity, transitivity, or totality.

Say that w satisfies the Principle of Strict (or Weak or Almost Strict,
respectively) Dominance if for any wagers such that W2 strictly (or weakly
or almost strictly, respectively) dominates W1, we have W1 ≺ W2. And
say that it satisfies the Principle of Non-Strict Dominance if whenever W2

non-strictly dominates W1, we have W1 wW2.
Because we did not assume reflexivity, it is formally possible for the pref-

erence structure to be empty—for the agent not to have any preference
relations between any wagers. It is also formally possible for there to be

1This condition is related to the condition that P ({ω : W2(ω) = W1(ω)}) = 0, but is
weaker. For instance, it may be that the set {ω : W2(ω) = W1(ω)} is not P -measurable,
even though it is contained in a set with P -measure zero.

2Actually, all we need is that P (Ω) 6= 0.
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some w-unrelated wagers, ones that are not related by preference to any
wagers, not even themselves. However, as soon as we have any of the four
dominance principles defined in the previous paragraph, it will follow that
for any wager W , we have W − 1 wW wW + 1, where W + α is the wager
that pays α more than W no matter what, and hence no wager will be w-
unrelated. Each of the dominance principles thus implies that the preference
structure extends to all wagers.

Now, certain sample spaces come along with intuitive symmetries. For
instance, suppose that Ω is the set of outcomes of a uniform fair spinner,
naturally identified with the set of points on the circumference of the unit
circle. Then any rotation (and reflection, for that matter) is a plausible
symmetry of Ω. We say that an agent’s preference structure w is (strongly)
invariant under a set G of permutations of Ω provided that we always have
W ≈ W g, where W g is the wager defined by W g(ω) = W (gω) and g is
in G. In the spinner case, if g is a rotation, then W g is the wager you
get by adding an extra rotation g to the end of a spin before calculating
the payoff using W , and (strong) G-invariance says that adding an extra
rotation doesn’t affect the agent’s preferences. Intuitively, if our spinner is
known by a rational agent to be truly uniform, adding an extra rotation to
the end of the spin shouldn’t affect the agent’s preferences. The wagers W
and W g are isomorphic in a very natural way—they just differ in where we
put zero degrees on the circle when defining the payoffs.

Pruss [10] showed that the Principle of Weak Dominance is incompatible
with rotational invariance. Fix any irrational number x. Let A is the set of
points on the circle at x, 2x, 3x, ... degrees, and suppose W is the wager that
pays a dollar on A and zero outside it. Then if ρ is rotation by x degrees,
W ρ pays a dollar on the set A0 of points at 0, x, 2x, ... degrees and zero
outside A0. Thus, W ρ weakly dominates W , and so w cannot both satisfy
rotational invariance and the Principle of Weak Dominance.

However, this is not a particularly impressive example. Because A is a
countably infinite set, its Lebesgue measure is zero, and so it is reasonable
to say that the probability of any non-zero payoff by either wager is zero
on classical probability theory, or at best an infinitesimal if a non-classical
theory is preferable. It does not seem particularly costly to say that one
can ignore infinitesimally unlikely outcomes in one’s decision theory, and be
indifferent between wagers that differ in this way.

But I will show that, given the Axiom of Choice, for any irrational x and
ρ defined just as above, there is a different wager V , obtained by tweaking
a construction of Norton [6], such that V ρ strictly dominates V . Then it is
impossible to have a preference preorder w that satisfies both the Principle
of Strict Dominance and rotational invariance. I will give the simple proof
of this result in the next section, together with a simple general characteri-
zation of precisely when one can have both Strict Dominance and invariance
under a group of symmetries, and some further examples. I will then dis-
cuss philosophical consequences for decision theory. In particular I will argue
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that we may well need to choose between Strict Dominance and the kind of
symmetry reasoning that underlies Williamson’s famous argument that the
probability of an infinite sequence of heads is zero rather than a non-zero
infinitesimal. One suggestion I will offer is that we should consider restrict-
ing our decision theory to “implementable” wagers. I will end with a brief
sketch of some extensions, including to analogous results regarding Pareto
conditions in social choice.

