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Abstract 

Explanations in genetics have intriguing aspects to both biologists and philosophers, and 

there is no account that satisfactorily elucidates such explanations. The aim of this article 

is to analyze the kind of explanations usually given in Classical (Transmission) Genetics 

(CG) and to present in detail the application of an account of explanation as ampliative, 

specialized nomological embedding to elucidate the such explanations. First, we present 

explanations in CG in the classical format of inferences with the explanans as the 

premises and the explanandum as the conclusion and compare them with explanations in 

other paradigmatic explanatory fields such as Classical Mechanics. Second, we 

summarize the main aspects discussed in the literature with regard to the peculiarities of 

genetic explanations. Third, we introduce the account of scientific explanation as 

ampliative, specialized nomological embedding making use of Sneedian structuralism, in 

particular the notions of theory-net, fundamental law or guiding principle, specialization, 

and special laws. Finally, we apply this account to the case of CG and show that this 

analysis sheds light on the intriguing aspects of genetic explanations and removes most 

of their alleged oddities. 
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1. Introduction 

 

Explanations in biology have aspects that look intriguing to both biologists and 

philosophers. A well-known reading of explanation in biology summarizes the main 

problems thus (Braillard & Malaterre, 2015, p. 9): “These [four main] problems are 

related to (1) whether natural laws exist in biology, (2) whether causation plays a specific 

 

 

 
1 Research for this work has been supported by the National Agency of Scientific and Technological 

Promotion (PICT-2018-3454) (Argentina) and Ministerio de Ciencia e Innovación (PID2020-115114GB-

I00) (Spain). We want to thank two anonymous reviewers for useful comments on a previous version of 

this paper. 

mailto:pablo.lorenzano@gmail.com
mailto:diez.ja@gmail.com


2 

 

 

 

 

 

 

explanatory role in biology, (3) whether other forms of explanation – e.g., functional or 

teleological – are also needed, and (4) whether the recent mechanistic type model of 

explanation that brings together some form of law-like generalizations and of causation 

fulfills all expectations”. With regard to genetics, two main aspects discussed in the 

literature on explanations in Classical Genetics (CG) are the presence/absence of laws in 

their explanantia (cf., e.g., Smart, 1963; Ruse, 1970; Rosenberg, 1994, 2001; Brandon, 

1997), and the alleged not fully causal (functional or other) nature of such explanations 

(cf., e.g., Schaffner, 1993; Waters, 1998). 

With regard to the use of laws, the main objection comes from those who deny the 

existence of laws in biology in general, and in genetics in particular. As for the non-

existence of laws in biology in general, the main reasons provided for such a view are the 

locality or non-universality of generalizations in biology (Smart, 1963) and their alleged 

contingency (Beatty, 1995). With respect to the existence of laws in genetics in particular, 

we must distinguish the claim that there are no laws in CG at all, which is hardly tenable 

given at least Mendel’s so-called laws, and the more commonly asserted and discussed 

claim that there are no fundamental and/or general nomological principles in genetics (see 

Lorenzano, 2006, 2007, for a discussion). 

As for the non-universality of biological generalizations, we contend that universality 

is too demanding a condition. What matters is not strict universality but rather the 

existence of at least non-accidental, counterfactual-supporting generalizations, whose 

presence in biology we think is hardly deniable, though generally they are more domain 

restricted and ceteris paribus dependent than in other more fundamental fields such as 

mechanics or thermodynamics. Many philosophers of biology, and of physics as well, 

accept a broader sense of lawhood that does not require non-accidental generalizations to 

be universal and exceptionless in order to qualify as laws (Carrier, 1995; Mitchell, 1997; 

Lange, 1995, 2000; Dorato, 2005, 2012; Craver & Kaiser 2013; Lorenzano, 2014). Our 

minimal characterization of laws as counterfactual-supporting regularities is similar to 

the one defended in Dorato (2012), and it is also compatible with some proposals about 

laws in biology in particular, such as the “paradigmatic” (Carrier, 1995) and “pragmatic” 

(Mitchell, 1997) ones. As for genetics specifically, some authors who argue that there are 

no laws in CG in a strict sense (see e.g. Kitcher, 1984; Darden, 1996, against fundamental 

laws in CG) at the same time give an account of explanation in CG that involves 

nomological patterns (Kitcher, 1989, 1993), thus involving nomological regularities, i.e. 

non-accidental, counterfactual-supporting regularities in a broad sense. All we need, in 

this regard, is the acceptance that CG makes use of regularities with counterfactual force, 

irrespective of whether this modal force is, in turn, explained in causal or other terms. 

