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Abstract 

So far, the most prominent measure for actual truthlikeness, i.e. the likeness of a theory to the actual 

truth, is Ilkka Niiniluoto’s minsum definition, which is purely based on distances. A competing 

definition is the average distance measure proposed by Pavel Tichy and Graham Oddie. We will 

define three related, distance and size based, measures for actual truthlikeness and compare them with 

the two well-known options. However, we will start, Section 2, from a trio of such measures for nomic 

truthlikeness. The nomic truth, or the true theory, here refers to what is nomically, e.g. physically, 

possible. In a nomic (and factual) context there are two basic kinds of theories, viz. either based on an 

exclusion claim or on an inclusion claim. Two-sided theories combine these claims, with the maximal 

claim as extreme special case. We will base truthlikeness measures for exclusion, inclusion, two-sided, 

and hence maximal, nomic theories on two similarity measures, one in terms of distances between 

conceptual possibilities and the other in terms of sizes of sets of such possibilities. In Section 3 we will 

treat actual truthlikeness as extreme special case of nomic truthlikeness, viz. assuming that there is just 

one nomic possibility, the actual one. Next we will compare the resulting measures mutually and with 

the above mentioned measures of Niiniluoto and Tichy & Oddie. Finally, in Section 4, we will sum up 

the results and explore five questions for further research.    
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1. Introduction 

 

So far, the most prominent measure for actual truthlikeness, i.e. the likeness of a theory to the actual 

truth, is Ilkka Niiniluoto’s (1987, 2020) minsum definition, which is purely based on distances. A 

competing definition is the average distance measure proposed by Pavel Tichy (1978) and Graham 

Oddie (1981, 1986, 2013, 2016). We will define three related, distance and size based, measures for 

actual truthlikeness and compare them with the two well-known options. However, we will start, 

Section 2, from a trio of such measures for nomic truthlikeness. The nomic truth, or the true theory, 

here refers to what is nomically, e.g. physically, possible. In a nomic (and factual) context there are 

two basic kinds of theories, viz. either based on an exclusion claim or on an inclusion claim. Two-

sided theories combine these claims, with the maximal claim as extreme special case. We will base 

truthlikeness measures for exclusion, inclusion, two-sided, and hence maximal, nomic theories on two 

similarity measures, one in terms of distances between conceptual possibilities and the other in terms 

of sizes of sets of such possibilities. In Section 3 we will treat actual truthlikeness as extreme special 

case of nomic truthlikeness, viz. assuming that there is just one nomic possibility, the actual one. Next 

we will compare the resulting measures mutually and with the above mentioned measures of 

Niiniluoto and Tichy & Oddie. Finally, in Section 4, we will sum up the results and explore five 

questions for further research.    

 

2. Nomic truthlikeness 

 

2.1 Basic notions 

In this section the main distance and size based definitions of nomic truthlikeness will be given. We 

will present them in Niiniluoto’s cognitive problem terms, but for the rest in our favorite set-
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theoretical way. There are two cognitive problems to be considered, the actual and the nomic, both 

with corresponding partial and complete answers. The cognitive problems are: 

 

What is the actual or factual truth? 

What is the nomic truth? 

 

Here, the nomic truth is the truth about what is e.g. physically, biologically, economically possible. It 

turns out to be practical to start with the nomic truth problem.  

Our basic universe is a set of mutually exclusive and together exhaustive conceptual 

possibilities at a certain occasion in a certain fixed context. One conceptual possibility will be the 

(f)actual one at a certain moment and a specific subset will contain the nomic possibilities on each 

occasion, the other ones are nomically impossible. Apart from the assumption that all subsets to be 

considered are finite, it will be a very general approach. 

We will use the following symbolizations throughout the paper. 

- U: universe, the set of elementary conceptual possibilities in a given domain, constituting 

the (mutually exclusive and together exhaustive) complete answers to the (f)actual 

cognitive problem: what is (f)actually the case? These possibilities can be of any kind, e.g. 

the natural or the real numbers, the possible states or trajectories of a system, the 

constituents of a language, the (local) possible worlds, the elementary outcomes of an 

experiment, or the possible kinds of systems. 

- x, y, t, x1, x2, …xk: elements of U, complete answers to the cognitive problem of the 

actual truth. Singleton sets {x} will also be simply indicated by x in set-theoretically 

isolated contexts 

- d(x, y): a given, logically or mathematically well founded, underlying normalized 

symmetric non-trivial distance function, that is, 

- 0 ≤ d(x, y) ≤ 1, d(x, y) = 0 iff x = y, d(x, y) = d(y, x) 

- d(x, y) is a (normalized) metric if it satisfies in addition the triangle inequality: d(x, y) 

≤ d(x, z) + d(z, y) 

- d is non-trivial, where d is (discrete or) trivial means that d(x, y) = 0 if x = y, 

otherwise d(x, y) = 1. 

- s(x, y) =df 1 − d(x, y), the similarity of x and y1 

- X, Y, T: finite subsets of U (non-empty, except when otherwise stated), representing 

partial or complete answers to the cognitive problem of the nomic and the actual truth (to 

be characterized). (Finiteness of subsets: to be generalized). 

                                                             
1
 Note that s(x, y), and hence the underlying truthlikeness measure tl(x, t) below, may be the primarily defined 

function and be based on ‘deeper’ underlying distance and size considerations, similar to the main topic of this 

paper. However, if so, we assume in this paper that the resulting d(x, y) = 1 − s(x, y) is a metric. 
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- |X|: the size (or measure) of X;|{x}| = |x| = 1 

- t ∈ U: the actual or factual truth  

- tl(x, t) = s(x, t) = 1 − d(x, t): the underlying truthlikeness measure 

- T ⊆ U: if |T| > 1, T represents the nomic truth, i.e. the set of nomic, e.g. physical, 

biological, or economic possibilities; if |T| = 1, T represents the (singleton) actual truth 

{t}. 

 

The nomic cognitive problem reads: Which of the subsets of U is the set of nomic possibilities T? In 

Kuipers (2019, Ch. 4) I present my basic theory of qualitative (symmetric difference based) nomic 

truthlikeness in terms of claims of theories2. The three possible claims of ‘theory X’ are:  

   

Exclusion claim
3
 T ⊆ X  (⇔ cX ⊆ cT) all excluded possibilities are nomic impossibilities

      (X is a law following from T) 

Inclusion claim  X ⊆ T   all included possibilities are nomic possibilities 

      (all members of X are models of T) 

Combined claim X ⊆ T ⊆ X (⇔ X = T) the maximal claim
4,5

 

 

These theories will may be called exclusion (E-), inclusion (I-), and maximal theories, respectively. 

Figure 1 depicts the first two claims. The third claim represents of course a complete answer to 

the nomic cognitive problem. The first two claims represent partial answers. The exclusion claim ‘T ⊆ 

X’ can be reconstructed as the disjunction of complete answers for all subsets Y of X (Y⊆X) with the 

claim ‘Y=T’. The inclusion claim ‘X ⊆ T’ can be reconstructed as the disjunction of complete answers 

for all supersets Y of X (X⊆Y) with the claim ‘Y=T’.  

 

 

 

 

                                                             
2
 For the comparison of the trio of measures introduced in this paper with the symmetric difference definition in 

Kuipers (2001, 2019), see some specifications in Section 4.2 issue 3. 
3 It is important to keep in mind that these claims are not just referring to set-theoretic relations. Crucial is that T 

refers to the set of (un-)known nomic possibilities. Moreover, ‘T ⊆ X’ gets its name due to the equivalence with  

cX ⊆ cT). Similarly for inclusion and inclusion theory, similarity, and truthlikeness.  
4 So named in (Kuipers, 2019), leaving room for so-called tw o-sided theories, see below. 
5
 As a referee remarked, if U is the set of  constituents C1, …, Ck (I = {1, 2,…, k}) of a finite (propositional or 

monadic) language (i.e. conjunctions of the form &i(±)pi and &i(±)(∃x)Qi(x), respectively), a maximal claim 

corresponds, assuming I(X) as the index set for X, to a modal claim of the form ∀i ∈ I (±)Ci, with ‘+’ when i ∈ 

I(X) and ‘−’ otherwise, or, equivalently, ∀i ∈ I(X) Ci &  ∃i ∈I(X) Ci (Niiniluoto, 1987, (100) resp. (101), p. 96). 

Note that this is in an important sense much stronger than the so called monadic nomic constituents, being of the 

form ∀j ∈ I   ∃x Qj(x) & ∀j∉I  ¬∃x Qj(x), where I is the index set of some subset of Q-predicates (Niiniluoto, 

1987, (96), (97), p. 94), as the former entails that some existence claims are physically necessary. 
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U 

               T 

     X    ∅   Exclusion claim: T−X = cX−cT = ∅

  

      ∅      Inclusion claim: X−T = ∅ 

 

 

 

Figure 1: The exclusion and inclusion claim 

 

A theory X is called E-true (or, an E-theory is true) when its exclusion claim is true (T − X = 

∅), it is E-false (or, an E-theory is false) otherwise (T − X ≠ ∅). A theory X is called strongly E-false 

(or, an E-theory is strongly false) when X and T do not even overlap (T − X = T or equivalently, X − T 

= X). Note that the exclusion claim has due to the equivalence T ⊆ X ⇔ cX ⊆ cT a Popperian flavor, 

the complement of X, cX, is its empirical content, i.e. what X excludes, by this claim, to be or to 

happen. 

Similarly, with similar (but not mentioned) alternative formulations, a theory X is called I-true 

when its inclusion claim is true (X − T = ∅), it is I-false otherwise (X − T ≠ ∅). It is called strongly I-

false when X and T do not even overlap (X − T = X). Of course, X is strongly I-false iff X is strongly 

E-false. 

In many contexts it will be possible to give a syntactical formulation of the three kinds of 

claims, as well as examples of true and false claims. Let L5 indicate an interpreted propositional 

language of five atomic propositions p1, p2, p3, p4, and q, representing a connected electric circuit with 

4 switches that are on (pi) or off (¬pi), and one bulb that may give light (q) or not (¬q). Let T be the, 

as yet unknown, L5-proposition representing precisely all physically possible states of affairs of the 

circuit, that is, the nomic truth (one of which will be the (f)actual truth at a certain occasion). Let S be 

some L5-proposition. Then T → S is an exclusion claim, viz. claiming that ‘¬S-states’ are excluded 

from T, and S → T is an inclusion claim, claiming that all S-states are included in T, in the sense that 

they are compatible with T. Finally, combined maximal claims are of the form T ↔ S.  Let, for a 

specific circuit (represented in Kuipers, 2019, p. 24, but easy to reconstruct) T amount to: T =df q ↔ 

(((p1∧p2)∨p3)∧p4). Since T → (q → p4) is valid, T → (q → p4) is a true exclusion claim, whereas T → 

(p4 → q) is a false one. Similarly, ((q∧p1∧p2∧p4) ∨ (q∧p3∧p4)) → T is a true inclusion claim and 

((q∧p1∨p2∧p4) ∨ (q∧p3∧p4)) → T is a false one. Finally, replacing ín all examples ‘→’ by ‘↔’ leads to 

false maximal claims; T ↔ T is the only true maximal claim. By the way, it would be possible to 

continue the bold / non-bold distinction (T / T), but as a rule it will be clear which ‘T’ is intended, the 

unknown or the specified one. 
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 The above example deals with the conceptually and nomically possible states of a system. An 

example dealing with conceptually and nomically possible (kinds) of systems is the following. Let U 

represent the conceptually possible (stable) molecules, each consisting of a selection of (stable) 

chemical elements. Let T represent the subset of chemically possible (stable) molecules. As we know, 

specifying T will be a matter of fitting chemical valences and the like. Of course, the actual truth can 

be represented as some member of T.  