2. Main result and some examples

First, we prove the existence of our paradoxical wager in the case of the
spinner. As before, let x be an irrational number and let ρ be rotation by
x degrees. Define the relation ∼ on points on the unit circle S1 by letting
a ∼ b hold if and only if b can be obtained by rotating a by an integer
multiple of x degrees about the center of the circle. It is easy to see that
∼ is reflexive, symmetric and transitive, and hence it divides the unit circle
into a collection of equivalence classes. By the Axiom of Choice, let E be a
set that contains exactly one element from each equivalence class. Given a
point a on the circle, there is a unique integer n such that there exists a b ∈ E
such that a is the result of rotating b by nx degrees (here the irrationality
of the number x is used).3 Let U(a) = n. Observe that U(ρa) = U(a) + 1
for any ρ.

Thus, Uρ strictly dominates U . However, U is unbounded. To get a
bounded wager, let V (a) = φ(U(a)) for any strictly increasing bounded
function φ on the reals (e.g., φ(y) = arctan y or φ(y) = y/(1 + |y|)). We will
still have V ρ strictly dominating V .

We can now generalize the above reasoning to show that unless a certain
technical condition on the symmetries of Ω holds (condition (iv) below),
then there is guaranteed to be a paradoxical wager like the above. The
technical condition says that for every symmetry g, there is some point of
Ω such that a finitely repeated application of g will return that point to
itself. This condition was not met in our spinner case, because repeated
rotation by x degrees will never return to the original point if x is irrational.
On the other hand, if we ad hoc restricted our rotations to angles that are
rational numbers of degrees, the technical condition would be met, since if
g is rotation by p/q degrees where p and q are integers with q ≥ 1, then
360q applications of g would return any point to itself. Moreover, it turns
out that when the technical condition is satisfied, then we can prove that
there is an invariant preference structure, and even one that is total.

3First, there is exactly one member b in E such that a ∼ b, since E contains exactly
one element from each equivalence class. Now suppose a can be obtained by rotating b
by nx degrees as well as by mx degrees for integers n and m. We must show that n = m.
But the only way rotation by nx degrees and one by mx degrees applied to b can both
yield the same point a is if nx−mx = (n−m)x is an integral multiple of 360. But since
x is irrational, this can only happen if n−m = 0.
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Proposition 1. Assume the Axiom of Choice. Let G be a group of permu-
tations of Ω. Then the following conditions are equivalent:

(i) There is a G-invariant preference structure on wagers on Ω that
satisfies the Principle of Strict Dominance.

(ii) There is a G-invariant total preorder on wagers on Ω that satisfies
the Principles of Strict Dominance and Non-Strict Dominance.

(iii) There is no wager V and g ∈ G such that V g strictly dominates V .
(iv) For every member g of G, there is a positive integer n and a member

ω of Ω such that gnω = ω.

Proposition 1 does not depend on any assumptions about probabilities
(whether classical, risk-averse, qualitative, etc.), and while it is formulated
above for bounded real-valued wagers, it works for wagers with any values
that have a bounded subset of the same order type as the integers. It further
has applications in completely non-probabilistic situations: see Section 4.4

The proof of the Proposition is given in the Appendix.
The simplest example where Strict Dominance is impossible is when Ω is a

bidirectionally infinite fair lottery with tickets corresponding to the integers,
and G consists of all forward/backwards shifts of ticket numbers. Thus, a
member of G is a permutation ρn, for an integer n, such that ρnm = n+m.
In this case, the Axiom of Choice is not needed, as we can exhibit the wager
V explicitly as V (n) = φ(n) for any bounded strictly increasing function φ.
But while this example is mathematically trivial, the possibility of infinite
fair lotteries is quite philosophically controversial (see Pruss [12, Chapter 4]
and Norton and Parker [7]).

Here is a less trivial case. Suppose first we have a bidirectionally (count-
ably) infinite sequence of independent flips of a fair coin. For instance, we
might have a line of people, stretching to infinity in both directions, and
each one flips a fair coin, or we might have an infinite past and and an infi-
nite future and each day one fair coin is flipped. We can represent a point
ω in our space Ω as a function that assigns to each integer n either T or H,
depending on whether the nth coin is tails or heads. We denote the set of
functions from the set of integers Z to {T,H} as Ω = {T,H}Z.

