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The ontological models framework distinguishes ψ-ontic from ψ-epistemic wave-
functions. It is, in general, quite straightforward to categorize the wave-function of a
certain quantum theory. Nevertheless, there has been a debate about the ontological
status of the wave-function in the statistical interpretation of quantum mechanics: is
it ψ-epistemic and incomplete or ψ-ontic and complete? I will argue that the wave-
function in this interpretation is best regarded as ψ-ontic and incomplete.
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1 Introduction

In their recent article, Oldofredi and López (2020) claim that Harrigan and Spekkens (2010) define
the ontic state λ in too restrictive a way so that it does not properly capture the statistical interpre-
tation of quantum mechanics. Furthermore, they argue that Harrigan and Spekkens (2010) put the
wave-function in the statistical interpretation in the wrong category: instead of being ψ-epistemic
(and incomplete) the wave-function is ψ-ontic (and complete). They support their argument by his-
toric evidence from Albert Einstein and Leslie Ballentine, who are the most prominent proponents
of the statistical interpretation. I want to challenge all three claims and argue for the following: (i)
the ontic state in the sense of Harrigan and Spekkens (2010) is general enough to capture a statisti-
cal interpretation of the wave-function, (ii) the wave-function can be interpreted as ψ-epistemic as
perceived by Einstein and Ballentine (although it does not merely represent an observer’s knowl-
edge), and (iii) the statistical interpretation is more compatible with an ontic state as described by
Harrigan and Spekkens (2010) than as re-defined by Oldofredi and López (2020).

I will argue that both interpretations face different kinds of problems: the interpretation of Har-
rigan and Spekkens (2010) runs into the PBR-theorem, and the interpretation of Oldofredi and
López (2020) is in fact incomplete itself and conceptually unclear. Ultimately, the status of the
wave-function in the statistical interpretation depends on the particular completion of this theory.
Yet, I will argue that the wave-function in the statistical interpretation is most plausibly ψ-ontic
and incomplete.

2 The Ontological Models Framework

Let me first explain where the notion of ψ-epistemic comes from and what it means. Harrigan and
Spekkens (2010) introduce it within a certain formal framework for quantum mechanics, which
they call the ontological models framework. The main question they ask is, “Does the quantum
state represent reality or only our knowledge of reality?” One option is to sidestep this question
and take an operational approach to quantum mechanics: all one is interested in is predicting the
behavior of quantum systems without recourse to unobservable objects and processes. The ideal
case would be an operational quantum theory that describes all predictions of the theory in terms of
preparation and measurement procedures. In doing so, it needs to say what kinds of measurements
M and preparation procedures P yield an outcome k. An operational quantum theory specifies a
probability P for k, given M and P , that is, P(k|M,P ).

Often a physical theory tells us more about the world than how certain manipulations on a phys-
ical system lead to certain empirical results: it may tell us what the measured system is made of,
what a measurement device is made of, and how measurement and preparation devices interact with
the constituents of the measured system (Hubert, 2021). In particular, the physical theory should
(ideally) specify a complete description of the system’s properties. This complete description is
often denoted λ. A theory that gives such an ontological story to operational quantum theory is an
ontological model of operational quantum theory.

Again, an ontological model of an operational theory of quantum mechanics provides more in-
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formation about the physical system beyond an operational level; it describes the complete physical
state λ of the system. Although measurement and preparation devices can be described with their
own ontic state λ in an ontological theory, they are not reduced to these λ’s in the ontological
models framework. The main problem that the ontological models framework aims to tackle is
how much an observer can know about the ontic state of the physical system if she prepares and
measures the system in a certain way. For example, a preparation procedure may not uniquely
fix the ontic state but rather a probability distribution P(λ|P ) for ontic states given a preparation
procedure. If the observer prepares the system in a state λ, this ontic state determines then the
result k once measured, that is, the ontological models framework provides this probability distri-
bution P(k|λ,M). We can now explain the predictions of the operational theory P(k|M,P ) with
the machinery of the ontological theory:

P(k|M,P ) =

∫
dλP(k|λ,M)P(λ|P ).

We integrate over all the possible ontic states, where P(λ|P ) 6= 0 singles out the ontic states that
are compatible with the state procedure P .

It is often implied that the ontological model framework is a strong constraint on a physical
theory (for instance, Gao, 2017). In my opinion, it is rather a formalization of how physics has
been ever done until recently with the development of quantum physics by identifying the complete
physical state of a system and investigating the time evolution of this state. One may still agree
with me here and still claim that the ontological models framework is too restrictive for quantum
physics (I thank an anonymous reviewer for this remark). Nevertheless, the ontological models
framework reaches a large set of quantum theories that does not face the physical, conceptual, and
ontological problems as theories that do not fit into this model (see, for instance, Chen, 2021b;
Norsen, 2016).

Oldofredi and López (2020) seem to mischaracterize the relation between an operational theory
and its corresponding ontological model:

It is worth noting that the authors define ontological models employing an operational
setting, i.e. the primitive notions of such models consist exclusively in preparations
procedures of physical systems in certain states and measurements performed on them.
A complete specification of the properties of a given physical system is provided by
λ, the ontic state of the system under scrutiny. (Oldofredi and López, 2020, pp. 1318–
1319)

As we have seen, ontological models consider operational procedures to prepare the
state of a quantum system in a certain manner as primitive notions. Such procedures
are associated with some observable properties, whose values will be then revealed
by the performance of a set of measurements on the physical system under scrutiny.
(Oldofredi and López, 2020, pp. 1321)

It is not the ontological model that treats the operational procedures as primitive notions. Rather,
the ontological model provides the tools for explaining these procedures and reduce them to the
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behavior of the ontic state λ. More precisely, ”In an ontological model of an operational theory, the
primitives of description are the properties of microscopic systems,” (Harrigan and Spekkens, 2010,
p. 128) and these properties encoded in λ determine the probabilities and outcomes in preparation
and measurement procedures. Of course, the ontological model itself does not tell us exactly how
the operational procedures look like, but it demands, in contrast to an operational theory, that
the probabilities derive from the interaction with the ontic state of the system. It is only on the
level of the operational quantum theory, where the operational procedures are taken as primitive.
Therefore, the relation between the operational theory and the corresponding ontological model is
indeed similar to the relation between thermodynamics and statistical mechanics.