Whether one wants to call these non-accidental, domain-restricted generalizations “laws” 

is a terminological issue into which we will not enter here. What matters is that, regardless 

of what we call them, these non-accidental generalizations play a key role in CG 

explanations. 

One may argue that, even accepting the existence of nomological, counterfactual-

supporting regularities in genetics, genetic explanations are not nomological because 

(contra e.g. Kitcher, 1984) they simply do not include such regularities in their 

explanantia. Genetic explanations, the objection goes, are causal, or functional, or 

teleological, or mechanistic, etc., all in a sense that does not require nomological 

regularities. We do not think this objection is sound. As has been argued, mechanistic 

explanations, for instance, require or involve laws (cf. e.g. Leuridan, 2010; Craver & 
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Kaiser 2013); and similar considerations apply to functional, teleological, or even causal 

explanations.2 We are not going to enter into, or even review, these debates, but rather we 

will proceed by exemplification. We first present some paradigmatic explanations in CG 

in a standard inferential manner, and then we will reconstruct them in a model-theoretic 

format that makes manifest the fact that these explanations make essential use of 

counterfactual-supporting generalizations, thus qualifying as nomological explanations 

in a model-theoretic sense explicated in detail within the Sneedian-structuralist meta-

theoretical framework via the notion of ampliative, specialized embedding (ASE). 

The scope of this work is confined to “the heart” of Classical Genetics, namely “the 

theory of transmission genetics” (Kitcher, 1984), thus leaving aside the other subtheories 

that grow out of this theory like the theory of gene mapping (Kitcher, 1984; Weber, 1984) 

and the theory of mutation (Kitcher, 1984) as well as other “investigative strategies (such 

as the ‘genetic approach’)” (Waters, 2004); thus ‘Classical Genetics’ must be read in this 

way in what follows. Nevertheless, although our elucidation does not deal with 

explanations in contemporary molecular genetics, we claim, without argument here, that 

a similar analysis can be applied to contemporary molecular biology, as it has successfully 

been applied to other fields in biology (see e.g. Díez & Lorenzano, 2013, 2015, for 

Natural Selection; Alleva et al., 2017, for Allosterism; Lorenzano, 2014, for Population 

Genetics; Lorenzano & Díaz, 2020, for Population Dynamics; Díez & Suárez, 2021, for 

Systems Biology). We also believe that the value of this case study is not merely 

historical, nor simply that of applying an account of explanation to a new biological case, 

but that it also sheds some light on some issues in contemporary biology practices that 

still use Classical Genetics in laboratory and field work.3 

 

 

2. Some paradigmatic explanatory patterns in Classical Genetics 

 

Classical Genetics is a theory about hereditary trait transmission, in which several traits, 

characteristics or characters (phenotype) of individuals are transmitted across 

generations. CG uses the following basic conceptual framework: individuals, being 

parents or progeny, and their sets or populations that make up families, that is, populations 

connected by bonds of common descendent; traits, characteristics, characters or 

appearances (APP) that are possessed by individuals; individuals that mate (MAT) and 

produce progeny, which also possess certain traits/characters, and where numerical 

ratios, proportions or relative frequencies in the distribution (DIST) of those characters in 

the progeny are distinguished. We can represent this graphically as in Fig. 1 – where the 

 

 

 
2 In a broadly, though admittedly not universally, accepted account according to which causation is a 

relation between particular events in virtue of such events exemplifying general types involved in 

counterfactual-supporting regularities. 
3 It is not the aim of this paper to carry out a historical and systematic analysis of the relationship between 

Classical Genetics and Molecular Genetics. However, we would like to point out that, with the emergence 

of Molecular Genetics, Classical Genetics was neither displaced, replaced nor reduced, and that, at present, 

explanations provided by Classical Genetics for certain hereditary patterns (e.g. those mentioned in Section 