In this example, one natural groupG of symmetries are shifts by an integer
amount. Thus, a permutation g in G shifts the results along the sequence,
and is of the form ρm where ρm is a shift by m to the left: (ρmω)(n) =
ω(m + n). In this example, condition (iv) is actually satisfied. For given
any shift ρm, we have ρmω = ω if ω consists only of heads or only of tails.
Thus, Proposition 1 tells us that there is a total preorder on Ω that satisfies
the Principles of Strict and Non-Strict Dominance and is invariant under all
shifts.

However, it is too soon for friends of dominance and symmetry to rejoice
even in this case. For in this case we can show that there is no G-invariant
preference that satisfies Almost Strict Dominance. To see this, say that a

4I am grateful to an anonymous reader for these observations.



6 ALEXANDER R. PRUSS

heads-and-tails sequence ω in Ω is m-periodic provided that it repeats with
a cycle of length m: i.e., ω(m + n) = ω(n). And say that ω is periodic if
for some finite m it is m-periodic. Let Ω0 be the set of sequences in Ω that
are not periodic. If g is a shift by a non-zero amount, then the only way we
can have gnω = ω for n > 0 is if ω is periodic. Thus, if replace Ω with Ω0,
then condition (iv) will fail. Thus, by the negation of (iii) there will be a
paradoxical wager V on Ω0 and a shift g such that V g strictly dominates V .

Now observe that with respect to the classical probability measure P on
Ω that treats all the coin tosses as fair and independent, the set of periodic
sequences has zero probability. For, given any m, there are exactly 2m se-
quences that are m-periodic, and hence there are only countably many peri-
odic sequences.5 But on the classical coin-flip probability measure, every in-
dividual sequence ω has probability zero, and hence by countable additivity,
the set of all of them has probability zero. We can now take our paradoxical
wager V on Ω0 where V g strictly dominates V , and extended it to a wager
W on Ω by saying that W (ω) = V (ω) for ω ∈ Ω0 and W (ω) = 0 for a peri-
odic ω. Then W g(ω) > W (ω) for every non-periodic ω, and W g(ω) = W (ω)
for every periodic ω, so W g almost strictly dominates W . It follows that
there is no G-invariant preference w for wagers on Ω that satisfies Almost
Strict Dominance, since if w satisfied Almost Strict Dominance, we would
have W ≺W g, contrary to G-invariance.

3. Philosophical consequences

Proposition 1 shows that the following three theses are contradictory:

(5) The Axiom of Choice holds.
(6) Ideal agents’ preferences always satisfy Strict Dominance.
(7) Ideal agents’ preferences are sometimes invariant under symmetries

that fail condition (iv) of Proposition 1, such as rotational symmetry
for uniform spinners or translational symmetry for infinite countable
fair lotteries.

I will take the Axiom of Choice for granted—it is widely accepted by
mathematicians, and a serious discussion would move us from decision the-
ory to the philosophy of mathematics. Thus, we have a choice between
rejecting Strict Dominance and rejecting the relevant cases of symmetry.

Furthermore, the following thesis is very plausible:

(8) If ideal agents’ preferences always satisfy Strict Dominance, they
also always satisfy Almost Strict Dominance.

In addition to the strong intuitive plausibility of (8), we can argue for it
as follows. Suppose (8) is not true, so that ideal agents’ preferences always
satisfy Strict Dominance but not always Almost Strict Dominance. Thus we
will have a case where an ideal agent, call her Alice, has a credence function
P and two wagers W1 and W2 have the property that W2 almost strictly

5The union of a countable sequence of finite sets is countable.
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dominates W1 with respect to P , but Alice does not prefer W2 to W1. Let
A be an event with P (A) = 0 such that W2 > W1 everywhere outside of A.
Plausibly, if Alice were to gain complete “Cartesian” certainty that A did
not occur, she would prefer W2 to W1: events one is completely certain did
not occur not be included in the relevant sample space, and with the space
restricted to the outside of A, there would be strict dominance between the
wagers W2 and W1. Now, it is natural to treat probability one as a kind
of certainty, and so Alice may well have a kind of certainty that A did not
occur, but it need not be a complete certainty (e.g., even if the probability of
an infinite sequence of heads on fair independent tosses is zero, one does not
have complete “Cartesian” certainty that such a sequence won’t transpire).
The difference between complete certainty and probability one is presumably
behind why Alice, despite being an ideal agent and ideal agents’ preferences
satisfying Strict Dominance, does not strictly prefer W2 to W1.