 

 

It turns out to be useful (Kuipers, 2019) to introduce separate symbols for E- and I-theories: P 

represents a postulate (or a conjunction of postulates) that is supposed to include all nomic 

possibilities (T ⊆ P) and M represents a set of (tentative) models that are supposed to be nomic 

possibilities (M ⊆ T). Combining them, we get two-sided theories <M, P> with the (combined) claim 

‘M ⊆ T ⊆ P’. An <M. P> theory is (EI-) true if both claims are true, false otherwise. Note that a quasi 

two-sided theory of the form <∅, P> is just an exclusion theory, and of the form <M, U> it is just an 

inclusion theory. 

In Kuipers (2019) it is still assumed, as a matter of course, that M should be a subset of P. 

However, on second thoughts this is not self-evident. In an early stage of research one may have rather 

separate ideas about both M and P such that M is not (yet) a subset of P. But, if so, it is clear, in view 

of the inconsistency of the combined claim ‘M ⊆ T ⊆ P’, that at least one of them should be revised. 

Ultimately, one will aim at a pair satisfying the subset relation. As a kind of intermediate, one may 

assume that at least |M| ≤ |P|, the size condition, should hold. 

Finally, an <M, P>-theory is maximal if M = P =df X, and hence with the claim ‘X ⊆ T ⊆ X’, 

that is, X = T. It is (EI-) true if X = T, false otherwise. 

 

2.2. Truthlikeness of nomic exclusion theories 

In this subsection we focus on an exclusion theory P, hence with the exclusion claim ‘T ⊆ P’. Recall 

that P can be seen as the conjunction of tentative postulates satisfied by T. We define the (normalized 

distance based) exclusion similarity P as the average maximal similarity of T relative to P, where 

smax(z, P) = 1 − dmin(z, P) = 1 − min{d(z, x)| x ∈ P}
6
:  

 

EST(P) =df z ∈ T smax(z, P)/|T| = 1 − z ∈ T dmin(z, P)/|T| 

 

Note that if P is E-true, i.e. T ⊆ P, EST(P)  = 1. 

                                                             
6 Here we could take another route, viz. by defining the exclusion similarity of P as  

EScP(cT) =df z ∈ cP smax(z, cT)/|cP| = 1 − z ∈ cP dmin(z, cT)/|cP|. However, this leads to a measure without 

conceptual continuity and it would force us to assume that the universe is finite, see Section 4.2 issue 1). As will 

be shown in this section, it is perfectly possible to avoid these shortcomings. 
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EST(P) is a prima facie plausible definition of exclusion truthlikeness of P. However, several 

different P-theories can have the same average maximal similarity. What also matters is the size of P, 

|P|, in comparison with that of T, |T|. In (Manuscript, 2022) we argue for a general definition of the 

similarity of two quantities, leading in the present context to the following definition of the relative 

size or the similarity in size of X and Y7: 

 

s*(X, Y) = s*(|X|, |Y|) =df min(|X|, |Y|) 

                  max(|X|, |Y|) 

 

For now it is important to know that d*(X, Y) =df 1 – s*(X, Y) is a genuine normalized metric: 

 0 ≤ d*(X, Y) ≤ 1, d*(X, Y) = 0 iff X = Y, d*(X, Y) = d*(Y, X), d*(X, Y) ≤ d*(X, Z) + d*(Z, X) 

Moreover, s*(X, Y) has two especially desirable general properties:  

 

Scale invariance: 

For any positive real number a, if |X’| = a|X| and |Y’| = a|Y|, then s*(X’, Y’) = s*(X, Y).  

 

Translation convergence: 

For variable set X and constant set C, s*(|X|, |X| + |C|) monotone increases to 1 if |X| goes to 

∞.
8
 

 

Translation convergence seems plausible enough9. However, if one has doubts about the desirability of 

scale invariance, e.g., in terms of (size) numbers, s*(1, 2) = s*(100, 200), one should realize that if one 

is inclined to make a difference in this case, one is almost forced to make also differences from the 

beginning, i.e. between s(1, 2), s(2, 4), s(3, 6),….  

 

We list some special values of s
*
(X, Y), where U corresponds to a tautology and ∅ to a contradiction: 

 

Y = U:   s*(X, U) = |X| 

                         |U| 

Y = ∅:  s*(X, ∅) = 0 

 

Y = {y}:   s*((|X|, |{y}|) = 1/|X| 

 

                                                             
7
 There is at least one other definition which satisfies the 3 properties below (see also Manuscript, 2022): (1 − 

s(x, y)) being a normalized metric, s(x, y), and (1 − s(x, y)), being scale invariant and translation convergent, viz. 

s
#
(X, Y) = s

#
(|X|, |Y|) = 2 min(|X|, |Y|) / (|X| + |Y|). 

8 Or, equivalently, for any positive real number b such that |X’| = |X| + b and |Y’| = |Y| + b, hence ||X’| − |Y’|| = 

||X| − |Y||, then s
*
(X’, Y’) > s

*
(X, Y) and goes to 1 if b goes to ∞. Note that the ‘outside’ bars are used to indicate 

the absolute difference between |X| and |Y|. 
9 Note that any definition solely as a function of the absolute difference, ||X| − |Y||, leads to equal similarity e.g., 

in (size) numbers, s(1, 2) = s(1000, 1001), which seems absurd.  
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Now we define the exclusion truthlikeness of P as the product
10

 of the size based similarity of 

P and T and the ‘normalized distance based average maximal’, henceforth simply, distance based 

similarity of T relative to P: 

ETL(P; T)
11

  = s
*
(P, T) × EST(P)  

 

= min(|P|, |T|) × (z ∈ T smax(z, P))/|T|) = min(|P|, |T|) × (1 − z ∈ T dmin(z, P)/|T|) 

   max(|P|, |T|)    max(|P|, |T|) 

 

If P is E-true, i.e. T ⊆ P, EST(P) = 1, and hence  ETL(P; T)  = |T|/|P|. In a note12 we specify some 

special values that may be interesting. 

 

It is easy to check that ETL(P; T) has the following general properties: 

 

TL.1 normalized (i.e. unit interval) range  0 ≤ ETL(P; T) ≤ 1 

TL.2 unique target     ETL(P; T) = 1 iff P = T 

TL.3 (conceptual) continuity   ETL(x. t)  = s(x, t) =df tl(x, t) 

 

A frequently subscribed or critically discussed condition of adequacy (Popper (1963), Niiniluoto 

(1987, 2020), Oddie (2013, 2016), and Cevolani & Festa (2020))
13

 is that among true statements, in 

the sense of E-true statements, truthlikeness covaries with logical strength, here called E-conditional 

covariance. In our terms, the principle amounts for P-theories to the claim that if T ⊂ P’ ⊂ P the 

truthlikeness should increase when going from P to P’.   

 

 TL
E
.4 E-conditional covariance  If T ⊂ P’ ⊂ P, ETL(P’; T) > ETL(P; T)

14
 

 

                                                             
10 Since both factors are conceived of as (the only) relevant factors and both are normalized on the unit interval, 

taking the product seems the plausible way to take both into account. 
11

 Note that ITL(P; T) is defined such that the order matters, due to the second factor. Note also that we could 

introduce a distance or difference measure DTL(X, T) simply as 1 − ITL(X, T). 
12 Special values: 

P = U, hence T ⊆ P, i.e. I-true, assuming U finite: ITL(U; T) = s
*
(U, T) × EST(U) = |T|/ |U|. 

P = ∅: EST(∅) is undefined, however ITL(∅; T) = 0, for s
*
(∅, T) = |∅|/|T| = 0, whatever value for 

EST(∅) from the unit range is chosen. 

P = {x}: ITL(x; T) = (1/|T|) × (z ∈ T s(z, x)/|T|). 
13

 Niiniluoto calls it ‘truth and logical strength’ (M4, below), Oddie calls it ‘the value of content for truths’. 
14 Proof:  

- from T ⊂ P’ and T ⊂ P follows: EST(P’) = EST(P) = 1,  

- from P’ ⊂ P follows |P| > |P’| and hence ITL(P; T)  = |T|/|P| < |T|/|P’| = ITL(P’; T). 
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Whereas the first three properties can be seen as general conditions of adequacy, whatever the truth 

claim is, conditional covariance can only be seen as such if the truthlikeness of exclusion (E-)claims is 

concerned (i.e. TL
E
.4). 

Finally, it is important to note again that ETL(P; L) need not be symmetric: ETL(M; T) = 

ETL(T; M) does not hold in general. 

  

2.3 Truthlikeness of nomic inclusion theories 

Now we turn our attention to the inclusion claim ‘M ⊆ T’, or equivalently, cT ⊆ cM, of inclusion 

theory M. Recall that M can be seen as a set of tentative models of T. We define the distance based 

inclusion similarity of M as the average maximal similarity of M relative to T: 

 

ISM(T) =df z ∈ M smax(z, T)/|M| = 1 − z ∈ M dmin(z, T)/|M| 

 

Note that if M is I-true, i.e. M ⊆ T, IST(M)  = 1. 

 

Again, several different I-theories can have the same average maximal similarity of M relative to T. 

Hence, what also matters is the size of M, |M|, in comparison with that of T, |T|. It is plausible to use 

also here the same definition of the size similarity between M and T:  

 

s
*
(M, T) =df min(|M|, |T|) 

             max(|M|, |T|)  

 

Recall that s
*
( , ) is based on the metric d

*
( , ) = (1 − s

*
( , )) and has two especially desirable general 

properties: scale invariance and translation convergence. 

Now we define the inclusion truthlikeness of inclusion theory M of course as the product of 

the size based similarity of M and T and the distance based similarity of M relative to T: 

 

 ITL(M; T)  = s
*
(M, T) × ISM(T))  

  = min(|M|, |T|) × (x ∈ M smax(x, T))/|M|)  

     max(|M|, |T|) 

= min(|M|, |T|) × (1 − z ∈ M dmin(z, T)/|M|)  

     max(|M|, |T|) 

 

If M is I-true, i.e. M ⊆ T, ISM(T) = 1, and hence ITL(P; T)  = |M|/|T|. Some more special values are 

listed in the note15. 