In quantum mechanics, the wave-function has a double role: it determines the probabilities of
measurement outcomes via the Born rule, and it also (at least partially) describes the ontic state of
the physical system. This is also reflected in the ontological models framework. The probabilities
of the operational theory are determined by the wave-function P(k|M,P ) = Pψ(k|M,P ). The on-
tological models framework zooms in on the relation between the ontic state λ and the correspond-
ing wave-function describing this state. If the system is prepared to have a certain wave-function ψ,
the system may be in one of many possible ontic states compatible with this ψ. The corresponding
probability distribution would be P(λ|P = ψ).

Having introduced the ontic state λ, one can then try to answer the original question “Does
the quantum state represent reality or our knowledge of reality?”. In other words, does the wave-
function represent objective properties of the ontic state (the complete physical description of the
system), or does it rather represent an agent’s knowledge about properties of this state?

Harrigan and Spekkens (2010) introduce an ingenious and rather general formal distinction to
make this question more precise. If we prepare two systems with different wave-functions, a natural
question arises of how the ontic states corresponding to these wave-functions are related. The
ontological models framework distinguishes between two cases:

(i) If the probability distributions P(λ|P = ψA) and P(λ|P = ψB) of two different wave-
functions ψA and ψB do not overlap, as depicted in Fig. 1a), the wave-function is called
ψ-ontic.

(ii) If the probability distributions P(λ|P = ψA) and P(λ|P = ψB) of two different wave-
functions ψA and ψB do overlap, as depicted in Fig. 1b), the wave-function is called ψ-
epistemic.

For every wave-function, there is a set of ontic states λ compatible with this wave-function, that
is, there is a one-to-many relation from the wave-function to the underlying ontic states. If we pick
an ontic state, then it depends on the wave-function whether the relation from the ontic state to
the wave-function is one-to-one or one-to-many. More precisely, if the wave-function is ψ-ontic,
fixing an ontic state λ, there is only one wave-function associated with it. If the wave-function is
ψ-epistemic, there are ontic states which are associated with at least two wave-functions—namely,
the ones in the overlap region.

The definition of ψ-ontic and ψ-epistemic was up to now only about whether or not a wave-
function can be uniquely associated with an ontic state. On this level, ψ-ontic and ψ-epistemic are
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Figure 1: a) The definition of a ψ-ontic wave-function: The probability distributions over the ontic
states associated with the wave-functions ψA and ψB are disjoint. b) The definition of a
ψ-epistemic wave-function: The probability distributions over the ontic states associated
with the wave-function ψA and ψB share a region of overlap.

merely formal notions. Nevertheless, these definitions have been introduced to clarify and make
more precise in what way the wave-function is ontic or epistemic; that is, in what way the wave-
function represents objective features or knowledge about the world. But we will shortly encounter
certain caveats regarding the ontological and epistemic status of ψ-ontic and ψ-epistemic wave-
functions. ψ-ontic andψ-epistemic carve up the ontic and epistemic landscape of the wave-function
a bit differently than the notions may suggest.

2.1 How Ontological Are ψ-Ontic Wave-Functions?

Let us first discuss in which way a ψ-ontic wave-function is ontological. If an ontic state is uniquely
associated with a wave-function, then and only then can we interpret the wave-function as repre-
senting only certain objective properties of λ (what these properties exactly are is left open).

We can introduce further definitions that show how a ψ-ontic wave-function can objectively rep-
resent these properties (see Fig. 2a). First, the wave-function alone can completely describe the
state of the system. In this case, we call the wave-function ψ-complete. The probability distribu-
tions of ψ-complete wave-functions are sharply peaked around λ, as shown in Fig. 3. If the wave-
function does not completely describe λ, then it is called ψ-supplemented. A ψ-supplemented
wave-function would need additional variables to provide such a complete description (what these
variables are is also left open in the ontological models framework).

We can also describe ψ-ontic wave-functions in a different way, as done in Fig. 2b). If the
wave-function represents properties of λ because it is itself a physical object (or rather the object
it represents is a physical object), then we call it ψ-physical. If the wave-function represents an
abstract entity that still determines the behavior of λ, we call it ψ-nomological.1

1An anonymous reviewer challenged my distinction, in the following way (I thank the reviewer for this argument).
First, Harrigan and Spekkens (2010) had in mind aψ-physical wave-function when defining aψ-ontic wave-function;
therefore, ψ-nomological wave-functions cannot be ψ-ontic. I could not retrieve this presupposition in Harrigan and
Spekkens’ paper. Harrigan and Spekkens are rather indifferent to the metaphysical status of the wave-function.
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Figure 2: a) ψ-ontic wave-function can be either ψ-complete or ψ-supplemented. A ψ-complete
wave-function describes completely the ontic state λ. A ψ-supplemented wave-function
only gives a partial description. b) A ψ-ontic wave-function can be either a physi-
cal object (ψ-physical) or an abstract object representing properties of the system (ψ-
nomological).

λ

1

ψA ψB

Figure 3: ψ-complete wave-function. The wave-functions ψA and ψB are narrowly peaked around
an ontic state λ.

We can now build a matrix for the different combinations of ψ-ontic wave-functions (see Fig.
4), as the ontological models framework merely provides a general categorization of the wave-
function that needs to be filled in by specific interpretations of quantum mechanics. Example of
theories or interpretations that construe the wave-function as ψ-complete and ψ-physical are wave-
function realism (Ney, 2021), probably the Copenhagen interpretation, and different versions of the
many-worlds interpretation (Carroll, 2019). Examples of ψ-supplemented and ψ-physical are the
multi-field interpretation within the de Broglie–Bohm theory (Hubert and Romano, 2018; Romano,

Instead, they propose a formal relationship between the ontic state and the wave-function elucidating how the prop-
erties of a physical system are represented by the wave-function. Maudlin (2022, p. 8) also regards nomological
wave-functions as examples of psi-ontic wave-functions and mentions even more subcategories of ψ-ontic wave-
functions than I do. Second, if the the wave-function is ψ-nomological it cannot represent the physical properties
of the ontic state λ qua abstract entity. I suppose that underlying this argument is too strict a reading of the word
”physical” in the definition of the reality criterion. A ψ-nomological wave-function can still represent parts of the
complete physical properties of the quantum system, even if it is an abstract nomological entity. The wave-function
does not need to be a physical object, like a field, to be included in the physical properties of the quantum system.
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1. Multi-Field Interpretation.
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1. Bohumianism.