Still, when a wager W2 is strictly preferred to W1 outside of an event A,
it seems that the only reasons an ideal agent might have not to prefer W2

to W1 would either be (a) a worry that W1 is preferable to W2 on A or (b) a
worry that the case where A does not occur is probabilistically negligible or
(c) skepticism about the Principle of Strict Dominance. Now we’ve assumed
that ideal agents do respect the Strict Dominance Principle. Furthermore,
Alice should not worry that W1 is preferable to W2 on A, since even on A
we have W2 ≥ W1, and it is the case where A occurs, rather than the case
where it does not, that is probabilistically negligible. Hence none of (a)–(c)
apply, and Alice should prefer W2 to W1.

If we accept (8), the stakes in the conflict between Strict Dominance and
symmetry are raised. For even if one is skeptical of countably infinite fair
lotteries (e.g., [6] or [12]) and of completely rotationally symmetric spinners,
it is very plausible that preferences between wagers concerning a bidirection-
ally infinite sequence of independent fair coin flips should be invariant under
translations.

In particular, if we accept Almost Strict Dominance and (8), we will now
have a new reason to be skeptical of Williamson’s [17] famous argument
that an infinite sequence of heads has probability zero rather than being a
non-zero infinitesimal. Williamson’s argument supposes a unidirectionally
infinite sequence of independent fair coins being tossed, which we can imag-
ine arranged at spatial or temporal locations 1, 2, 3, .... Let the probability
of that sequence being all heads be ε. Williamson then has us suppose an-
other independent fair coin being tossed at location 0. The probability of
this larger sequence of coins being all heads then equals (1/2)e. But the two
sequences are isomorphic in a sense relevant to probabilistic reasoning, so
ε = (1/2)ε, which is only possible if ε = 0.

Now, if we accept the isomorphism step in Williamson’s argument, then
we should likewise hold that a bidirectionally infinite sequence of indepen-
dent fair coin tosses is epistemically isomorphic to a sequence translated by
one coin to the left. The intuitions here are the same. But an ideal agent
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would not have a strict preference between epistemically isomorphic wagers.
And yet Almost Strict Dominance forces such a preference, if translations
result in epistemically isomorphic situations. Thus, if we accept Almost
Strict Dominance, we need to reject that translations of coin flips result in
epistemically isomorphic situations, and hence we should reject Williamson’s
argument. Those readers who find Williamson’s argument compelling will
thus have reason to reject the Principle of Almost Strict Dominance, and,
given (8), the Principle of Strict Dominance.

Of course, when we reject a plausible thesis, like Strict Dominance, we
should try to find another in its place. One might consider replacing Strict
Dominance with Non-Strict Dominance, as Non-Strict Dominance can be
satisfied no matter what symmetries we want. However, the Principle of
Non-Strict Dominance is quite a weak thesis, given that it can be satisfied
trivially by the total preference preorder where one is indifferent between all
pairs of wagers.

But there is a more interesting way to weaken Strict Dominance. As
defined, the Principle applies to all wagers, and wagers are just bounded
mathematical functions. When preference structures were introduced, it was
noted that each of the four dominance principles (Strict, Weak, Non-Strict
or Almost Strict) was sufficient to imply that every wager was preference-
related to some other wager. But not every mathematical function can be
the payoff function for a physically implementable game. For instance, in the
circle case, the choice set E containing one element from each ∼-equivalence
class is a non-measurable set similar to a Vitali set. Norton [6] considers
an infinite lottery very similar to one obtained by spinning our spinner and
applying our function U to the outcome, and argues that such a lottery is not
implementable because there is no way to check whether the spinner lands
in a particular Vitali set. The same point applies to our case. We can thus
weaken our dominance principles to apply only to physically implementable
wagers. This would leave open the possibility that some wagers (say, some
or all the unimplementable ones) are not preference-related to any wagers
or are not preference-related to any wagers distinct from themselves.