                                                             
15

 Special values: 
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Again it is easy to check that ITL(M; T) has the following general properties 

 

TL.1 normalized range    0 ≤ ITL(M; T) ≤ 1 

TL.2 unique target     ITL(M; T) = 1 iff M = T 

TL.3 continuity     ITL(x. t) = s(x, t) = tl(x, t) 

 

Moreover, among true inclusion (I-true) claims, truthlikeness covaries again with the logical 

strength between the claims. In our terms, the principle amounts here to the claim that if M ⊂ M’ ⊂ T 

the inclusion truthlikeness should increase when going from M to M’:  

 

 TL
I
.4 I-conditional covariance If M ⊂ M’ ⊂ T, then ITL (M’; T) > ITL(M; T) 

 

Hence, it is a kind of mirror version of (E-)conditional covariance of ETL. The proof is similar.  

Finally, it is important to note again that, like, ETL(P; L), ITL(M; T) need not be symmetric: 

ITL(M; T) = ITL(T; M) does not hold in general. However, it is easy to check that ITL(X; T) = 

ETL(T; X)16, where the latter formula expresses the exclusion truthlikeness of T relative to X, i.e. 

when X would be the truth and T would be an E-theory, a property that might be called crosswise 

equality of ITL and ETL. 

 

2.4 Truthlikeness of two-sided and maximal theories 

2.4.1 Two-sided theories 

The following general schematic definition for the combined truthlikeness of two-sided theories <M, 

P>, with the combined claim ‘M ⊆ X ⊆ P’, is now plausible, viz. the weighted sum of ETL(P; T) and 

ITL(M; T), where the weights are determined by a parameter α, 0 ≤ α ≤ 1: 

 

CTL
α
(<M, P>; T) = α ETL(P; T) + (1 − α) ITL(M; T)       

 = α s*(P, T) EST(P) + (1 − α) s*(M, T) ISM(T)  

=  α min(|P|, |T|) (z ∈ T smax(z, P)/|T|) + (1 − α) min(|M|, |T|) (x ∈ M smax(x, T)/|M|) 

        max(|P|, |T|)                max(|M|, |T|)      

 

                                                                                                                                                                                              

M = U: assuming U finite, ISU(T) = x ∈ U−T smax(x, T)/|U|, ETL(U, T) = s
*
(U, T) × ISU(T) = (|T|/|U|) × 

ISU(T). 

M = ∅: IS∅(T) is undefined, however ETL(∅; T) = 0, for s(∅, T) = |∅|/|T| = 0, whatever value for 

IS∅(T) from the unit range is chosen. 

M = {x}: ISx(T) = smax(x, T). ETL(x, T) = (1/|T|) × smax(x, T) (= 1/|T| if x is E-true, i.e. x ∈T). 
16

 For IST(X) = EST(X) and s(X, T) is symmetric. 
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Note that CTLα(<M, P>; T) reduces to ETL(P; T) and ITL(M; T) when α is assigned the value 1 or 0, 

respectively. 

So far, I do not see convincing reasons to assign to α another value than ½. One could be 

inclined to argue for objective reasons to let α and (1−α) account for different values of the relevant 

size similarities, but this is already done by the relevant factors in ETL(P; T) and ITL(M; T). 

However, to keep room for convincing reasons, I will continue with the weights α  and (1 − α), with ½ 

as preferred value.  

Assuming the general definition, if theory <M, P> is (EI-) true, i.e. M ⊆ T ⊆ P, and hence 

s
*
(M, T) = |M|/|T| and s

*
(P, T) = |T|/|P|, we get: 

 

CTLα(<M, P>; T)    =   α |T|/|P| + (1 − α) |M|/|T| 

 

This formula shows clearly that CTL
α
(<M, P>; T) takes care of the fact that a genuine two-sided 

theory (M≠P), even if true, cannot reach the maximal value of 1. If, for example, M ⊆ T ⊆ P and α = 

½, |T| = 2|M| = ½ |P|, we get CTL(<M, P>; T| = 1/2, in our view an intuitively plausible value for this 

special case. 

 Another interesting special case is the following. If <M, P> is such that |M| = |P| = |T|, hence if 

the sizes are already correct, hence s*(P, T) = s*(M, T) = 1, we get: 

 

CTLα(<M, P>; T)  =   α (z ∈ T smax(z, P)/|T|) + (1 − α) (x ∈ M smax(x, T)/|M|) 

 

If we take α = 1/2 , this amounts to just taking the average of the exclusion and inclusion (distance 

based) similarity.               

CTL
α
 has the following general properties:  

TL.1 normalized range    0 ≤ CTLα(<M, P>; T) ≤ 1 

TL.2 unique target     CTLα(<M, P>; T) = 1 iff  M = T = P 

TL.3 continuity     CTL
α
(<x, x}>, t) = s(x, t)) = tl(x, t) 

  TL
EI
.4 EI-conditional covariance:  

if M ⊂ M’ ⊂ T ⊂ P’ ⊂ P, then CTLα(<M’, P’>; T)  >  CTLα (<M, P>; T) 

 

2.4.2 Maximal theories 

For maximal theories X, i. e., a theory <M, P> with M = P = X, hence with the claim ‘X = T’, we 

define TL
α
(X; T) =df CTL

α
(<X; X>; T), and get: 

 

TLα(X; T)  = α ETL(X; T) + (1−α) ITL(X; T) 
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   = s
*
(X, T) (αEST(X) + (1 − α) ISX(T) 

            

                           = s
*
(X, T) [α z ∈ T smax(z, X)/|T|) + (1 − α) (x ∈ X smax(x, T)/|X|)]  

            

 

Hence, TLα(X; T) is the product of the size similarity of X and T and the weighted average of the 

exclusion and inclusion (distance based) similarity.
17

 If maximal theory X is (EI-) true, i.e. X=T, we 

get of course TL
α
(X; T) = 1. 

For maximal theories there seems a plausible objective value of α other than 1/2: α+
 = |T|/(|T| 

+ |X|). Then we get
18

:  

 

TL+(X; T) = s*(X, T) [   |T|       z ∈ T smax(z, X)/|T| +    |X|     (x ∈ X smax(x, T)/|X|)]  

        |T| + |X|                   |T| + |X| 

  = s*(X, T) [z ∈ T smax(z, X) + x ∈ X smax(x, T)]  

         |T| + |X|                

Hence, TL+(X; T) is now the product of the size based similarity of X and T and the average of the 

sum of the sum of the distance based similarities in both directions.
19

 

Returning to TLα(X; T), or ‘α-truthlikeness’, it has the following properties:  

 

TL.1 normalized range   0 ≤ TLα(X; T) ≤ 1 

TL.2 unique target    TL
α
(X; T) = 1 iff X = T 

TL.3 continuity    TLα(x, t) = s(x, t) = tl(x, t) 

TL
EI
.4 EI-conditional covariance  not applicable

20
 

 

In this section we have introduced a coherent trio of distance and size based measures of nomic 

truthlikeness, guided by the three different claims that a theory may make: nomic truthlikeness of 

exclusion, inclusion, and maximal theories, ETL(P; T), ITL(M; T), and TLα(X; T). For the last one we 

introduced first two-sided theories <M, P>, combining the first two claims, and their truthlikeness 

CTL
α
(<M, P>; T), introducing a parameter α. The truthlikeness of maximal theories (M = P = X), 

                                                             
17 It is interesting to note that if α = ½ the second (distance based) factor in the corresponding TL1/2(X; T), i.e. 

the one between [ ], essentially corresponds to Niiniluoto’s (1987, (124), p. 249) generalized distance measure 

between two statements, i.e. the factor is 1 minus this distance.  
18 Note that the second factor is equivalent to the distance measure between statements which Niiniluoto (1987, 

(126) p. 250) has formulated. He rejected the definition in passing for it does not satisfy the covariation principle 

of truthlikeness and strength for true claims. However, he also presented an almost similar definition, weighted 

symmetric difference (Niiniluoto, 1987, (7) 317), for the distance between monadic constituents. If U is the set 

of constituents of a monadic language, the normalized form certainly is a plausible distance measure in the 

present context. 
19

 Unfortunately, we do not yet see a plausible way to generalize this to weights for genuine two-sided theories. 
20

 Because X ⊂ X’ ⊂ T ⊂ X’ ⊂ X is an impossible condition. 
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TLα(X; T), was obtained from CTLα(<M, P>, T) by replacing M and P by X. All four measures finite 

subsets of U
21

 and satisfy the plausible conditions of a normalized range (TL.1), a unique target 

(TL.2), conceptual continuity with the underlying (distance based) truthlikeness measure (TL.3), and 

the relevant kind of conditional covariance (TL.4), as far as applicable.22 ETL(P; T) and ITL(M; T) 

are the product of the relevant size based similarity and the relevant distance based similarity. 

CTLα(<M, P>, T) and TLα(X; T) are the weighted sums of the relevant terms, where α = (1 − α) = ½ 

is, for the time being, our favorite value. In general, the more similar the size of a theory is to the size 

of that of the nomic truth, the more the distance based similarities are valued. 

To be sure, the direct practical value of these measures is limited as long as one does not know 

the nomic truth, respectively. But this paper is about the logical problem of truthlikeness, leaving the 

epistemological problem for a later occasion.
23

 However, if one would know the nomic (or actual 

truth, see below), the measures clearly indicate which revisions of theories bring us closer to the truth 

and each measure suggests, besides adjusting size, its own focus for attempts to truth approximation: 

ETL on increasing the exclusion similarity, ITL suggests to focus on increasing the inclusion 

similarity, and CTLα (hence TLα) on both.  

Hence we have good reasons to assume that, even without knowing the truth, all three 

measures provide meaningful guidelines for nomic and actual truth approximation, but also that ETL 

and ITL have their own risks of detours, whereas CTLα (hence TLα) is more cautious in both respects. 

However, the latter needs a parameter, be it with a plausible role. 

 

 

3. Actual truthlikeness and the comparison with the minsum and the average definition 

 

3.1 Actual truthlikeness as extreme special case of nomic truthlikeness and as average maximal 

similarity (Tichy & Oddie) 

Most discussions about truthlikeness measures deal mainly, or even only, with actual truthlikeness. At 

first sight it may seem that the only complete answers to the cognitive problem of the actual truth are 

factual claims of the form ‘x = t’, with distance measure d(x, t) and truthlikeness measure tl(x, t) = 1 − 

d(x, t). Moreover, factual claims of the form ‘{t} ⊆ X’, i.e. ‘t ∈ X’, seem typically partial answers, and 

it is plausible to apply ETL24. However, formally nothing prevents us to take a more general outlook, 

and to apply the other ‘nomic’ definitions, ITL and TLα, in case of a factual claim of the form ‘X ⊆ 

                                                             
21

 For a continuous version of TL
α
, see Section 4.2 issue 5), where the actual truthlikeness of an interval 

hypothesis is explored. 
22 Note that TL1/2 (and only TL1/2) is symmetric: TL1/2(X; T) = TL1/2(T; X). 
23

 See Section 4.2 issue 2) for some provisional remarks.  
24 The claim ‘t ∈ X’ can now better be paraphrased as ‘no excluded possibility is the actual(ized)’ or ‘X includes 

the actual(ized) possibility’.  
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{t}’
25

 (formally also being a partial answer), or ‘X = {t}’, respectively. That is, doing so, even though 

knowing that the corresponding theories are false as soon as X has more than one element, whether or 

not including t. One could even argue that, if t is the only nomic possibility, this approach is the 

appropriate one. However, if t is just one of more nomic possibilities, one could perhaps argue for a 

different approach. 