2. Dispositional dBB.

3. dBB with nomological wave-function.
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5. Marvelous point. 
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Figure 4: The many examples of a ψ-ontic wave-function.

2021), space-time state realism in the many-worlds theory (Wallace, 2003), the many-worlds the-
ory with matter density (Allori et al., 2011), and the original version of Albert’s marvelous point
interpretation (Albert, 1996). Examples of theories or interpretations with a ψ-supplemented and
ψ-nomological wave-function would be Humean interpretations of the de Broglie–Bohm theory
(also called Bohumianism, Esfeld et al., 2014, 2017; Miller, 2014; Callender, 2015; Bhogal and
Perry, 2017; Dewar, 2020), the dispositional interpretation of the wave-function in the de Broglie–
Bohm theory (Esfeld et al., 2014, 2017; Suárez, 2015), the wave-function as a nomological entity
in the de Broglie–Bohm theory (Goldstein and Zanghì, 2013), wave-functionalism (Allori, 2021),
a Humean version of Albert’s marvelous point interpretation (Loewer, 1996), and the GRW the-
ory with a flash or matter ontology (Dorato and Esfeld, 2010; Egg and Esfeld, 2015; Lorenzetti,
2021).2 A ψ-nomological interpretation with a ψ-complete wave-function has not been proposed,
since it is hard to grasp how the wave-function can completely represent the ontic state with it being
nomological entity.

2.2 How Epistemic Are ψ-Epistemic Wave-Functions?

Now let us turn to ψ-epistemic wave-functions. These are the ones where some ontic states λ
are associated with more than one wave-function. How can that happen? One obvious way is
when two agents have different knowledge about the same system and disagree on the the wave-
function, as in Fig. 5. It would be a mistake to say that the wave-function in this case is purely
epistemic; rather, agents would learn something about the system if they assign to the system one
of the (correct) wave-functions that are associated with the ontic state.3 This kind of ψ-epistemic

2The philosophical literature on the GRW theories seems to imply that the universal wave-function is ψ-nomological.
It still needs to be worked out what a ψ-physical wave-function amounts to for collapse theories.

3I thank Travis Norsen for this insight.
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wave-function emphasizes the relational character between the objective properties of λ and the
agents’ knowledge about λ represented in the wave-function. We could call such a wave-function
ψ-credal, as there is another way to interpret ψ-epistemic wave-functions (see Maudlin, 2019, Ch.
3).

-credalψ

| ↑x ⟩| ↑z ⟩

Figure 5: One possibility of a ψ-epistemic wave-function: Two agents assign two different wave-
functions to the same system.

Oldofredi and López (2020) assume that all ψ-epistemic wave-functions are ψ-credal:

If a model is ψ-epistemic, then it cannot in any case be ψ-ontic, since it does not de-
scribe any underlying physical reality, but only the agents’ knowledge of it. (Oldofredi
and López, 2020, pp. 1320)4

Even if a ψ-epistemic wave-function were to represent an agent’s knowledge, the wave-function
would be referring to the ontic state. So if I assign a correct ψ-epistemic wave-function to a
quantum system, I would indeed know some aspects of the underlying physical reality, even if
another agent may assign a different wave-function to the same system.

It is indeed possible to interpret a ψ-epistemic wave-function in a completely non-epistemic
way.5 Imagine we prepare two beams of particles, one with wave-function ψA and the other with
wave-function ψB , and we assume that the wave-function describes ensembles. Then whether a
particle has wave-function ψA is primarily a matter of whether it is part of the ensemble being
prepared as having ψA as its wave-function. If the wave-function is ψ-epistemic there are some of
the particles in the ψA ensemble that may be also correctly described by another wave-function, say

4They say the same also on p. 1318 and 1328.
5It is also possible to have an epistemic interpretation of the wave-function without it being ψ-epistemic. Therefore,

the distinction between ψ-ontic and ψ-epistemic wave-functions does not cover all the ways one can interpret the
wave-function. Pace Oldofredi and López (2020, pp. 1320), the wave-function in QBism would be such an example,
as this theory denies the existence of λ, which is necessary for a wave-function to be ψ-epistemic. What the ontology
of QBism actually is is still debated (see, for instance, Boge, 2021). On the other hand, Oldofredi and López (2020,
p. 1341) classify relational quantum mechanics to be ψ-epistemic because: “For RQM, by contrast, the quantum
state is merely a useful tool for calculation and prediction, and because of this it is ψ-epistemic.”
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ψB . This means that these particles can be correctly associated with either beam, the ψA beam or
the ψB beam. In this case, the wave-function, although ψ-epistemic, does not represent an agent’s
knowledge but rather whether a particle is part of a certain ensemble. Maudlin (2019, Ch. 3) calls
such a wave-function ψ-statistical (see Fig. 6).

-statisticalψ

| ↑x ⟩

| ↑z ⟩

Figure 6: The definition of a ψ-statistical wave-function: The wave-function describes ensembles
of equally prepared quantum systems. In the picture, the upper beam of quantum systems
is prepared in a spin x-up state; the lower beam in a spin z-up beam. By definition of ψ-
epistemic, a certain fraction of quantum systems in each beam can be described by two
wave-functions. Therefore, say, the last system in the upper beam can be also correctly
associated with the spin z-up ensemble.

This counterexample challenges two arguments by Oldofredi and López (2020): (i) that a ψ-
epistemic wave-function is necessarily epistemic, and (ii) that the wave-function in the statistical
interpretation has to be ψ-ontic. Having replied to (i), I will discuss (ii) in section 4, but before
doing so, I shall introduce the PBR-theorem, which will be important to answer more completely
whether the statistical interpretation of quantum mechanics can be ψ-epistemic. This will in par-
ticular affect how Harrigan and Spekkens (2010) understand the statistical interpretation.