It is worth noting that in the circle case, a wager involving the paradoxical
property that W ρ strictly dominates W for some rotation ρ is always a
Lebesgue non-measurable function. For if W ρ strictly dominated W and
yet W was measurable and bounded, we would absurdly have:

0 =

∫
S1

W ρ dλ−
∫
S1

W dλ =

∫
S1

(W ρ −W ) dλ > 0,

where λ is Lebesgue measure, the first equality follows from the rotational
invariance of Lebesgue integrals, the second from their linearity, and the fi-
nal inequality follows from strict dominance and the fact that the Lebesgue
integral of a strictly positive function is strictly positive. A similar argument
shows that in the case of the bidirectionally infinite sequence of coin tosses,
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any wager W such that W ρ almost strictly dominates W for some transla-
tion ρ will also fail to be measurable with respect to the standard product
measure on {H,T}Z.6 And it is plausible that non-measurable functions are
not implementable as actual games.7

Formally, we then have this fact contrasting with Proposition 1:

Proposition 2. Suppose µ is a countably additive probability measure on
a σ-algebra F of measurable subsets of Ω that is invariant under a group
G, i.e., if ρ in G and A ∈ F , then ρA ∈ F and µ(ρA) = µ(A). Define the
preference relation W1 wW2 if and only if W1 and W2 are µ-measurable and∫

ΩW1 dµ ≤
∫

ΩW2 dµ. Then w is transitive, is reflexive on the measurable
wagers, satisfies the restriction of Strict Dominance Principle to measurable
wagers, and has the symmetry property that W ≈ W ρ for any measurable
wager W .

This follows from the fact that the integral of W and W ρ is the same if the
measure is G-invariant and ρ ∈ G, and that if W1 < W2 everywhere, then∫

ΩW1 dµ <
∫

ΩW2 dµ for any measure µ. Lebesgue measure on the circle
will be invariant under rotations, and in many other contexts—like the coin
toss one—there will be other invariant countably additive measures.8

Restricting Strict Dominance to physically implementable wagers thus
may allow us to preserve symmetry, assuming only measurable functions
are implementable. Perhaps, though, we have higher ambitions for decision
theory, and think general principles such as Strict Dominance should apply
at least to all metaphysically possible situations. However, not only is it
unlikely that a game involving a non-measurable payoff function is physi-
cally implementable, it may even be metaphysically impossible. The only
way we know how to knowingly implement selections that use the Axiom of

6The only difference is that in the last step of the proof where we will need to show
that

∫
{H,T}Z(W ρ −W ) dP > 0, we won’t have a guarantee that W ρ −W > 0 everywhere,

but only that this happens outside of a set of measure zero. But that’s enough for the
integral to be strictly positive.

7Solovay [14] has famously shown that assuming a certain large cardinal assumption,
the existence of a non-measurable set requires some version of the Axiom of Choice. If
the assumption holds, then any paradoxical wager like the one in the spinner case requires
the Axiom of Choice. Note, however, that the fact that the proof of something requires
the Axiom of Choice does not prove that the thing cannot be explicitly constructed, as
Kanovei and Shelah’s [5] construction of a free ultrafilter on an infinite set shows.

8Note that Proposition 2 becomes false if “countably additive” is replaced by “finitely
additive”, at least given the Axiom of Choice. Let G = Ω = Z be the integers, acting
on themselves by addition. Since (Z,+) is a commutative group, it is amenable [16,
Theorem 12.4], i.e., there is a finitely additive Z-invariant probability measure µ on Z.
Invariance implies that every singleton has the same measure, and finite additivity forces
that measure to be zero, so again by finite additivity the measure of every finite set is
zero. Let W1 be the wager that is zero everywhere and let W2(n) = 1/(1 + |n|). Then
W2 strictly dominates W1, but 0 ≤

∫
Ω
W2 dµ ≤ 1/n for every positive integer n, since

W2 ≤ 1/n everywhere except on the finite set {−(n− 2), . . . , n− 2} which has µ-measure
zero, so

∫
Ω
W2 dµ = 0, which is also what the integral of W1 equals.
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Choice involves nested supertasks and it is far from clear that supertasks are
metaphysically possible [12]. Indeed, we might even take the tension between
Strict Dominance and symmetry, together with the apparent implementabil-
ity of the Choice-selections with supertasks, as a further argument against
the metaphysical possibility of supertasks.

We might, on the other hand, choose to weaken the symmetry condition.
Again, one way is to apply it only to physically or maybe even metaphysically
implementable wagers.