We assume non-empty subsets P, M, X, except when otherwise stated and replace everywhere 

T by {t} or, more practically, by t. Note that s
*
(X, t) = 1/|X|.  

We turn first to actual truthlikeness of the exclusion type, i.e. ETL(P; t). Of course, we have 

now that P is X-true if t ∈ P holds, and E-false otherwise. Note that in the case of the actual truth, 

there is no distinction between being merely E-false and being strongly E-false, for being merely E-

false implies the non-overlap of {t} and X. We get: 

  

ETL(P; t)  = s
*
(P, t) × ESt(P))  

= (1/|P|) × z ∈ {t} smax(z, P)/|{t}|  

= (1/|P|) × smax(t, P) = (1/|P|) × (1 − dmin(t, P))26 

                            

 

If P is E-true, i.e. t ∈ P, ETL(P; t)  = 1/|P|.  

 

Turning to actual truthlikeness of the inclusion type, i.e. ITL(M, t), recall that M is assumed to be non-

empty. Hence, M being I-true is a very special case: M = {t}. But the formal definition of ITL(M; t) 

makes perfect sense: 

  

ITL(M; t)  = s*(M, t) × ISM(t))  

= (1/|M|) × x ∈ M smax(x, t)/|M| = (1/|M|) × x ∈ M s(x, t)/|M| 

= (1/|M|) × (1 − x ∈ M dmin(x, t)/|M|) = (1/|M|) × (1 − x ∈ M d(x, t)/|M|) 

 

If M is I-true, hence M = {t}, ITL(t; t)  = 1/|{t}| = 1. 

Note that e.g. x ∈ M dmin(x, t) could now be replaced by x ∈ M d(x, t) and hence that the 

second factor in the ‘d-version’ of ITL(M; t) amounts to “1 minus the average distance from M to t”, 

which is the so-called average definition of truthlikeness of Pavel Tichy (1978) and Graham Oddie 

(1981, 1986, 2013, 2016), recently defended by Cevolani and Festa (2020). From our perspective the 

size factor (1/|M|) is a crucial refinement of that definition. 

For actual truthlikeness from the two-sided perspective we get: 

                                                             
25

 Though formally just a set-theoretic claim, it is difficult to give a meaningful paraphrase. 
26

 The measure 1 − dmin(t, P) has been proposed as a measure of the degree of truth or degree of approximate 

truth (Niiniluoto, 1987, pp. 218-219; Niiniluoto, 1998, p. 6). Since ITL(P, t) is defined as (1/|P|) × (1 − dmin(t, P)), 

this kind of truthlikeness may be seen as the degree of (approximate) truth weighed by size.  
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CTL
α
(<M, P>; t)  =  α ETL(P; t) + (1 − α) ITL(M; t)  

                      

 

Again, if (<M, P> is (E- and I-)true, viz. just in one case, M=P={t}, the CTLα-value is 1. 

CTLα(<M, P>; t) may not be that interesting, except for maximal theories: if M=X=P, we get:  

 

TLα(X; t)  = α ETL(X; t) + (1 − α) ITL(X; t)  

= (1/|X|) [α smax(t, X) + (1 − α) x ∈ X s(x, t)/|X|)] 

             = (1/|X|) [α(1 − dmin(t, X)) + (1 − α) (1 − x ∈ X d(x, t)/|X|)] 

 

If X is E-true, i.e. t ∈ X, smax(t, X) = 1, and hence 

 

TLα(X; t)  = (1/|X|) [α + (1 − α) x ∈ X s(x, t)/|X|)]  

 

If X is I-true, hence X = {t}, for X is assumed to be non-empty, we get, TLα(X; t) = 1. Similarly, if X 

is E-true and I-true (EI-true), i.e. X ⊆ {t} ⊆ X, hence X = {t}, we get, TLα(X; t) = 1.  

If X = {x} we get TLα(x; t) = αs(t, x))  + (1−α) s(x, t)) = s(x, t) = 1 − d(x, t), i.e. conceptual 

continuity of ‘actual truthlikeness’.  

For the special value α+
 = |T|/(|T| + |X|), TL

α
(X; T) was indicated by TL

+
(X; T), and we get: 

 

TL+(X; t)  = (1/|X|) [smax(t, X) +  x ∈ X s(x, t)] 

        1 + |X| 

 

When X is E-true, t ∈ X, this becomes: 

 

TL
+
(X; t)  = (1/|X|) [1 +  x ∈ X s(x, t)] 

     `     1 + |X| 

 

TL+(X; t) remains of course 1 when X is I-true or, in the present context equivalently, when X is II-

true, X = {t}.  

 Regarding the principles of a normalized range (TL.1), a unique target (TL.2), conceptual 

continuity (TL.3) to the underlying (distance based) truthlikeness measure, and the relevant kind of 

conditional covariance (TL.4), it is easy to check that the first three remain to hold straightforwardly 

in the case of actual truthlikeness. However, it is worthwhile to look in detail to (TL.4), for the 

situation is here more complicated. 
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E-conditional covariance (TL
E
.4) now amounts to: if t ∈ P’ ⊂ P, ETL(P’; t) > ETL(P; t). This 

is precisely the version of the covariation principle as it is discussed in the literature. I-conditional 

covariance (TL
I 
.4) now amounts to: if M ⊂ M’ ⊂ {t}, then ITL (M’; t) > ITL(M; t). Hence, even if 

M might be empty, the antecedence cannot be satisfied in the case of inclusion theories. Finally, EI-

conditional covariance (TL
EI
.4) was already not applicable to nomic maximal theories (TLα(X; T)), 

hence certainly not in the context of actual truthlikeness. 

Regarding inclusion and maximal theories it is perhaps more important to remark that among 

E-true of such theories, covariation between (actual) truthlikeness and logical strength (in the sense in 

which the exclusion claim of a proper subset of a set is stronger than that of that set) is certainly not 

valid. We illustrate this for inclusion theories, for which: ITL(M; t) = (1/|M|) × (1 − x ∈ M d(x, t)/|M|). 

Here it is evident that if t ∈ M’ ⊂ M, i.e. both are E-true, the average similarity (1 − x ∈ M’ d(x, 

t)/|M’|) may decrease so much that it is not compensated by the increase of the size factor (1/|M’|.  

 

In sum, formally derived from the nomic definitions, we have now three different ways of measuring 

actual truthlikeness, based on size based similarity and distance based similarity, viz., replacing P and 

M by X, ETL(X; t), ITL(X; t), TLα(X; t). Here ITL(M; t) is a size sensitive refined version of the 

‘average minimal distance’, or better, ‘average maximal similarity’ definition of Tichy and Oddie, and 

TLα(X; t) will turn out to be formally a bit similar to Niiniluoto’s minsum measure: both are based on 

weighted sums of terms related to ETL(X; t) and ITL(X; t).  

It will be useful to formulate the definition of Tichy and Oddie explicitly: 

 

TO(X; t)  = ESX(t))  

= x ∈ X smax(x, t)/|X| = x ∈ X s(x, t)/|X| 

= 1 − x ∈ X dmin(x, t)/|X| = 1 − x ∈ X d(x, t)/|X| 

 

If X is E-true, hence X = {t}, TO(t; t)  = 1. 

It is easy to check that TO(X; t) satisfies the principles of a normalized range (TL.1), a unique 

target (TL.2)27, and conceptual continuity (TL.3) to the underlying truthlikeness measure. The 

relevant kind of conditional covariance (TL
I
.4), if X ⊂ X’ ⊂ {t}, then ITL (X’; {t}) > ITL(X; {t}), is 

not applicable, like in the case of ITL(X; t). 

 

 

3.2 Actual truthlikeness according to the minsum definition of Niiniluoto 

                                                             
27 Note however that the generalized version of TO(X; T), i.e. 1 − z ∈ X dmin(z, T)/|X|, does not satisfy the 

principle, for TO(X; T) = 1 as soon as X is a subset of T. The size factor prevents this for ITL(X; T).   
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Niiniluoto’s minsum (ms-) definition of actual truthlikeness is evidently guided by an exclusion claim 

of the form ‘t ∈ X’, because a theory is supposed to be true, when this claim is true. But size 

considerations play, indirectly, also a role. Note that, if X’ ⊂ X, the (E-) theory X is stronger than (E-) 

theory X. For the comparison of our trio of definitions with Niiniluoto’s ms-definition of actual 

truthlikeness we first specify the relevant components (see Niiniluoto, 1987, (44) p. 216, (40) p. 214, 

(85) p. 228): 

 

 dmin(t, X)  = min{d(x, t)| x in X}  dsum(X; t)
28

 =  x∈X d(x, t) 

                     x∈U d(x, t) 

Assuming positive parameters γ and γ’ such that γ + γ’ ≤ 1
29

, the crucial definition is:  

  

 dγγ’
ms(X; t)  = γdmin(t, X) + γ’dsum(X; t) =  

   = γdmin(t, X) + γ’x∈X d(x, t) / x∈U d(x, t)  

 

Some critical remarks are already in order. Note first that, despite the suggestive notation, dsum 

is of a different order than dmin. The latter is a normalized distance and the former a ratio of 

(summations of) such distances. Hence, dγγ’
ms(X; t) adds two terms of a different order, which seems 

conceptually problematic.  

Note also that there is no straightforward continuity connection to the underlying distance 

function:  

 

dγγ’
ms(x, t) = γd(x, t) + γ’dsum(x, t) = γd(x, t) + γ’d(x, t) / y∈U d(y, t)  

 

is not in general equal to d(x, t), i.e. TL.3 is not generally valid. As Niiniluoto (1987, p. 299) shows, 

this expression equals d(x, t) in case of a balanced distance function (x∈U d(x, y)/m(U) = ½) and the 

(very) special relation between the parameters: γ + 2γ’/m(U) = 1. Although a balanced distance 

function is plausible, the special relation does not seem to have a conceptual backing other than 

getting the desired consequence. However, as a reviewer noted, d
γγ’

ms(x, t) is proportional to d(x, t) and 

                                                             
28

 Note first that this formulation of dsum(X, t) presupposes a finite universe, but Niiniluoto (1987) presents also 

continuous versions.  