3 The PBR-Theorem

The PBR-theorem starts with two crucial assumptions:

- Assumption 1 (Reality Criterion): Every physical system has an underlying ontic state
that completely describes its physical properties, which is objective and independent from
observers.6

6One may think that in order to assign an ontic state to a physical system, one needs to presuppose that the system is
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- Assumption 2 (Preparation Independence): Two preparation devices run independently
from each other.

The first assumption is essential to the ontological models framework, whereas the second is added
for methodological reasons. The reality criterion basically says that we consider a theory that fits
into the ontological models framework. Preparation independence adds to the ontological models
framework that the statistical distributions of ontic states that are generated in one preparation
device do not depend on the statistical distributions of ontic states that are generated in another
preparation device.7

The general argument of the PBR-theorem is the following: if the wave-function is ψ-epistemic
and the two assumptions hold, then we get a contradiction with the (well-confirmed) predictions
of quantum mechanics. Since the two assumptions are reasonable, the wave-function cannot be
ψ-epistemic and must be therefore ψ-ontic. It is indeed possible to question the validity of the two
assumptions and explore how such a quantum theory would look like.8 I just want to emphasize
here that it is impossible to violate the Reality Criterion and retain a ψ-epistemic wave-function,
as is often claimed. For the definition of ψ-epistemic hinges on the ontological models framework
and thus on the existence of λ.

Let us now discuss the experimental set-up of the PBR-theorem. Two preparation devices are
used that generate particles either in a z-spin up or an x-spin up state (see Fig. 7). Alice and Bob can
choose in which state the system should be prepared. Since it is assumed that the wave-function
is ψ-epistemic some of the wave-functions in Alice’s ensemble can be correctly associated with
another wave-function. For simplicity, we assume that if such a system is in an z-spin up state the
other correct wave-function would be x-spin up and vice versa. The same is the case for Bob’s
systems. To have a concrete number, we say that these ontic states with double wave-functions

sufficiently isolated from the environment. For example, if one entangles two electrons in the singlet state, neither
electron has an ontic state, because we can’t assign a (pure) wave-function to either electron. I think this example
confuses the ontic state λwith the wave-function ψ, which is supposed to describe or represent properties of the ontic
state. The ontic state is independent of a physical theory, and it captures all the physical properties of the system.
Therefore, both electrons have their own ontic state. The ontological model framework investigates whether a pure-
state wave-function gives a complete or partial physical description of the ontic state of the system. According to
quantum mechanics, neither electron in the singlet state can be assigned a pure-state wave-function, but this does not
mean that there is no complete physical description of them. One may criticize the ontological models framework,
however, that it ignores density matrices as representations of the ontic state (Carcassi et al., 2022). But this criticism
is rather about the representation of λ than of λ itself. It would be a worthwhile project to investigate the implications
for density matrix realism (Chen, 2021a), if one generalizes the ontological models framework and the PBR theorem.
(I thank Charles Sebens and Eddy Chen for helpful discussions on these issues.)

7One may reason that the preparation devices need to be space-like separated to run independently. That is just one way
to justify that they have to run independently. Even if the preparation devices are not space-like separated assumption
2 may still hold if there is no causal relation between the devices.

8Theories that deny the reality assumption are QBism (Fuchs, 2017; Fuchs and Schack, 2014), radical epistemicism
(Ben-Menahem, 2017, 2018, 2020), relational quantum mechanics (Rovelli, 1996; Oldofredi and López, 2020; Old-
ofredi and Calosi, 2021; Di Biagio and Rovelli, 2021), and pragmatist interpretations of quantum mechanics (Healey,
2017). Theories that deny preparation independence are Spekken’s toy model (Spekkens, 2007) and different pro-
posals for superdeterministic theories (Palmer, 1995; ’t Hooft, 2016; Hossenfelder and Palmer, 2019; Ciepielewski
et al., 2021). An excellent critical review of this approach is Chen (2021b).

9



| ↑x ⟩| ↑z ⟩
| ↑z ⟩ | ↑z ⟩ | ↑x ⟩ | ↑x ⟩ | ↑x ⟩

| ↑x ⟩ | ↑z ⟩
q times

State preparation

Figure 7: The preparation of systems in the PBR-theorem. If the wave-function is ψ-epistemic,
some of the prepared system can are associated with two different wave-functions. It is
assumed that this happens q times.

appear q times in such an ensemble.
Now Alice and Bob shoot their quantum systems into a measuring device that is set up to measure

pairs of particles, where one system of the pair comes from Alice and the other from Bob. Certain
pairs are of particular interest, because these are the ones that ultimately yield a contradiction with
the predictions of quantum mechanics. A fraction of q systems in Alice’s and on Bob’s side are
associated with two wave-function: | ↑z〉 and | ↑x〉. Due to preparation independence, the ontic
states with such double wave-functions on Alice’s side are independent from (or uncorrelated with)
the ontic states with double wave-functions on Bob’s side. Therefore, q2 times a pair of particles is
associated with four wave-functions (each in a product state): | ↑z〉| ↑z〉, | ↑z〉| ↑x〉, | ↑x〉| ↑z〉, and
| ↑x〉| ↑x〉.

The subsequent measurement is set up in such a way to yield one of four possible measurement
outcomes: A, B, C, or D. What are the probabilities for either outcome if a pair in a product
state is measured? The device is prepared that a | ↑z〉| ↑z〉 state will not get measured as A, that
is, the probability for yielding A given this product state is zero: Pz,z(A) = 0. Similarly, for
the other product states: Pz,x(B) = 0, Px,z(C) = 0, Px,x(D) = 0.9 It is now easy to see why
these ontic states that are associated with all these product states are problematic. If we shoot
these states into the measurement device, the theory tells us that the measurement will not give us
either of the four possible results. On the other hand, the measurement apparatus by construction
will measure something and will yield one of the four possible outcomes.10 Overall, it happens q2

times that the measurement device will show a result that is prohibited by quantum mechanics if

9For our purposes it is not important to explain the details of this measurement procedure. The product states get
projected onto a certain entanglement basis that gives rise to these probabilities.