2) are still considered valid. 
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rectangles represent CG’s base sets or “ontology” and the arrows represent CG’s 

functions defined over them: 
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Fig. 1 

 

In order to account for the distributions of the characters in the progeny (i.e., for the 

relative frequencies) the following parameters have to be theoretically postulated: 

(i) appropriate types and numbers of factors or genes (genotype), 

(ii) the way in which they are distributed or combined in the progeny (COMB) (as 

expected or theoretical probabilities), 

(iii) the specific relationship (DET) in which they are with the characters of the 

individuals. 
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Fig. 2 

 

 

Let us see some paradigmatic examples of explanation in CG, as they are usually 

presented in scientific articles, monographies and textbooks. The components related in 

Figs. 1 and 2 can be identified in every given example of explanation in CG. We start 

with the case of the color of pea seed albumin: pea plants belonging to the first filial 

generation, with yellow seed coats, which are self-fertilized and produce offspring having 

a ratio of 3:1 of yellow seed coats (¾) and green seed coats (¼). These pea plants (i) are 

heterozygous with respect to factors for seed coat color, (ii) combinations of their factors 

in offspring are equiprobable, and (iii) factors for a yellow seed coat are dominant over 

factors for a green seed coat (see [Mendel, 1865, pp. 9-12] for the original explanandum; 

Sinnott & Dunn, 1925, pp. 40-41, 45-50, for a standard CG explanation of such an 

explanandum; and Hartwell et al., 2017, pp. 21-24, for a current presentation of it; here 

and in the following examples we use square brackets to refer to the original source of 

the explanandum phenomenon, and normal references to refer to its standard CG 

explanation, past and present). Let us summarize this and the following explanations in 

the classical format of arguments with the explanans as the premises and the explanandum 

as the conclusion:4 

 
Pea Seed Color: 

Plants that 

(1)  (i) belong to the first filial generation, (ii) with yellow seed coats, 

(2) are self-fertilized and produce offspring, 

(3) (i) are heterozygous with respect to factors for seed coat color, (ii) whose combinations 

of factors are equiprobable, and (iii) where factors for yellow seed coat are dominant over 

factors for green seed coat 

_____________________________________________________________________________ 

Have  

(4)  ¾ of offspring with yellow seed coat and ¼ with green seed coat (a ratio 3:1) 

 

 

A similar form applies to the explanation of some flower colors, such as the Mirabilis 

jalapa (see [Correns, 1905, p. 18]; Morgan et al., 1915, pp. 27-28; Brooker, 2018, p. 82): 

 
Four O’Clock (Mirabilis jalapa or Marvel of Peru) Flower Color: 

Plants that 

(1) (i) belong to the first filial generation, (ii) with pink flowers, 

(2) are self-fertilized and produce offspring, 

 

 

 
4 The conclusion follows due to join action of all the premises; notice in particular the crucial role of (3) 

that implies that, given the dominance of the factors that determine yellow character, three of the four 

combinations of the two factors express the yellow character. The same applies to the following, less 

straightforward examples. As we will emphasize below, (3) specifies the particular parameters for 

transmission and determination of characters by factors for the case in point. 
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(3) (i) are heterozygous with respect to factors for flower color, (ii) whose combinations of 

factors are equiprobable, and (iii) where factors for red flower color are incompletely 

dominant over factors for white flower color 

_____________________________________________________________________________ 

Have  

(4)  ¼ of offspring with red flowers, ½ with pink, and ¼ with white (a ratio 1:2:1) 

 

 

This kind of explanation also applies to combinations of characters considered together, 

such as the pair, color and form of pea seeds (see [Mendel, 1865, pp. 19-21]; Sinnott & 

Dunn, 1925, pp. 63-69; Klug et al., 2019, pp. 42-43): 

 
Pea Seed Color & Pea Seed Form: 

Plants that  

(1)  (i) belong to the first filial generation, (ii) with yellow seed coat and round seeds, (2)

 are self-fertilized and produce offspring  

(3) (i) are heterozygous with respect to factors for seed coat color and for seed form,  