Note also that dsum(X, t) can be written as the product of a quotient of averages and a quotient of sizes:  

x∈X d(x, t)/|X| × |X| 

 x∈U d(x, t)/|U|    |U| 

and that the numerator of the first quotient corresponds to the crucial average distance of Tichy and Oddie, also 

occurring in ETL(X, t) and TL
α
(X, t). The second quotient is in fact the size similarity s*(X, U). 

29 Niiniluoto requires that the two parameters individually do not exceed 1, but this is too weak to get the result 

within [0, 1]. To see this, it is important to note that although the min and the sum term fall already in the 

interval [0, 1], the weighted sum γdmin(t, X) + γ’dsum(X, t) may exceed 1 for sufficiently high values of the 

parameters.  
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hence order equivalent with d(x, t) in the sense that dγγ’
ms(x, t) < dγγ’

ms(y, t) iff d(x, t) < d(y, t). Be this 

as it may, in my view is conceptual continuity still to be preferred. 

 The resulting definition of actual truthlikeness is of course: 

 

M
γγ’

ms(X; t) = (1 − d
γγ’

ms(X; t)) = 1 − [γdmin(t, X) + γ’dsum(X; t)] 

   

= 1 − [γdmin(t, X) + γ’ x∈X d(x, t)] 

             x∈U d(x, t) 

= 1 − [γdmin(t, X) + γ’ x∈X d(x, t)/|X| × |X|] 
             x∈U d(x, t)/|U|     |U| 

 

Note the similarity in form with our TLα(X; t), for this can be written as: 

 

TL
α
(X; t)  = (1/|X|) [α(1 − dmin(t, X)) + (1 − α) (1 − x ∈ X d(x, t)/|X|)] 

= (1/|X|) (1 − [αdmin(t, X) + (1 − α) x ∈ X d(x, t)/|X|]) 

 

Both are based on weighted sums of terms related to ETL and ITL. But, of course, they are 

substantially different and have a substantially different conceptual background. Despite some 

similarity with TL
α
(X; t) in form, for conceptual reasons, M

γγ’
ms(X; t) can best be compared with 

ETL(X; t) = (1 − dmin(t, X))/|X|, for Niiniluoto is focusing, in our terms, on the exclusion claim ‘t ∈ 

X’, i.e. ‘t ∉ U − X’. 

It is easy to check that Mγγ’
ms(X; t) satisfies the principles of a normalized range (TL.1) and a 

unique target (TL.2). Naturally, again there is no simple continuity connection (TL.3) to the 

underlying truthlikeness measure: M
γγ’

ms(x, t) ≠ 1 − d(x, t), but it is order equivalent (M6, below), 

though it is now not proportional to 1 − d(x, t) = s(x, t)
30

.  

It is important to note that although, apart from the parameters, only underlying distances 

occur in Mγγ’
ms(X; t), it is indirectly, via dsum, also substantially based on content or strength, hence 

size, considerations. Naturally, again there is no simple continuity connection to the underlying 

truthlikeness measure: M
γγ’

ms(x, t) ≠ 1 − d(x, t), but it is order equivalent, though it is not proportional 

to 1 − d(x, t) = s(x, t)31.  

If X is true, i.e. E-true in our terms, i.e. t ∈ X, hence dmin(t, X) = 0, we get:  

 

d
γγ’

ms(X; t) =γ’dsum(X; t) =γ’x∈X d(x, t) / x∈U d(x, t)     

M
γγ’

ms(X; t) = 1 − d
γγ’

ms(X; t) = 1 − γ’dsum(X; t) = 1 − γ’x∈X d(x, t) / x∈U d(x, t) 

 

                                                             
30

 It is proportional to (1 − βd(x, t)), where β = γ + γ’/x∈U d(x, t). 
31

 But with (1 − βd(x, t)), where β = γ + γ’/x∈U d(x, t). 
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Now it is easy to see that Niiniluoto’s definition satisfies the E-conditional covariation principle for E-

true claims, TL
E
.4 above (and M4 below), i.e. Mγγ’

ms(X; t) increases when X shrinks but remains 

including t, i.e, E-true. This is simply because dsum(X; t) gets smaller whenever X shrinks in view of its 

size-independent normalization denominator. The construction seems an ingenious but also somewhat 

ad hoc way to get the principle satisfied. Moreover, as said before, the construction is conceptually 

problematic for, in contrast to dmin, dsum is not a normalized distance, but as a ratio of such distances. 

 

3.3 Comparisons 

For the comparison of Niiniluoto’s definition and our triple of definitions we take Niiniluoto’s total set 

of conditions of adequacy for actual truthlikeness (Niiniluoto, 1987, p. 232/3) as point of departure, of 

course in his favorite logico-linguistic terms, for which reason we also quote the introductory 

sentences of his survey as well: 

 

“Our previous discussion in Chapters 5 and 6 has suggested a number of adequacy conditions 

which an explicate of the concept of truthlikeness should satisfy. We shall state these  

conditions for a measure Tr(g, h*): D(B) x B →  IR for a statement g ∈ D(B)32 relative to the 

target h* ∈ B. Further, a non-trivial distance function ∆: B x B → ℜ between the elements of 

B is assumed to be given. 

 

(M1) (Range) 0 ≤ Tr(g, h*) ≤ 1. 

(M2) (Target) Tr(g, h*) = 1 iff g = h* 

(M3) (Non-triviality) All true statements do not have the same degree of truthlikeness; all 

false statements do not have the same degree of truthlikeness. 

(M4) (Truth and logical strength) Among true statements, truthlikeness covaries with 

logically strength. 

(a) If g and g’ are true statements and g |-- g’, then Tr(g’, h*) ≤ Tr(g, h*). 

(b) If g and g’ are true statements and g |-- g’ and g’ |-/- g, then Tr(g’, h*) < Tr(g, h*). 

(M5)  (Falsity and logical strength) Among false statements, truthlikeness does not covary 

with logical strength: there are false statements g and g’ such that g |-- g’ but Tr(g, h*) 

< Tr(g’, h*). 

(M6) (Similarity) Tr(hi, h*) > = < Tr(hj, h*) iff [∆(h*, hi)=] ∆*i > = < ∆*j for all hi and hj ∈B. 

(M7) (Truth content) If g is a false statement, then Tr(h* ∨ g, h*) > Tr(g, h*). 

(M8) (Closeness to the truth) Assume j ∉ Ig [the index set of g]. Then Tr(g ∨ hj, h*) > Tr(g, 

h*) iff ∆*j < ∆min(h*, g). 

                                                             
32 B corresponds to U, the set of the complete answers to the cognitive problem, D(B) to ℘(U), the partial 

answers, here being disjunctions of complete answers. 
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(M9) (Distance from the truth) Let ∆*1 < ∆*i. Then Tr(h1 ∨ hi, h*) decreases when  ∆*i 

increases. 

(M10) (Falsity may be better than truth) Some false statements may be more truthlike than 

some true statements. 

(M11) (Thin better than fat) If ∆*i = ∆*j > 0, i ≠ j, then Tr(hi ∨ hj, h*) < Tr(hi, h*). 

(M12) (Ovate better than obovate) If ∆*1 < ∆*i <∆*2, then Tr(h1 ∨ hi ∨ h2, h*) increases when 

∆*i decreases. 

(M13) (∆-complement33) Tr(g, h*) is minimal if g consists of the ∆-complements of h*.” 

 

On p. 234, Niiniluoto lists the scoring of his definition on these conditions and a couple of other 

definitions, with the result that his definition scores the best. Among the other candidates is the 

average measure of Tichy and Oddie, indicated by Niiniluoto as Mav
34, here as TO, amounting to 

TO(X; t) = (1 − x ∈ M d(x, t)/|X|). We will translate Niiniluoto’s conditions in our set-theoretic terms 

and present the scores of his measure Mγγ’
ms(X; t) = (1 − dγγ’

ms(X; t)) and those of ETL(X; t), ITL(X; t), 

and TLα(X; t)35. In the ITL column we also list, between brackets, the scores of TO(X; t). Finally, 

recall that we assume that X is non-empty and that d is non-trivial in all cases. Note that the conditions 

M1 and M2 directly correspond to our TL.1 and TL.2, respectively, as applied to the case T = {t}. 

Connections between M-conditions and TL.3 and TL.4 will be indicated at the spot. 

 In the first table we list the relevant definitions and in the second table their scores on 

Niiniluoto’s conditions of adequacy, M1 – M13. In Table 1 we prefer to list the ‘distance versions’ of 

the five definitions. We also list the (most plausible) underlying claim and the result when X is E-true, 

i.e., t ∈ X. 

 

Tr-Measure General definition Claim If t ∈ X                                             

Mγγ’
ms(X; t) 1 − [γdmin(t, X) + γ’ x∈X d(x, t)] 

                                  x∈U d(x, t) 

= 1 − [γdmin(t, X) +  

γ’ x∈X d(x, t)/|X| . |X|] 

    x∈U d(x, t)/|U|   |U| 

 

= 1 − [γdmin(t, X) +  

γ’    dav(X; t)  .          |X|]36 

t ∈ X 1 − γ’ x∈X d(x, t)  

           x∈U d(x, t)] 

                                                             
33 “An element hj of B is called a ∆-complement of hi, if ∆ij = max ∆ik, k ∈ I [the index set of B]” (Niiniluoto, 

1987, p. 210). 
34

 The symbolization in Niiniluoto’s table also includes the superscript γ, but this must be a mistake, for TO has 

no parameters. 
35

 Note that for simplicity we have replaced here P in ITL and M in ETL by X. 
36

 Note the occurrence of the average dav(X; t) =df x∈X d(x, t)/|X|, which is also crucial for TO(X; t), ETL(X; 

t), and TL
α
(X; t). 
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    x∈U d(x, t)/|U|   |U| 

ETL(X; t) (1 − dmin(t, X))/|X| t ∈ X 1/|X| 

ITL(X; t) (1 − x ∈ X d(x, t)/|X|)/|X|) 

= (1 − dav(X; t))/|X|) 

X ⊆ {t}
37

 no formula reduction 

TO(X; t)  1 − x ∈ X d(x, t) / |X|  

= 1 − dav(X; t) 

(= ITL(X; t) |X|!) 

 no formula reduction 

TLα(X; t) (1/|X|) [α(1 − dmin(t, X)) +  

(1 − α) (1 − x ∈ X d(x, t)/|X|)] 

=  

(1/|X|) [α(1 − dmin(t, X)) +  

(1 − α) (1 − dav(X; t))] 

= 

(1/|X|) [α(1 − dmin(t, X)) +  

(1 − α) TO(X; t))] 

X = {t} (1/|X|) [α +  

(1 − α) (1 − x ∈ X d(x, t)/|X|)] 

 Table 1. Truthlikeness measures to be compared. 