10The precise argument why the measurement apparatus has to show a result is a bit technical. Roughly speaking it goes
like this. We deal here with a four-dimensional Hilbert space. Each outcome of the measurement device is associated
with a basis vector in this Hilbert space. These basis vectors span the complete Hilbert space. So upon measurement
any vector in this Hilbert space gets projected on one of these basis vectors and yields the corresponding value with
a certain probability. In particular, the product states | ↑z〉| ↑z〉, | ↑z〉| ↑x〉, | ↑x〉| ↑z〉, and | ↑x〉| ↑x〉 are part of this
Hilbert space. So it is impossible that the measurement device will yield nothing if fed with one of the problematic
ontic states.
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| ↑x ⟩ | ↑z ⟩
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q times 
double wave-function

q times 
double wave-function
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Pz,z(A) = 0 Pz,x(B) = 0 Px,z(C) = 0 Px,x(D) = 0

But the device will show one result!

q2 times

Figure 8: The proof of the PBR-theorem. Alice and Bob prepare an ensemble of quantum system
that are either in a z-spin up or and x-spin up state. They send their system to a measure-
ment device (orange box) that makes a measurement on pairs of systems, one system in
such a pair is from Alice’s and one from Bob’s preparation device.

the wave-function is ψ-epistemic.
One can now react in three different ways to the result of the PBR-theorem:

1. Our best choice of wave-functions is to interpret them as ψ-ontic.

2. We may deny the preparation independence assumption. These theories would fit into the
ontological models framework, they would also have a ψ-epistemic wave-function, but they
would not lead to the contradiction indicated in the PBR-theorem.11

3. We may deny the reality criterion. Then the entire set up of the ontological models frame-
work would be undermined; in particular, the PBR-theorem would say nothing about these
kinds of quantum theories.

I do not want to argue for or against either of these strategies in this paper. Instead, this overview
will give us a scheme for evaluating the status of the wave-function in the statistical interpretation
of quantum mechanics.

11It is, in principle, a further option to have a ψ-ontic wave-function and deny preparation independence. Ciepielewski
et al. (2021) present such a model, although they do not defend it.
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4 The Statistical Interpretation of Quantum Mechanics

For Harrigan and Spekkens (2010), the wave-function in the statistical interpretation is ψ-epistemic
and ψ-incomplete, while Oldofredi and López (2020) claim it to be ψ-ontic and ψ-complete. I
will argue that Einstein and Ballentine regard the wave-function in the statistical interpretation
as ψ-epistemic and ψ-incomplete. I will also discuss whether the wave-function in the statistical
interpretation can be ψ-statistical. I will conclude, however, that the wave-function in the statistical
interpretation needs to be ψ-ontic and ψ-incomplete.

Let us first start to introduce the statistical interpretation of quantum mechanics. One of the
clearest descriptions of it can be found in Einstein’s 1949 Reply to Critics in Paul Schilpp’s volume
Albert Einstein: Philosopher–Scientist:

Within the framework of statistical quantum theory there is no such thing as a com-
plete description of the individual system. More cautiously it might be put as follows:
The attempt to conceive the quantum-theoretical description as the complete descrip-
tion of the individual systems leads to unnatural theoretical interpretations, which be-
come immediately unnecessary if one accepts the interpretation that the description
refers to ensembles of systems and not to individual systems. In that case the whole
‘egg-walking’ performed in order to avoid the ‘physically real’ becomes superfluous.
There exists, however, a simple psychological reason for the fact that this most nearly
obvious interpretation is being shunned. For if the statistical quantum theory does not
pretend to describe the individual system (and its development in time) completely,
it appears unavoidable to look elsewhere for a complete description of the individual
system; in doing so it would be clear from the very beginning that the elements of such
a description are not contained within the conceptual scheme of the statistical quantum
theory. With this one would admit that, in principle, this scheme could not serve as the
basis of theoretical physics. Assuming the success of efforts to accomplish a complete
physical description, the statistical quantum theory would, within the framework of
future physics, take an approximately analogous position to the statistical mechanics
within the framework of classical mechanics. I am rather firmly convinced that the
development of theoretical physics will be of this type; but the path will be lengthy
and difficult. (Schilpp, 1949/1970, pp. 671–672)

I want to take home three important points from this passage:

1. The wave-function in the statistical interpretation describes ensembles instead of individual
quantum systems.

2. Therefore individual systems are not completely described by the wave-function.

3. To describe an individual system completely, one would need to go beyond the statistical
interpretation to search for such a completion.

12



The statistical interpretation, as Einstein describes it, is a peculiar form of interpretation. Normally,
one would seek an interpretation of quantum mechanics that is in some sense complete. Even if
one were to support an operational or pragmatist interpretation of quantum mechanics (Healey,
2017), one would argue that such an interpretation does not need a completion—for example,
because one is skeptical that we can discover the true nature of unobservable objects. The statistical
interpretation, on the other hand, rather says that, for all practical purposes, one can think of the
wave-function describing ensembles, but this is not the complete story of reality. In his last words
on the statistical interpretation, Einstein emphasized in a letter to A. Lamouche just a month before
he died on March 20, 1955, that the statistical interpretation is incomplete:

The ψ-function is not to be considered as a complete description of an individual state
of affairs, rather only as a representation of what we can know about a particular state
of affairs from an empirical point of view. Then the ψ-function is a representation of
an “ensemble”, not the complete characterization of individual states of affairs. One
has thereby renounced the latter in principle.12 (quoted in Fine, 1993, p. 9)

We can find the same attitude in Ballentine (1970, 1972, 2015), who is probably the most famous
modern advocate of the statistical interpretation:

The Statistical Interpretation, according to which a pure state provides a description
of certain statistical properties of an ensemble of similarly prepared systems, but need
not provide a complete description of an individual system. (Ballentine, 1970, p. 360)

We see that a quantum state is a mathematical representation of the result of a certain
state preparation procedure. Physical systems that have been subjected to the same
state preparation will be similar in some of their properties, but not in all of them [. . . ].
(Ballentine, 1970, p. 361)

The Statistical Interpretation, which regards quantum states as being descriptive of
ensembles of similarly prepared systems, is completely open with respect to hidden
variables. It does not demand them, but it makes the search for them entirely reason-
able [(]this was the attitude of Einstein (1949)[)]. (Ballentine, 1970, p. 374)