Another approach is to weaken strong G-invariance to weak G-invariance,
where instead of requiring that W ≈ W g, we require that for all W1, W2

and g, we have W1 w W2 if and only if W g
1 w W g

2 . Things look much
better for weak G-invariance. For instance, if we define a preference preorder
by stipulating W1 w W2 just in case W2 non-strictly dominates W1, then
we satisfy both Strict Dominance and weak G-invariance for any group of
permutations G. Moreover, it follows from [11, Theorem 2] that whenever
G is a commutative group (this will be true for the rotations in our spinner
example and the shifts in our bidirectionally infinite lottery and coin toss
examples), this partial preorder w can be extended to total preorder.

However, weak G-invariance does not capture our symmetry intuitions
unless it implies strong G-invariance. In the case of the spinner, it is not
only intuitive that our relative rankings between a pair of wagers should
be unchanged by rotating one of the wagers, but also that they should be
unchanged by rotating one of the wagers, and that condition immediately
implies strong G-invariance (just apply it in the case where the two wagers
are the same).

Furthermore, in the case of the spinner, the countably infinite fair lottery
and the bidirectionally infinite sequence of coin tosses, it is just as intuitive
to think that we should have weak invariance under reflections9 as that we
should have weak invariance under rotations or translations. However, weak
invariance of a total preorder under all reflections implies strong invariance
under all reflections by [11, Prop. 2], and any rotation (in the spinner case)
or translation (in the lottery and coin cases) can be generated by a pair of
reflections.10 Thus, at least in the case of a totally preordered preference
structure, weak invariance under reflections implies strong invariance under
rotations or translations (depending on the case), and we have seen that
strong invariance cannot be had.

9In the case of the spinner, we can reflect the result in a line through the center of
the spinner. In the lottery, for any fixed m such that 2m is an integer, we can map an
outcome n to its reflection m − n around m, and in the coin toss example, for any such
m, we can map ω to ωm defined by ωm(n) = ω(m− n).

10A rotation by an angle α can be generated by reflecting about a line at angle α/2 and
then a line at angle 3α/2; a translation by a distance x can be generating by reflecting
about the point x/2 and then the point 3x/2.
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We thus have a choice: To limit the scope of decision to implementable
wagers and argue that the paradoxical wagers in this paper are not imple-
mentable, to reject Strict Dominance, or to reject very plausible symmetry
principles, including the one underlying the Williamson argument.

4. Some extensions

While the vocabulary of wagers has been used so far, and Ω in Proposi-
tion 1 has been interpreted as a sample space, the Proposition as a mathe-
matical result has implications that go beyond these interpretations.11

For instance, we can reinterpret Ω as a set of sites of value (e.g., persons
at spatiotemporal locations) and a wager as a deterministic distribution of
goods across sites, and get a result for non-probabilistic social choice princi-
ples. For the Proposition implies that a preference structure on distributions
of goods (even ones of bounded value) across the sites that is invariant under
some group G of symmetries of the sites can only satisfy the weak Pareto
condition that a distribution that is better for everyone is always preferred
to a distribution that is worse for everyone if the symmetries satisfy con-
dition (iv) of the Proposition (i.e., if there is a symmetry g that does not
move any point of Ω around a finite cycle). For instance, if the persons are
located at all the intersection points of a two- or three-dimensional rectan-
gular grid, and the symmetries are translations along the axes of the grid,
then condition (iv) fails, and no symmetry-invariant preference structure
satisfies the weak Pareto condition.12 If one is confident of the weak Pareto
condition, this provides another argument that spatiotemporal location may
be morally significant (cf. [3]), or it might make one suspicious of the weak
Pareto condition.

Or, more generally, following Easwaran [2] we can consider Ω to be a set
S×Ω1 of pairs (z, ω) where z ∈ S is a site of value and ω ∈ Ω1 is a location in
a probabilistic sample space, allowing one to consider probabilistic situations
where values are not aggregated into a single value. In this case, G can be
a set of symmetries that act on the sites, on the sample space Ω1, or on
combinations of the two, and once again we can conclude that if condition
(iv) fails, then any symmetry-invariant preference structure fails the weak
Pareto condition that if W1 < W2 everywhere on Ω, then W2 is strictly
preferable.