 

We like to start with a global comparison of these five measures, viz. in terms of their plausible 

sufficient conditions for increasing actual truthlikeness. The crucial terms are |X|, dmin(t, X), and dav 

(X; t) (=df x ∈ X d(x, t)/|X|). To increase TO(X; t) it is (necessary and) sufficient that dav(X; t) 

decreases. To increase ETL(X; t) it is enough that |X| and dmin(t,X) do not increase, and at least one of 

them decreases. To increase ITL(X; t) it is enough that are |X| and dav(t,X) do not increase, and at least 

one of them decreases. Finally, both TLα(X; t) and Mγγ’ms(X; t) increase when all three terms |X|, 

dmin(t,X), and dav(X; t) do not increase and at least one of them decreases.  

The technical way in which they guarantee these sufficient conditions, is rather different. In 

view of its nomic background, TLα(X; t) is a rather plausible construction, with a clear role of the 

parameter, whereas Mγγ’
ms(X; t) is a rather complicated construction, with parameters without a clear 

conceptual background38 and based on (1 −) the sum of two terms of a different order.39 For this 

reason, we prima facie prefer TL
α
(X; t) relative to M

γγ’
ms(X; t). However, ETL(X; t) and ITL(X; t) are 

also plausible, and are parameter free. Finally, TO(X, t) can get a similar plausible background by the 

nomic generalization of it, TO(X; T) =df 1 − z ∈ X dmin(z, T)/|X|, but compared to ITL(X; t), it fails to 

take the size factor into account. 

                                                             
37 Since X is supposed to be non-empty, this leads to the same claim as that of TLα: X = {t}. 
38

 See Section 4.2 issue 4) for the generalization, respectively transformation, of Niiniluoto’s minsum definition 

of actual truthlikeness (in)to nomic truthlikeness. 
39

 To avoid this, a product variant might be considered: (1 − dmin)(1 − dsum). It is parameter free and satisfies at 

least TL.1, TL.2, and the relevant version of TL.4, but still fails to satisfy TL.3.  
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In view of the fact that all measures, except TO(X; t), satisfy the target condition TL.2, viz. 

Tr(X; t) = 1 iff X = {t}, see below, one might say that all (these four) roads lead to the truth, as all 

roads lead to Rome (which was in fact the case in the Roman Empire!). Compared to both Mγγ’
ms(X; t) 

and TLα(X; t), the other measures may be seen as less cautious, they run the risk of detours as 

measured by the two more demanding measures.
40

 

  So far for the global comparison. In Table 2 we evaluate the five measures in terms of 

Niiniluoto’s 13 conditions of adequacy. Besides the conditions of Niiniluoto, we have inserted rows 

for TL.3, below M6, and some substitution versions of Niiniluoto’s conditions, viz. M7 and M8.  

 

 Translation of Niiniluoto’s conditions of adequacy Tr(X; t) = 

  M
γγ’

ms
41

 ETL ITL 

(TO
42

) 
TL

α
 

 Underlying claim t ∈ X  t ∈ X X⊆{t} X={t} 

M1= 

TL.1 
(Range)     0 ≤ Tr(X; t) ≤ 1

43
 + + + + 

M2= 
TL.2 

(Target)     Tr(X; t) = 1 iff X = {t}  + + + + 

M3 (Non-triviality)  

For (E-)true ((E-)false) statements / claims, i.e., t∈X [t∉Y],  

Tr(X; t) [Tr(Y; t)] have not all the same value for varying X [Y]  

 

+ 

 

+44 

 

+ 

(+) 

 

+ 

M4 (Truth and logical strength [covariation])
45

 

(a) If t∈Y⊆X then Tr(X; t) ≤ Tr(Y, t) 

 

+ 

 

+ 

 

−46 (−) 

 

−47 

                                                             
40

 We can even extend the analysis by taking a third term into account: dmax(t, X). Note first that similarity 

measure TLmax(X, t) =df (1 − dmax(t, X))/|X| satisfies unit range, target, and continuity. Hence, a revision where 

|X| and dmax(X, t) do not increase and one of them decreases is a plausible kind of increasing truthlikeness. In this 

way we get that if |X| does not increase, decreasing one or two or all three of dmin(t,X), dav (X; t), and dmax(X, t) 

can be seen as ways of truth approximation. Together with decreasing |X| and not decreasing the three other 

terms, we get in total 8 ways of truth approximation.  

 As to the possible nomic background of dmax(X, t), we may define y∈T dmax(y, X)/|T| and x∈X dmax(x, 

T)/|X|. Now it is easy to check that, for T = {t}, the first term reduces to dmax(t, X), and the second to x∈X d(x, 

T)/|X| = dav(X; t), that is, the term we already got from x∈X dmin(x, T)/|X| for T={t}. However, we do not yet see 

a way to link the two nomic summations to the two nomic claims such that the sums are zero when the 

corresponding claim is true.  
41 For this column, see (Niiniluoto, 1987, p. 234). Superscript γγ’ “means that the measure satisfies the given 

condition with some restrictions on the value of γ (and γ’)”; page numbers and numbers of formulae between 

brackets refer to the relevant restrictions as mentioned in (Niiniluoto, 1987). In the other columns we introduce 

notes if restrictions are needed. 
42

 The scores of TO correspond, of course, with Niiniluoto’s column for Mav. 
 

43
 To give an example of the translation, Niiniluoto’s condition M1 reads “(Range) 0 ≤ Tr(g, h*) ≤ 1”, hence in 

our formulation “0 ≤ Tr(X; t) ≤ 1”, where X corresponds to the conceptual possibilities covered by, or the 

models of, g, and t to the possibility or model corresponding to h*. 
44

 The value for I-true statements (t∈X) varies only if the size of X changes. 
45

 M4 corresponds to our TL.4 as specified for ETL, i.e. TL
E
.4.  

46
 Regarding ETL the negative scores result from taking (a) and (b) literary. As explained before, the nomic 

version of ETL satisfies a kind of mirror version of covariance: if X ⊂ X’ ⊂ T, then ETL (X’; T) > ETL(X; T), 

but the condition does not make sense when T={t}. Similar remarks can be made about the negative scores of 

TO.   
47 Again, the negative score for TLα result when taking (a) and (b) literally. As also explained before, there is a 

two-sided version of covariation, but the relevant condition cannot be satisfied for maximal theories, not even in 

the nomic version.  
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(b) If t∈Y⊂X then Tr(X; t) < Tr(Y, t) + + − (−)  − 

M5 (Falsity and logical strength)  

If X⊆Y and t∉Y, hence t∉X, then Tr(Y, t) > Tr(X; t) possible 

+
γ 

231
 

+ + 

(+) 

+ 

M6
48 

(Similarity)  

Tr(x, t) < = >  Tr(y, t) iff d(x, t) < = > d(y, t)  

 

+ 

 

+ 

 

+ (+) 

 

+ 
M6#=

TL.3 
[Strengthened version of M6] 

(Conceptual continuity) Tr(x. t)  = 1 − d(x, t) = s(x, t) = tl(x, t) 

− + + (+) + 

M7 (Truth content)  

If t∉X then Tr(X∪{t}, t) > Tr(X; t) 

 

+ 

 

+49 

 

+50 (+) 

 

+51 

M7# [Substitution version of M7] 

If t∉X and x∈X, X
[x/t]

 results from substitution of t for x then 

Tr(X[x/t], t) > Tr(X; t) 

 

+ 

 

+ 

 

+(+) 

 

+ 

M8 (Closeness to the truth) 

If y∉X then Tr(X∪{y}, t) > Tr(X; t) iff d(y, t) < dmin(t, X) 

+γ 

230 (90) 

+
52

 − (±53) − 

 

M8# [Substitution version of M8]54 

If x∈X, y∉X and X
[x/y]

 results from substitution of y for x then 

Tr(X[x/y]; t) > Tr(X; t) iff d(y, t) < d(x, t) 

 

+ 

 

+55 

 

+(+) 

 

+ 

M9 (Distance from the truth) 

If d(c, t) < d(x, t) then Tr({c, x}, t) decreases when d(x, t) 

increases 

 

+56 
 

−57
 

 

+(+) 

 

+ 

M10 ([E-]Falsity may be better than [E-] truth) 

There are X and Y such that t∉X and t∈Y and Tr(X; t) > Tr(Y; t) 

+ 

23258 

+ + (+) + 

 

M11 (Thin better than fat) 

If d(x, t) = d(y, t) > 0 and x≠y then Tr({x, y}, t) < Tr(x, t) 

 

+ 

 

+ 

 

+ (−) 

 

+ 

M12 (Ovate better than obovate) 

If d(c1, t) < d(x, t) < d(c2, t) then Tr({c1, x, c2}, t) increases when 

d(x, t) decreases  

 

+
59

 

 

−60 

 

+ 

(+) 

 

+ 

M13 

 
(∆-complements)  

Tr(X; t) is minimal if X consists of the ∆-complements of t (i.e.  

X = {x/ d(x, t) = max {d(y, t) / y ∈ U}  

 

+
γ 

232 (93) 

 

−/+
61

 

 

−/+
62

 

(+) 

 

−/+
63

 

                                                             
48

 Note that M6 is a weak version of our continuity condition TL.3, for which reason we have inserted a row for 

this condition as well. 
49 Iff if dmin(X, t) > 1/(|X| + 1). 
50

 Iff, putting |X| = m, Σx∈X d(x, t) > m(m+1)/(2m+1). 
51

 Assuming α = ½, it holds if both conditions in the previous two notes are satisfied. For other values of α, the 

conditions have to be adapted.  
52

 The condition is somewhat stronger than in M8: d(y, t) < [(m + 1)dmin(X,t) − 1]/m, which is smaller than dmin. 
53 The if-claim (sufficient condition) holds in general. 
54

 Note that the condition d(y, t) < d(x, t) is a weakened version of that of M8: d(y, t) < dmin(t, X). This 

substitution version is essentially equivalent to what Oddie (2016) calls the Pareto principle. 
55

 Instead of the condition d(y, t) < d(x, t), the stronger condition d(y, t) < dmin(t, X), as in M8, is here required.  
56

 It is a typical effect of the dsum-term, which role is taken over by x ∈ X d(x, t)/|X|) in ETL and TL
α
, and 

which explains the invalidity of M9 for ITL and its validity for ETL and TL
α
.  

57
 See previous note. 

58 See further (88) p. 229 and (74) p. 225. 
59

 Similar to the notes about M9. 
60

 See previous note. 
61

 A sufficient condition is that Y is of the same size as X: if X is as described and X ≠ Y and |X| = |Y| then 

ITL(X, t) < ITL(Y, t).  
62 Similar as in previous note. 
63

 Similar as in previous note. In our setup it may well be that there is for each x ∈ U at least one y ∈ U such that 

d(x, y) = 1. If X
∆
 = {x| d(x, t) =1} then ITL(X

∆
, t) = ETL(X

∆
, t) = TL

α
( X

∆
, t) = 0. Hence, for all Y, if X

∆
 ∩ Y = 

∅ then ITL(X
∆
, t) < ITL(Y, t), ETL(X

∆
, t) < ETL(Y, t), and TL

α
( X

∆
, t) < TL

α
(Y, t) holds even for Y of a 

different size than X
∆
. 
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Table 2. Scores of the discussed truthlikeness measures on Niiniluoto’s conditions of adequacy. 