The Statistical Interpretation does not prejudice the possibility of introducing hidden
variables which would determine (in principle) the outcome of each individual mea-
surement (Sec. 6). (Ballentine, 1970, p. 379)

For both Einstein and Ballentine, the wave-function does indeed give an incomplete description
of physical systems and would need a completion to provide such a description, as Ballentine’s
statements “The Statistical Interpretation does not prejudice the possibility of introducing hidden
variables” and that the statistical interpretation “is completely open with respect to hidden vari-
ables” confirm. On the one hand, it seems that Ballentine regards the statistical interpretation as a
12I thank Maaneli Derakhshani for this reference.
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viable interpretation for all practical purposes, but, on the other hand, this interpretation is incom-
plete and can be completed by hidden variables. The statistical interpretation is a useful interpre-
tation of quantum mechanics, especially for physicists, and it gives a clear statistical interpretation
of the predictions of quantum mechanics. This interpretation does therefore provide a richer pic-
ture of the world than pure operationalism and a less obscure metaphysics than the Copenhagen
interpretation, even if the wave-function is ψ-incomplete.

4.1 ψ-epistemic and incomplete?

Is the wave-function in this interpretation ψ-ontic or ψ-epistemic? Einstein does not explicitly
answer this question in the above quotation. But since the wave-function describes ensembles in-
stead of individual quantum systems, it seems plausible that an individual system can be associated
with two different wave-functions. Einstein mentions such a case in his 1935 correspondence with
Schrödinger (see Howard, 1985, section 2 and Harrigan and Spekkens, 2010, section 4.3):

Now what is essential is exclusively that ψB and ψB
¯

are in general different from
one another. I assert that this difference is incompatible with the hypothesis that the ψ
description is correlated one-to-one with the physical reality (the real state). After the
collision, the real state of (AB) consists precisely of the real state of A and the real
state of B, which two states have nothing to do with one another. The real state of B
thus cannot depend upon the kind of measurement I carry out on A [. . . ] But then for
the same state of B there are two (in general arbitrarily many) equally justified ψB ,
which contradicts the hypothesis of a one-to-one or complete description of the real
states. (Einstein to Schrödinger in 1935, quoted in Howard, 1985, p. 180)

Einstein concocted several arguments throughout his career to prove that quantum mechanics is
incomplete. The only option Einstein saw in making sense of quantum mechanics was to inter-
pret it as an incomplete statistical theory. So when Einstein concludes that quantum mechanics
is incomplete, we can also understand this to say that the statistical interpretation is incomplete.
His arguments also show what this incompleteness amounts to. In the above quote, Einstein talks
about an entangled two-particle system AB, presumably in this state: ψ = 1√

2

(
ψAψB + ψA

¯
ψB

¯

)
.

We can think of two electrons in the singlet state, for example. Einstein presupposed that each
particle is prepared in an ontic state λA and λB respectively. Whether or not we measure parti-
cle A, this measurement cannot have any physical influence on the other particle, since Einstein
strongly believed in locality. Therefore, the ontic state of particle B remains the same before and
after measurement, and the wave-function representing this state cannot change either. Thus, the
ontic state λB is correctly described by both ψB and ψB

¯
. Thus quantum mechanics, as well as the

statistical interpretation, is ψ-epistemic and ψ-incomplete.13 Einstein deduces the incompleteness
13Fano et al. (2019) contest that this is Einstein’s line of argument. According to them, Einstein argued only that if local-

ity holds standard quantum mechanics must be ψ-epistemic. It’s not so clear whether Einstein had a coherent view
of what the statistical interpretation actually is. Sometimes Einstein can be read to advocate a ψ-ontic interpretation
but also a ψ-epistemic interpretation in other contexts.
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from the issue that several wave-functions can be associated with the same ontic state; a complete
theory, on the other hand, would uniquely associate a wave-function to an ontic state. Harrigan and
Spekkens also interpret this passage of Einstein’s as arguing for a ψ-epistemic interpretation of the
wave-function. They conclude:

By characterizing his 1935 argument as one that merely established the incomplete-
ness of quantum theory on the assumption of locality, Einstein did it a great disservice.
For in isolation, a call for the completion of quantum theory would naturally have led
many to pursue hidden variable theories that interpreted the fundamental mathematical
object of the theory, the wave function, in the same manner in which the fundamen-
tal object of other physical theories were customarily treated—as ontic. But such a
strategy was known by Einstein to be unable to preserve locality. Thus it is likely
that the force of Einstein’s 1935 argument from locality to the epistemic interpretation
of ψ was not felt simply because the argument was not sufficiently well articulated.
(Harrigan and Spekkens, 2010, p. 152)

Ballentine’s answer as to whether the statistical interpretation is ψ-epistemic or ψ-ontic is en-
crypted in his second quote: “Physical systems that have been subjected to the same state prepa-
ration will be similar in some of their properties, but not in all of them.” This sounds like he
regards the wave-function as ψ-statistical. An individual system has a certain wave-function solely
in virtue of being part of an ensemble that has been prepared in the same quantum state, but some
of these systems within this ensemble may differ with respect to their physical properties. If these
systems can be described by another wave-function, they would have a ψ-statistical wave-function,
and then the wave-function would be ψ-epistemic.

If Ballentine would advocate for such a statistical interpretation, it would not be able to make
correct empirical predictions according to the PBR theorem. The only way out would be a ψ-
epistemic completion of the statistical interpretation that violates the assumption of preparation
independence, which would then lead to some form of super-determinism (see Spekkens, 2007;
Leifer, 2014, for such a model).14

Let me briefly explain why one needs to violate preparation independence to rescue ψ-epistemic
wave-functions.15 Remember the PBR setting in Fig. 8 from section 3. Two preparation devices
(blue boxes) send a beam of particles to a measurement device (orange box). The particles are
either prepared in a spin x-up or spin z-up state. Since it is assumed that the wave-function is
ψ-epistemic, a fraction q of the particles in each beam are described by both the spin x-up and spin
14Ballentine could also deny the reality criterion (I thank an anonymous reviewer for raising this option). Then the

statistical interpretation would not fit into the ontological models framework; it would be neither ψ-ontic nor ψ-
epistemic; and the PBR theorem would not be applicable. The biggest problem I see here is that it becomes unclear
what the statistical interpretation is about and how the statistical pattern is generated in the first place. If there is no
ontological underpinning in terms of some objective properties, it is not obvious what a quantum system is and how
this (non-existing?) quantum system can interact with a measurement device. Oldofredi and López (2020) will take
a similar but less radical approach by revising instead of abolishing the reality criterion (see section 4.2).