(ii) whose combinations of factors are equiprobable, and (iii) where factors for yellow 

seed coats are dominant over factors for green seed coats and factors for round seeds are 

dominant over factors for wrinkled seeds 

 _____________________________________________________________________________ 

Have  

(4) 9⁄16 of offspring with yellow seed coats and round seeds, 3⁄16 of offspring with yellow seed 

coats and wrinkled seeds, 3⁄16 of offspring with green seed coats and round seeds, 1⁄16 of 

offspring with green seed coats and wrinkled seeds (a ratio 9:3:3:1) 

 

 

Or three characters, such as pea seed color and form, and pea flower color (see [Mendel, 

1865, pp. 21-22]; Sinnott & Dunn, 1925, pp. 72-74; Hartl & Cochrane, 2019, pp. 89-91): 

 
Pea Seed Color, Pea Seed Form & Pea Flower Color: 

Plants that 

(1) (i) belong to the first filial generation, (ii) with yellow seed coats, colored flowers and 

round seeds, 

(2) are self-fertilized and produce offspring  

(3)  (i) are heterozygous with respect to factors for seed coat color, for flower color and for 

seed form, (ii) whose combinations of factors are equiprobable, and (iii) where factors for 

yellow seed coats are dominant over factors for green seed coats, factors for colored 

flowers are dominant over factors for white flowers and factors for round seeds are 

dominant over factors for wrinkled seeds 

_____________________________________________________________________________ 

Have 

(4) 27⁄64 of offspring with yellow seed coats, colored flowers and round seeds, 9⁄64 of offspring 

with yellow seed coats, colored flowers and wrinkled seeds, 9⁄64 of offspring with yellow 

seed coats, white flowers and wrinkled seeds, 9⁄64 of offspring with green seed coats, 

colored flowers and wrinkled seeds, 3⁄64 of offspring with yellow seed coats, white flowers 

and wrinkled seeds, 1⁄64 of offspring with green seed coats, white flowers and wrinkled 

seeds (a ratio 27:9:9:9:3:3:3:1) 

 

 

The explanandum may also involve traits which are not discrete but continuous, as in the 

case of the kernel color in wheat (see [Nilsson-Ehle, 1908, pp. 268-270]; Sinnott & Dunn, 

1939, pp. 125, 127-128; Pierce, 2019, pp. 58-60): 
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Wheat Kernel Color: 

Plants that  

(1)  (i) belong to the first filial generation, (ii) with red kernels, 

(2) are self-fertilized and produce offspring 

(3) (i) are heterozygous with respect to factors for kernel color in wheat, (ii) whose 

combinations of factors are equiprobable, and (iii) where the two pairs of factors are for 

kernel color have a cumulative effect, but only with one factor in each pair determining 

pigment  

_____________________________________________________________________________ 

Have 

(4) offspring with kernels ranging from purple (very dark) to white in a transitional 

continuous way (through dark-red, red and light red kernels) 

 

 

Although peas and other vegetables became the most well-known paradigmatic examples, 

other paradigmatic explanations in CG are of complicated animal traits, as in the case of 

the comb form of fowls (see [Bateson & Punnett, 1904, pp. 109-110]; Morgan et al., 1915, 

pp. 216-219; Snustad & Simmons, 2012, pp. 72-73): 

 
Fowl Comb Form:  

Fowls that 

(1)  (i) belong to the first filial generation, (ii) with walnut-shaped comb, 

(2) mate and produce offspring 

(3) (i) are heterozygous with respect to both pairs of factors for comb form, (ii) whose 

combinations of factors are equiprobable, and (iii) where the walnut comb depends on the 

presence of two dominant factors, one of these genes alone produces the rose-shaped 

comb, the other alone produces the pea-shaped comb, and the combination of the 

recessive alleles of these factors produces the single type of comb 

_____________________________________________________________________________ 

Have 

(4) 9⁄16 of offspring with a walnut-shaped comb, 3⁄16 of offspring with a rose-shaped comb, 
3⁄16 of offspring with a pea-shaped comb, and 1⁄16 of offspring with a single comb (a ratio 

9:3:3:1) 