Finally, it is worth noting that if we do not require the values to be
bounded, then the proof of the Proposition shows that we can replace the

11I am grateful to an anonymous reader for pointing me to these applications.
12That said, in this special case the non-existence of such a preference structure does

not need the Axiom of Choice and is in fact obvious. Suppose the sites have integer
coordinates (x, y, z). Let W (x, y, z) = φ(x) for any strictly increasing bounded function
φ (e.g., arctan) and let τ be translation by one unit to the right along the x-axis. Then
W (x, y, z) < W (x + 1, y, z) = W τ (x, y, z) for all sites (x, y, z), and hence a translation-
invariant preference structure cannot satisfy the weak Pareto condition.
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Strict Domination Principle with what we might call the Very Strict Domi-
nation Principle that if W1 + ε < W2 everywhere on Ω for some fixed ε > 0,
then W2 is strictly preferable to W1. In the social choice setting, this is yields
a result for an even weaker Pareto condition, also discussed by Easwaran [2,
Section III].13

Appendix: Some proofs

Proof of Proposition 1. We will show (i)→(iii)→(iv)→(ii)→(i).
That (i) implies (iii) is clear: if we had V g strictly dominating V and yet

w was a G-invariant preference structure satisfying Strict Dominance, then
by Strict Dominance we would have V ≺ V g, contrary to G-invariance.

Now we show that (iii) implies (iv). Assume (iv) is false. Thus there is a
symmetry g such that gnω 6= ω whenever n > 0 and ω ∈ Ω. More generally,
it follows that if gnω = gmω, then n = m. For, otherwise, we could suppose
without loss of generality that n > m and we would have gn−mω = ω.

Let a ∼ b if and only if a = gnb for some integer n. Then ∼ is an
equivalence relation, and we can let E contain exactly one element from
each equivalence class by Choice. Given a ∈ Ω, let b ∈ E be such that
a = gnb for some integer n. The integer n is unique, since otherwise we
would have gnb = gmb for distinct n and m. Let U(a) = n, observe that
Ug(a) = U(a) + 1 and, as before, let V (a) = φ(U(a)) for a bounded strictly
increasing φ. Then V g strictly dominates V , and we have not-(iii).

Now we show (iv) implies (ii). Assume (iv). Say that V w W just in
case there is a g ∈ G such that V (ω) ≤ W g(ω) for all ω ∈ Ω. Then w is
a G-invariant partial preorder, and it clearly satisfies the Principle of Non-
Strict Dominance. We now show that it satisfies Strict Dominance as well.
For suppose it does not, so that there are W1 and W2 such that W1 < W2

everywhere but notW1 ≺W2. By Non-Strict Dominance, we haveW1 wW2.
Thus, for W1 ≺ W2 to fail, we must also have W2 w W1. Hence there is a
g ∈ G such that W2 ≤ W g

1 everywhere. Therefore, W2 < W g
2 everywhere,

since W1 < W2 everywhere. By (iv), there is a positive n and an ω such that
gnω = ω. We then have W2(ω) < W2(gω) < W2(g2ω) < · · · < W2(gnω),
which contradicts gnω = ω.

However, w may be only a partial preorder, and we need a total one. To
that end, let [W ] be the equivalence class of the wager W under the relation
≈ (where, recall, W1 ≈ W2 if and only if W1 w W2 and W2 w W1). Define
the partial order� on these equivalence classes by stipulating that [W ] � [V ]
if and only if W w V (this is well defined because w is transitive). By the
Szpilrajn order extension theorem [15] (this uses the Axiom of Choice), we
can extend � to a total order �∗. Now define W1 w∗ W2 if and only if
[W1] �∗ [W2]. Then w∗ is easily seen to be a total preorder that extends
w. It is strongly G-invariant because it extends the strongly G-invariant

13I am grateful to [anonymized] for [anonymized], and to two anonymous readers for a
careful reading and a number of suggestions that have significantly improved the paper.
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preorder w. It remains to check that w∗ satisfies the Principles of Non-Strict
and Strict Dominance. Non-Strict Dominance follows from the fact that w∗

extends w and the latter satisfies Non-Strict Dominance. That leaves the
Strict case. Suppose W2 strictly dominates W1. By Strict Dominance for
w, we have W1 ≺ W2. Therefore, [W1] � [W2] and not [W2] � [W1]. Hence
[W1] �∗ [W2], since �∗ extends �. Since we do not have [W2] � [W1], we
have [W2] 6= [W1], and since �∗ is an order, and not merely a preorder, it
follows that we do not have [W2] �∗ [W1]. Thus, we have W1 w∗ W2 but
not W2 w∗ W1.

Thus, (iv) implies (ii).
Finally, (ii) trivially implies (i), which completes the proof. �
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