15In their analysis of the statistical interpretation, Fano et al. (2019) interpret the PBR-theorem to make such an in-
terpretation impossible. Violation of preparation is in fact a way, although problematic, to retain a ψ-epstemic
wave-function.
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z-up wave-functions (double wave-functions). Due to preparation independence, the ontic states
of the left beam are independently distributed from the ontic states in the right beam; therefore,
q2 of times, a pair of particles (one from the left and one from the right beam) are associated
with four wave-functions. These simultaneous four wave-functions lead to a contradiction with the
predictions of quantum mechanics. A violation of preparation independence would not yield any
two-particle system that is correctly described by these four wave-functions. That is, whenever a
particle in the left beam has a double wave-function the corresponding particle in the right beam
will only have one correct wave-function, and vice versa. Thus, the distribution of double wave-
functions in each beam are correlated such that a particle with a double wave-function in one beam
will not be paired with a particle in the other beam having also a double wave-function.

There are a couple of problems with violating preparation independence. First, how could the
ontic states of the two beams be correlated in the first place? This becomes particularly problematic
when we isolate each preparation device from each other—for example, by space-like separation
and special isolation materials round them. There are two ways to do that, which are both implausi-
ble. Either these correlations happen by pure chance. If that were the case, there needs to be some
case (even only in principle) where chance is not in our favor and would match two systems with
a double wave-function. This would, however, undermine the empirical predictions of the theory.
Another way to explain these correlations would be to postulate special fine-tuned initial conditions
in the past before the preparation (and the measurement) were conducted. These fine-tuned initial
conditions are ultimately traced back to fine-tuned initial conditions of the universe. . . and these
fine-tuned initial conditions demand further explanation. Especially, when experimentalists do not
do anything particularly special with the preparation devices, such special initial conditions have a
mysterious character.

Second, the correlation of the ontic states after preparation is sensitive to the future measurement.
If we change the measurement device and conduct a different kind of measurement, this would
necessitate that the particles become differently correlated if this measurement is similarly prepared
as in the PBR-theorem—otherwise, we would run to another contradiction. One may explain the
influence of the measurement device again by special initial conditions, but this would make the
set-up even more fine-tuned. And if the future measurement is not specially designed as in the
PBR-theorem, does this mean that the particles would be still correlated or are they uncorrelated?

Third, connected to the previous point, a violation of preparation independence depends on oper-
ational procedures, like measurement and preparation. It is unclear where to draw the line between
measurement and non-measurement procedures and between preparation and non-preparation pro-
cedures. It is therefore ill-defined in which situations one has correlations and in which one does
not. Peter Lewis (2006) calls this a measurement-problem-like problem.

If the statistical interpretation isψ-epistemic and incomplete as claimed by Harrigan and Spekkens
(2010), it has to violate preparation independence and rely on some super-deterministic mechanism,
otherwise it would not be an empirically adequate theory. To avoid a violation of preparation in-
dependence, you may seek an interpretation of the wave-function as ψ-ontic. Oldofredi and López
(2020) go along this route but for different reasons. I present and evaluate their arguments in the
next subsection.
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4.2 ψ-ontic and complete?

The biggest problem Oldofredi and López (2020) identify in Harrigan and Spekkens’s classification
of the statistical interpretation is that this interpretation demands a different kind of ontic state:

In the second place, another crucial point to highlight is that the ontic space of the
statistical interpretation is not one of individuals, but of ensembles. This allows for an
alternative reading of the ontic state: it provides a complete description of the prop-
erties of an ensemble, not of individuals. And there is nothing else to know about
ensembles that is not provided by the quantum state. The upshot of the present discus-
sion is that the sort of λ that the statistical interpretation poses is completely different
in nature with respect to that employed by Harrigan and Spekkens. (Oldofredi and
López, 2020, p. 1330)

According to Oldofredi and López (2020), the ontic state that underlies the statistical interpretation
is not the one that is presupposed in the ontological models framework (which refers to individual
systems), but one that only refers to an ensemble of systems. With this kind of ensemble-λ, one may
then interpret the wave-function in the statistical interpretation to be ψ-ontic and also ψ-complete.
Since, in the usual definition, a ψ-ontic wave-function requires an ontic state for individual systems,
Oldofredi and López (2020) would need an “ensemble ontological model”, in which the wave-
function uniquely refers to the ensemble-λ.

Oldofredi and López (2020) do not argue that a ψ-epistemic wave-function is troublesome be-
cause of the PBR-theorem, that is, there are physical reasons to construe the wave-function differ-
ently; rather, they mention historical reasons for their take on the wave-function and the correspond-
ing ontic state. They argue that Ballentine thought the wave-function in the statistical interpretation
to provide a complete description of physical systems. Since any ψ-complete wave-function is nec-
essarily ψ-ontic (see Lemma 6 in Harrigan and Spekkens, 2010, p. 133), the wave-function in the
statistical interpretation is ψ-ontic.

Their historic argument is quite confusing. First, they present three sources in which Einstein
explicitly argues that the wave-function has to be incomplete (to not violate locality).16 Then they
say that “Hence, it is fair to establish a strong theoretical continuity between Ballentine’s presen-
tation of the ensemble view and Einstein’s interpretation of quantum mechanics.” (p. 1330) That
is, Ballentine agrees with Einstein on what the statistical interpretation tells us about quantum sys-
tems (see also Ballentine, 1972).17 In particular, Ballentine is supposed to agree with Einstein that
this theory is incomplete. As I discussed above, Ballentine sometimes appears to be indecisive as
to whether his interpretation is complete or incomplete, but he certainly considers that his theory
can be completed by another quantum theory, but whether it needs such a completion is left open.
Oldofredi and López seem to suggest that Ballentine breaks with Einstein and advocates an inter-

16They are (i) Einstein’s remarks at the 1927 Solvay conference (transcript in Bacciagaluppi and Valentini, 2009, pp.
440–442), (ii) Einstein’s 1936 essay Physics and Reality (Einstein, 1936), and (iii) Einstein’s reply to critics in his
intellectual autobiography (Schilpp, 1949/1970).