 

 

All the previous cases satisfy the so-called “Mendel’s Second Law”, or “Law of 

Independent Assortment”, but CG also explains cases of two or more characters 

considered together in which the numerical proportions in the second filial generation 

were completely different from the usual proportions (e.g. the 9:3:3:1 proportion for cases 

of two characters considered together), as in the case of pea flower color and pollen grain 

length (see [Bateson, Saunders & Punnett, 1906, p. 238]; Sinnott & Dunn, 1925, pp. 151-

153; Brooker, 2018, p. 128): 

 
Pea Flower Color & Pea Pollen Grain Length: 

Plants that 

(1) (i) belong to the first filial generation, (ii) with purple flowers and long pollen grains, 

(2) are self-fertilized and produce offspring 

(3) (i) are heterozygous with respect to factors for flower color and for pollen grain length, 

(ii) whose combinations of factors are not equiprobable (purple flower color and long 

pollen grains that enter together come out together more frequently than expected for 

independent assortment of purple-red and round-long), and (iii) where factors for purple 
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flowers are dominant over factors for red flowers and factors for long pollen grains are 

dominant over factors for round pollen grains 

 

Have 

(4) 7⁄16 of offspring with purple flowers and long pollen grains, 1⁄16 of offspring with purple 

flowers and round pollen grains, 1⁄16 of offspring with red flowers and long pollen grains, 
7⁄16 of offspring with red flowers and long pollen grains (a ratio 7:1:1:7) 

 

 

These are some paradigmatic examples of explanations in CG. Before proposing a deeper 

reconstruction, let us briefly show that their superficial inferential structure looks similar 

to other standard, non-intriguing explanations in, for instance, Classical Mechanics (CM). 

In CM we explain, for instance, Galileo’s free fall regularities, or Kepler’s laws of 

planetary motion, or a pendulum’s trajectory, etc., by certain initial conditions, together 

with a specific application of Newton’s Second Law and certain other empirical 

assumptions. For instance, if we reconstruct the CM explanation for Galileo’s free fall 

law, we obtain the following argument: 

 
Earth Free Fall: 

If 

(1) no friction 

(2) zero initial velocity 

(3) m·g = m·d2s/dt2 

 

Then 

(4) s = 1/2 gt2  

 

in which (4) logically/mathematically follows from (1)-(3). 

Likewise, in the paradigmatic Earth–Sun case, in which the explanandum, i.e. the 

Earth’s spatio-temporal trajectory around the Sun that is actually measured, logically 

follows from the explanans, namely, the mechanical model that includes masses and 

forces and is defined by certain specific mechanical laws. 

 
Earth-Sun System: 

If 

(1) (i) the Earth is at such a time in such position and (ii) the Sun is at such a time in such a 

position 

(2) (i) the Earth’s mass is such-and-such and (ii) the Sun’s mass is such-and-such 

(3) (i) only the gravitational force of the Sun is acting on the Earth and (ii) the gravitational 

 force of the Earth acting on the Sun is negligible 

(4) m·d2s/t = G(m·m/s
2
) 

 

Then 

(5) the Earth’s spatio-temporal trajectory around the Sun is such-and-such 

 

in which (5) logically/mathematically follows from (1)-(4). 

These two paradigmatic CM explanations show a crucial feature that will play an 

essential role in the explication of unified explanations below, namely that the premises 

in the explanans include, together with antecedent conditions, a nomic generalization that 

is a particular version, a specification, of the fundamental mechanical law F = m·a. In the 



9 

 

 

 

 

 

 

Earth Free Fall case, (1) and (2) are antecedent conditions, while (3) is the particular 

application of CM’s fundamental law; whereas in the case of the Earth–Sun System, (1), 

(2) and (3) are antecedent conditions, and (4) is the particular application of the same 

fundamental law of CM for the specific explanandum. We will see that a similar structure 

is present in genetic explanations when correctly understood. In the next section we 

introduce the main metatheoretical notions through the example of Classical Mechanics, 

and in Section 4 we apply them to Classical Genetics. With these tools to hand, we present 

the ASE account in Section 5, and apply it to CG. 