 

Overviewing the scores of the five measures with respect to the conditions M1-M13, we may 

draw some general comparative conclusions.  

Comparing TO and ITL, the main differences concern M8 and above all M11. Regarding M8, 

TO scores half positive and ITL just negative. However, the at least as plausible substitution version of 

M8, M8#, is straightforwardly satisfied by both. The score difference with respect to M11 illustrates 

that sets of different sizes may well have the same average distance to t. For precisely this reason, ITL 

takes also size differences into account. For both it may remain strange that they have the underlying 

claim ‘X ⊆ {t}’ (and hence ‘X = {t}’, because X is non-empty). However, this type of claim is in the 

context of nomic truthlikeness conceptually very plausible: ‘X ⊆ T’. 

So, let us focus on the comparison of M
γγ’

ms and our trio. In view of the apparently underlying 

claim of M
γγ’

ms, viz. ‘t ∈ X’, Niiniluoto’s definition should primarily be compared with ETL, but in 

view of the size related term dsum also with TL
α
. In all cases the validity of a principle may need some 

restriction on a parameter or on some other value. However, as far as the scores of M
γγ’

ms and ETL 

differ, viz. regarding M9 and M12, these principles seem irrelevant for the supposedly underlying 

(exclusion or maximal) claim. Although I do not see a good reason to claim that Mγγ’
ms in fact 

presupposes the maximal claim ‘X = {t}’, in view of the technical definition there is good reason to 

also compare Mγγ’
ms with TLα. Apart from M4, they largely share the other principles, now including 

M9 and M12. In two cases, M7 and M8, TLα satisfies plausible substitution versions. In case of M13, 

TLα satisfies it under a plausible condition, which need not be assumed if there is at least one x such 

that d(x, t) is maximal (1). 

Comparing M
γγ’

ms with ITL, the scores regarding M4, M6, M7, and M8 need some 

clarification. Recall that there is a straightforward nomic mirror version of M4 (TLX.4) satisfied by 

ITL. That the relevant condition happens to be inapplicable in the factual case, is of course not a 

genuine negative point of ITL. Regarding M6, although both score positive, it is in my view to be 

preferred that the stronger version, M6
#
 (conceptual continuity), is satisfied. Regarding M7, which is a 

mixture of a distance and a size condition and which is only conditionally satisfied by ITL, the at least 

as plausible substitution version M7
#
 is straightforwardly satisfied by all four measures. Regarding 

M8, again a mixture of a distance and a size condition, the substitution version M8# assumes a 

plausible purely distance condition and is again satisfied by all four measures. Finally, in general, 

whereas ITL satisfies all (if relevant, substitution versions of) conditions without restriction, M
γγ’

ms has 

parameter restrictions with respect to three conditions, viz. M5, M864, and M13. 

                                                             
64

 But it satisfies the substitution version M8
#
 straightforwardly. 
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 In sum, in the comparison of Mγγ’
ms with our triple of definitions, the technical difference may 

not clearly be in favor of one of the two. However, our main claim is that our three definitions are 

conceptually more balanced and simpler constructions than Niiniluoto’s definition. The distance 

measure underlying the latter, i.e. dγγ’
ms(X; t), though technically serving its purposes, is a conceptually 

strange sum of two terms of a different order. Finally, in contrast to the triple of definitions (and TO), 

Mγγ’
ms does not straightforwardly satisfy the continuity principle (see M6 and M6#=TL.3 in Table 2), 

which is conceptually unsatisfactory.  

 

 

4. Conclusion and questions for further research 

 

4.1 Conclusion 

In this paper we have introduced a coherent trio of distance and size based normalized measures of 

nomic truthlikeness, guided by the three different claims that a theory may make: truthlikeness of 

exclusion, inclusion, and combined (maximal two-sided) theories, ETL, ITL, and TL
α
, respectively.  

The measures can formally also be used as measures for actual truthlikeness by assuming the extreme 

special case in which the set op nomic possibilities is the singleton of the actual possibility. The direct 

practical value of these measures is limited as long as one does not know the nomic and the actual 

truth, respectively. However, if one would know them they clearly indicate which revisions of theories 

bring us closer to the truth and each measure suggests its own focus for attempts to truth 

approximation. Hence we may at least conclude, as we did at the end of Sections 2.4 and 3.1, that we 

have good reasons to assume that, even without knowing the truth, all three measures provide 

meaningful guidelines for nomic and actual truth approximation, but also that ETL and ITL have their 

own risk of detours, whereas TL
α
 (and more generally, CTL

α
) is more cautious in both respects. 

However, the latter need a parameter, be it with a plausible role. Hence, we have no clear preference.  

Comparing the main quantitative definitions of actual truthlikeness in the literature, 

Niiniluoto’s minsum definition and Tichy and Oddie’s average definition, with our trio, we may 

conclude, in view of the scores with respect to Niiniluoto’s 13 conditions, the reasons behind the 

deviations and the alternative ways to deal with them, that the technical difference may not clearly be 

in favor of one the two. However, in view of simplicity, it is already defensible to prefer ETL and TLα 

above Niiniluoto’s minsum definition M
γγ’

ms of the truthlikeness of claims of the form ‘t ∈ X’ and ‘X 

= {t}’, respectively. Moreover, ITL provides a size sensitive refined version of the ‘average minimal 

distance’ definition TO of Tichy and Oddie, and can compete very well with Mγγ’
ms.  

There are important extra reasons to favor, depending on the claim, the relevant member of 

our trio, that is, ETL, ITL, or TL
α
. They have some very attractive exclusive properties: 1) they cover 

actual as well as nomic truthlikeness, the latter even for two-sided theories, 2) they not only satisfy 
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(like Mγγ’
ms and TO) the unit range and the target condition, but also the conceptual continuity 

principle, that is, in contrast to Mγγ
ms , but like TO, they reduce straightforwardly to the underlying 

distance based truthlikeness measure for singleton theories, and finally 3) Mγγ’
ms is a rather 

complicated construction, with puzzling parameters and based on (1−) the sum of two terms of a 

different order, whereas ETL, ITL, and TL
α
 are conceptually transparent and simple constructions. 

Only TL
α
 needs a parameter, however with a plausible role. 

.  

4.2 Questions for further research 

1) In a note about the definition of ‘exclusion similarity’ we suggested already that another route was 

possible for defining ‘exclusion truthlikeness’ due to the equivalence of the claims ‘T ⊆ X’ and ‘cX ⊆ 

cT’. This leads to the following two possibilities, the one in the text, ETL(X; T), and the complement 

variant, ETLc(X; T): 

 

ETL(X; T) = min(|X|, |T|) × (1 − x ∈ X dmin(x, T))/|X|) 

     max(|X|, |T|) 

 

ETLc(X; T) = min(|cX|, |cT|) × (1 − x ∈ cX dmin(x, cT))/|cX|) 

     max(|cX|, |cT|) 

 

As is easy to see, ETLc(X; T) presupposes a finite universe for the size factor is undefined in case of 

an infinite universe and the denominator in the summation, |cX| = |U − X| = |U| − |X|, needs to be 

finite. 

Against the first, ‘direct version’, ETL(X; T), one may object that it is conceptually 

problematic in comparison with ITL, for there seems no good reason to treat the complement version 

of the exclusion claim, i.e. ‘cX ⊆ cT’, formally different from the inclusion claim ‘X ⊆ T’. Treating 

this complement version, ‘cX ⊆ cT’, formally like the inclusion claim leads to the second, 

complement variant of exclusion truthlikeness, ETL
c
(X; T). It is easy to check that both versions 

satisfy the unit range condition (TL.1), 0 ≤ ETL(
c
)(X; T) ≤ 1, the unique target condition (TL.2), E(

c
) 

TL(X; T) = 1 iff X = T, and the exclusion version of conditional covariance (TL
E
.4), if T ⊂ X’ ⊂ X, 

then ETL(
c
)(X’; T) > ETL(

c
)(X; T). However, whereas the direct version satisfies conceptual 

continuity (TL.3), ETL(x. t) = s(x, t) = tl(x, t), ETLc  does not, as is easy to check, for we get, using 

|c{x}| = |c{t}| = |U| − 1, 

 

ETL
c
(x; t) = min(|c{x}|, |c{t}|) × (1 − y ∈ c{x} dmin(y, c{t}))/|c{x}|)  

        max(|c{x}|, |c{t}|) 

= 1 − y ∈ c{x} dmin(y, c{t})/(|U| − 1) 

In fact, ETL
c
(x; t) is not even order equivalent with tl (x, t) = 1− d(x, t).  
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 In sum, despite the formal objection, the need of assuming a finite universe and the lack of 

conceptual continuity seem enough reason to favor ETL above ETLc. However this may be, by 

combining ETLc with ITL and using a parameter like α one can get also a truthlikeness measure for 

two-sided and hence maximal theories, i.e. theories with claim ‘X=T’. Further comparative evaluation 

of the two alternatives is needed.  

 

2) This paper is restricted to the logical problem of actual and nomic truthlikeness. For the epistemic 

or epistemological problem, that is, not knowing the truth aiming at actual and nomic truth 

approximation in the face of evidence, we may focus on a definition of quantitative success guided by 

our measures and for the rest remain in line with my previous publications (Kuipers, 2000, 2019). For 

nomic truth approximation, the latter goes in terms of a set of experimentally realized possibilities, R, 

and, on their basis, induced laws, where S indicates the strongest law. Note that cS is the set of 

induced impossibilities. Assuming we made no mistakes, a strong assumption indeed, we get R ⊆ T ⊆ 

S65, whatever T is. This leads to the, for the realist-instrumentalist debate, challenging question to what 

extent a ‘success theorem’ holds, that is, to what extent does ‘quantitatively more truthlike’ predict 

‘quantitatively more successful’.  

It seems plausible to define, in line with ETL and ITL, the (empirical) exclusion success as 

s
*
(S, X) × (x ∈ X smax(x, S))/|X| and the inclusion success as s

*
(R, X) × (y ∈ R smax(y, X))/|R|, and for 

the combined success the α-weighted sum. Note that all three success notions are, though suggested 

by, not laden with the corresponding truthlikeness definitions, hence perhaps acceptable for 

instrumentalists. The following is easy to prove: if R has no counterexamples to X (R ⊆ X), the 

inclusion success reduces to s
*
(R, X), and if X explains, or at least entails, S, (X ⊆ S), the exclusion 

success reduces to s
*
(S, X). However, to what extent the three corresponding success theorems can be 

proved is not easy to determine.  