17Fine (1993) also discusses how Einstein interpreted quantum mechanics.
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pretation that is complete necessitating a different ontic state λ that only refers to entire ensemble
not to individual systems.

In my reading of Ballentine, I rather think that he considers his theory “complete for all prac-
tical purposes” to make successful predictions and to apply quantum mechanics without dealing
with a mysterious metaphysics à la Copenhagen, but to get a truly complete theory that tells us
what quantum systems really are, Ballentine seems to embrace such a completion of the statistical
interpretation.

Hence, it is Oldofredi and López’s proposal of an ensemble-λ, which renders the statistical
interpretation a complete theory, and therefore it is them who break with both Einstein’s and Bal-
lentine’s view of how the statistical interpretation refers to the physical world.18 I see the following
problems with their suggestion. First, as I said, Einstein and Ballentine explicitly mention that
their interpretation is incomplete. For all practical purposes, one can use the statistical interpreta-
tion to have a sufficiently clear picture of what quantum physics tells us about the world, but for
a complete picture one would need to supplement this interpretation. Second, the statistical be-
havior of an ensemble is generated by its individual constituents. A natural question is how these
constituents do that. How is the ensemble-λ related to the individual λs? Third, and connected to
the previous point, even if the wave-function provides the complete description of an ensemble, it
is unclear how the wave-function could not be ψ-statistical. Such a statistical interpretation of the
wave-function would not provide the means to exclude that some particles can be swapped between
two ensembles. One may respond that it is impossible to talk about the individual ontic states since
all there is in this statistical interpretation is the ensemble-λ. This response is problematic, because
the individual systems do exist, and it is unclear why we are not supposed to completely describe
them or why the properties of the individual systems do not contribute to the complete description
of the ensemble. Fourth, ensembles are usually defined to be series or copies of infinitely many
systems. In the real world, we only deal with finite series. It is not clear how an ontic state that is
about the properties of infinitely many systems is related to the properties of finitely many systems.

4.3 ψ-ontic and incomplete!

Because of the just mentioned conceptual problems with an ψ-ontic and complete wave-function
for the statistical interpretation and the challenges of the PBR-theorem faced by a ψ-epistemic

18I also think that Oldofredi and López cite the wrong reason for why Harrigan and Spekkens consider the statistical
interpretation to be ψ-epistemic:

How do Harrigan and Spekkens reinforce their conclusion that the ensemble view is a ψ-epistemic
model? They answer it by saying that the notion of ‘ensemble” in Einstein’s jargon is nothing but a
way to talk about probabilities reflecting an observer’s knowledge[.] (Oldofredi and López, 2020, p.
1328)

Harrigan and Spekkens do not make the mistake of identifying ψ-epistemic wave-functions with epistemic inter-
pretations of the wave-function. Instead, they conclude that the wave-function in the statistical interpretation to be
ψ-epistemic on two grounds. First, it is incomplete (according to Einstein and Ballentine). Second, Einstein gives
an argument of associating two different wave-function to the same quantum system in his 1935 correspondence to
Schrödinger.
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and incomplete wave-function, I conclude that a ψ-ontic and incomplete wave-function is the best
option.

One may argue that a ψ-ontic and incomplete wave-function would restrict the relation between
the ontic state λ and ψ more strictly than the formulation of the statistical interpretation justifies,
because although the wave-function in the statistical interpretation only describes ensembles, we
would need to believe in (a not yet specified) completion that would describe individual systems.
This description of individual systems would make it impossible that an electron can be swapped
from an x-up beam into a z-up beam. Even if the statistical interpretation does not seem to a priori
prohibit such a swap of particles, this constraint follows from the wave-function being ψ-ontic.
That is, a particle is in a certain quantum state ψ not because it happens to be prepared to be part
of an ensemble, but because properties of its ontic state λ make it to be in the quantum state ψ.

Although it is correct that the statistical interpretations allows for different ways the wave-
function could be, I presented several arguments that uncover the problems of a ψ-epistemic or
a complete wave-function. These arguments are similar in kind to arguments that have been made
about the contextuality (Kochen and Specker, 1967) and non-locality of quantum mechanics (Bell,
1964/2004). The Kochen-Specker theorem concludes that a ψ-incomplete wave-function can only
be supplemented by contextual variables (that is, variables that lead to different empirical results
depending on how they are measured); Bell’s theorem says that as long as a certain kind of statis-
tical independence is fulfilled the theory cannot explain certain correlations by a local mechanism.
So even if a certain interpretation of quantum mechanics is incomplete, one can discover certain
hidden structure of the theory or certain features of a possible completion. The same is the case for
my defense of a ψ-ontic and ψ-incomplete wave-function for the statistical interpretation.

This reading of the statistical interpretation would indeed break with Einstein’s view of assigning
several wave-functions to the same system but seems to back up my understanding of Ballentine
of using the statistical interpretation for all practical purposes, while being open to a possible com-
pletion. Such an interpretation would also make the statistical interpretation fit into the ontological
models framework without a revisionary interpretation of the ontic state λ.

5 Conclusion

Is the statistical interpretation of quantum mechanics ψ-epistemic? It could be. The core tenets
of the interpretation do not settle the question as to whether the wave function is ψ-epistemic
or ψ-ontic. That is left open, to be decided by deeper physics. If the statistical interpretation
allows for the swap of some particles prepared with different wave-functions, the wave-function
would be ψ-epistemic, but then it would be ruled out by the PBR theorem, unless one is willing to
violate preparation independence and support a quantum theory that invokes some form of super-
determinism. The wave-function would be ψ-onic, if the statistical interpretation is completed by
a quantum theory that describes the state of individual systems.

The way the statistical interpretation is formulated by Ballentine would paradoxically make both
the ψ-epistemic and the ψ-ontic path viable. The underlying issue is that this interpretation in its
very definition is incomplete.
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