To be sure, for the epistemological problem, we may also focus, in line with Niiniluoto 

(1987), on probabilistically estimating the truthlikeness of theories on the basis of the available 

evidence. Inevitably, such evaluations of theories by empirical results are explicitly laden with the 

presupposed definition of truthlikeness. 

 

3) A number of topics in (Kuipers, 2019), in particular with respect to nomic truthlikeness, ask for 

extension and comparison (Chapters refer to that book).  

a) Ch. 1 and 4 explore and defend the (qualitative) symmetric difference definition of more 

truthlikeness: Y is more truthlike than X iff Y∆T is a proper subset of X∆T. The ∆-definition was first 

proposed for actual truthlikeness by David Miller (1978) and independently for theoretical or nomic 
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 This may be paraphrased as: all realized possibilities are nomic possibilities and all induced impossibilities are 

nomic impossibilities. 
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truthlikeness by myself (Kuipers, 1982), and further developed in (Kuipers, 2000, 2019). It will be 

interesting to compare this definition with our trio, in particular assuming that the distance function is 

trivial: d(x, y) = 0 if x = y, otherwise d(x, y) = 1.
66

 Moreover, it is interesting to investigate to what 

extent the ‘trivial’ trio measures are susceptible to the so-called67 child’s play objection of Pavel Tichy 

(1978) and Graham Oddie (1981, 1986, 2016) against the ∆-definition. Finally, it would be interesting 

to evaluate the (trivial and non-trivial) trio in the light of Zwart’s (2001) distinction, emphasized by 

Niiniluoto (2003), between content (e.g. Miller, 1978, Kuipers, 2000, 2019) and likeness (e.g. Oddie, 

1986, Niiniluoto, 1987) approaches to truthlikeness. 

b) Ch. 6 deals with a ‘refined’ qualitative (two-sided) approach, in which the ternary notion of 

structurelikeness (possibility y is more similar to z than x) plays a crucial role. In the present setup it is 

plausible to interpret this relation in terms of (non-trivial) distances (d(y, z) < d(x, z)), and the question 

is how refined truthlikeness relates to our trio.  

c) Ch. 5 deals with a quantitative version of the qualitative approach in terms of symmetric differences 

in Ch, 4. The interesting question is whether this version also coheres with TLα, viz. as an extreme 

case for trivial d?  

d) Finally, Ch. 7 deals with a (observational - theoretical) stratified version of the symmetric 

difference approach. Assuming a (reduction or) projection function π from the theoretical level to the 

observational level, and an order preserving relation between the underlying distance measures, the 

plausible relational questions are: to what extent does e.g. ETL(Y; T) > ETL(X; T) entail ETL(πY; 

πT) > ETL(πX; πT)? 

 

4) Niiniluoto’s minsum definition asks for a generalization that is also applicable for the nomic truth 

T. Such a generalization is not only interesting in itself, but also for the comparison with other 

proposals that work for t and T, such as our trio. Besides some related ways in Ch. 11, Niiniluoto 

(1987) has defined (Ch. 10, (121), p. 248) a distance measure between statements, of which he points 

out that it gives his minsum measure as a (very) special case, when one of the statements is the true 

constituent. 

Our tentative proposal for a straightforward generalization of M
γγ’

ms(X; t) to nomic 

truthlikeness in Niiniluoto’s style of defining actual truthlikeness of (exclusion) theories is, assuming 

positive parameters γ and γ’ such that γ + γ’ ≤ 1:  

 

 dmin(T, X)  = Σy∈T dmin(y, X)/m(T)  dsum(X, T) = x∈X dmin(x, T) 

                                  x∈U dmin(x, T) 

 d
γγ’

ms(X, T)  = γdmin(T, X) + γ’dsum(X, T) 
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 As is easy to check, it is a genuine normalized metric. 
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 The objection is so called by Niiniluoto (1998, 2020). 
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Mγγ’
ms(X; T)  = 1 − dγγ’

ms(X, T) = 1 − [γdmin(T, X) + γ’dsum(X, T)] 

 

Note that d
γγ’

ms(X, t) is straightforwardly the special case of M
γγ’

ms(X; T) when T={t}. Note also that 

dmin(T, X) = 0, and hence M
γγ’

ms(X; T) = 1 − γ’dsum(X, T), if X is E-true, that is, if T⊆X.  

Mγγ’
ms(X; T) =df 1 − dγγ’

ms(X, T) satisfies at least the following principles:  

M1: (Generalized Range)     0 ≤ Tr(X; T) ≤ 1   

M2: (Generalized Target)     Tr(X; T) = 1 iff X = T 

M3: (Generalized Non-triviality)  

For (E-)true ((E-)false) statements / claims, i.e., T ⊆ X (T − Y ≠ ∅),  

Tr(X; T) (Tr(Y; T)) has not always the same value for varying X (Y) 

M4: (Generalized Truth and logical strength)  

(a) If T ⊆ Y ⊆ X then Tr(X; T) ≤ Tr(Y; T) 

(b) If T ⊂ Y ⊂ X then Tr(X; T) < Tr(Y; T)   

It would be interesting to also generalize M5 – M13 as plausible as possible and to compare Mγγ’
ms(X; 

T), with our trio, in particular ETL(X; T) and TL(X; T), and with Niiniluoto’s distance measure 

between statements referred to at the beginning, and finally with Leg(D(X), C(T)) below. 

There is still another way to deal with nomic truthlikeness in the style of Niiniluoto’s 

treatment of actual truthlikeness, viz. a kind of transformation in terms of ‘propositional nomic 

constituents’. As a reviewer remarked, a maximal theory “X = T” can be seen as a kind of constituent. 

Let C(X) =df “X = T”, where bold T indicates that T has not yet been characterized in the ‘language of 

U’. That is, C(X) can be seen as the propositional nomic constituent: ∀x ∈ X x ∈ T & ∀x ∉ X x ∉ T.68 Of 

course, just one of them is true, to be indicated by C(T) = “T = T”, where the non-bold T is a 

characterization T in the language of U. Now we can define nomic truthlikeness of a nomic exclusion 

theory X, (claiming ‘T ⊆ X’), i.e. a disjunction or set of nomic constituents, D(X) = {C(Y) / Y ⊆ X}, 

relative to the true nomic constituent, in Niiniluoto’s style. It corresponds to his discussion of 

legisimilitude (Niiniluoto, 1987, pp. 376-380), in particular by the definition of ‘leg3’ ((7), p. 377). 

However, he deals with monadic nomic constituents, i,e, conjunctions of the form &i(±)(∃x)Qi(x), 

which we do not consider. In terms of our propositional nomic constituents, we first need a plausible 

(normalized symmetric) distance function between constituents, δ(C(X), C(Y)). This function may or 

may not be (relative) size dependent but will almost certainly be based on some underlying 

(normalized symmetric) distance function d(x, y).69 The crucial definition then is, again assuming 

positive parameters γ and γ’ such that γ + γ’ ≤ 1:  

 

                                                             
68

 This corresponds to the way in which nomic constituents are defined in (Cevolani, et al., 2013), where they are 

used to define a qualitative comparative notion of ‘closer to the nomic truth’, in fact a translation of Kuipers’s 

(2000, 2019) set-theoretic definition into the terms of ‘nomic conjunctive theories’. 
69

 If δ is only based on the trivial distance function, it leads to δ(C(X), C(Y)) = |X∆Y|/|U|. 
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Leg((D(X), C(T))) = 1 − dγγ’
ms(D(X), C(T))   = 1 − [γδmin(C(T), D(X)) + γ’ δsum(D(X), C(T))] 

 

where   

 

δmin(C(T), D(X)) = min{δ(C(Y), C(T))| Y ⊆ X}      δsum(D(X), C(T)) = Y ⊆ X δ(C(Y), C(T)) 

                                Y ⊆ U δ(C(Y), C(T)) 

So far for the generalization, respectively transformation, of Niiniluoto’s minsum definition of actual 

truthlikeness (in)to nomic truthlikeness. 

 

5) So far we assumed that all considered subsets of the universe are finite. Plausible challenges are 

extending the measures to denumerable infinite and continuous subsets. The latter problem brings us, 

among other, to the topic of the truthlikeness of an interval hypothesis relative to the actual truth 

(Festa, 1986). Surprisingly enough, our measures are easy to extend to the nomic truthlikeness of such 

an hypothesis. Let U be the set of real numbers, or the non-negative ones, with a suitable distance 

function d(x, y) and s(x, y) = 1 − d(x, y). Let X and T be closed intervals. Then e.g. our combined 

measure TLα can directly be applied, replacing sums by integrals.  

  

TL
α
(X; T) = s

*
(X, T) [αEST(X) + (1 − α)ISX(T)] 

              =df s
*(X, T) [α T smax(z, X)dz / |T| + (1 − α) X smax(z, T)dz / |X)] 

   = s*(X, T) [α (1 − T dmin(z, X)dz / |T|) + (1 − α) (1 − X dmin(z, T)dz / |X|)] 

 

Here we assume: 

 |X| = b − a for X = [a, b] 

s
*
(X, T) = min(|X|, |T|) / max(|X|, |T|)  

dmin(z, [a, b]) = d(z, a) if z < a, 0 if a ≤ z ≤ b, d(z, b) if b < z  

 

For the underlying distance function d(x, y) we can use the normalized geometric distance if the reals 

are the universe: d(x, y) = |x−y| / (|x−y| + 1). If we are dealing with genuine quantities, i.e. a ratio scale 

on the non-negative reals, we would use of course d*(x, y) = 1 − s*(x, y) = 1 − min(x, y)/max(x, y) = 

|x−y| / max(x, y) (Section 2.2, and Manuscript, 2022). 

Note, finally, that TL1/2(X; T) with α = ½ and TL+(X; T) with α = |T|/(|T| + |X|) make perfect 

sense. 

Unfortunately, it is now impossible to treat actual truthlikeness just as the extreme special case 

in which T = [t, t] = {t}. For, since |{t}| = 0, s*(X, {t}) = 0, which makes TLα(X; T) uniformly equal to 

0. Perhaps one may defend to set s*(X, {t}) = 1/(1 + |X|) or to restrict actual truthlikeness to the second 

factor. In the second case, it is perfectly possible that d(x, y) is such that Tdmin(z, X)dz / |T| goes to 

dmin(t, X) if T = [t, t + x] and x goes to 0. If so, we get: 
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(1) α (1 − dmin(t, X)) + (1 − α) (1 − X d(z, t)dz / |X|) 

 

Note that the second factor of the second term, i.e., (1 − X d(z, t)dz / |X)), is a straightforward 

generalization of the average measure of Tichy and Oddie. Note also that (1) reduces to this term when 

α = α+
 = |[t, t]|/(|[t, t]| + |X|) = 0 for |[t, t]| = 0. We leave the detailed comparison of (1) with the 

definition of Festa (1986) as an interesting question for further research. 

 

In conclusion, the proposed trio of truthlikeness measures, raises a number of challenging questions 

for further research. 
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