 

 

3. Fundamental Law/Guiding Principle-Based Theories 

 

It is our claim that, in order to fully understand the deep structure of genetic explanations, 

and clarify their alleged intriguing aspects, it is necessary to understand the structure of 

CG as a unified theory guided by a general principle. This idea of unified, guiding 

principle-driven theories was initially implicit in Kuhn’s philosophy of science and later 

made explicit by Sneedian structuralism. The Kuhnian idea is connected to his notion of 

generalization-sketches that he exemplifies with Newton’s Second Law and its role in 

Classical Mechanics. Biology and physics in general, and CG and CM in particular, have 

notable differences, and in some important respects (e.g. locality, domain specificity, and 

the non-strictness of their non-accidental generalizations) some biological theories are 

more similar to theories in the human and social sciences. Nevertheless, the comparison 

with CM is particularly useful here as it highlights features that are independent of these 

differences, and that we believe are relevant for understanding the intriguing aspects of 

CG explanations. These features, i.e. the hierarchical and guiding principle-driven nature 

of unified theoretical explanations, are particularly well exemplified by CM; thus, this 

comparison is useful, other differences notwithstanding. 

The general Kuhnian idea is that highly unified theories explain/account for specific 

applications/exemplars by developing “specific laws” for specific applications: specific 

laws that are the specific versions that a general principle takes for the specific 

phenomenon to hand. In Kuhn’s words: 

 

[…] generalizations [like f = ma…] are not so much generalizations as 

generalization-sketches, schematic forms whose detailed symbolic 

expression varies from one application to the next. For the problem of free 

fall, f = ma becomes mg = md2s/dt2. For the simple pendulum, it becomes 

mgSinθ = – md2s/dt2. For coupled harmonic oscillators it becomes two 

equations, the first of which may be written m1d
2s1/dt2 + k1s1 = k2(d + s2 – s1). 

More interesting mechanical problems, for example the motion of a 

gyroscope, would display still greater disparity f = ma and the actual symbolic 

generalization to which logic and mathematics are applied. (Kuhn, 1974, p. 

465)  
 

This Kuhnian idea has been elaborated in detail by meta-theoretical Sneedian 

structuralism through the notions of specialization and a theory-net, and it has been 

applied to several sufficiently robust and unified theories (see, among others, Balzer, 

Moulines & Sneed, 1987, 2000; Stegmüller, 1986). 
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Most theories are strongly hierarchical systems – forming a kind of net – including 

laws with very different degrees of generality within the same conceptual setting. Usually 

there is a single fundamental law or guiding principle ‘at the top’ of the hierarchy, and a 

vast array of special laws which apply to specific situations.5 Very briefly, we can 

mention five characteristics or criteria for a statement to be considered a fundamental 

law/guiding principle in the structuralist sense (Lorenzano, 2006, 2007): 

 

1) Cluster or synoptic character. This means that a fundamental law should include: 

“all the relational terms (and implicitly also all the basic sets) and, therefore, at 

the end, every fundamental concept that characterize such a theory” (Moulines, 

1991); “several of the magnitudes”, “diverse functions”, “possibly many 

theoretical and non-theoretical concepts” (Stegmüller, 1986); “almost all” 

(Balzer, Moulines & Sneed, 1987). 

2) Applicability to every intended application. It is not necessary that fundamental 

laws have unlimited scope, applying every time, everywhere to everything. 

Rather, their universal applicability is relativized to the phenomena/applications 

intended by the theory’s users: the set of intended applications of the theory 

(Stegmüller, 1986). This application is an “aim”, for the theory may fail in a 

particular phenomenon (e.g. Mercury’s perihelion); actually, to be an intended 

application of the theory is precisely for there to be an intention to account for 

something by (a specific specialization of) the guiding principle.  

3) Quasi-vacuous character. Fundamental laws are highly abstract and schematic, 

and contain essential occurrences of T-theoretical terms, which in a structuralist 

sense are terms whose extension can only be determined through the application 

of a theory’s fundamental law(s)6 so that they can resist possible refutations, but 

which nevertheless acquire specific refutable empirical content through the (non-

deductive) process of specialization (Moulines, 1978/1984). 

4) Systematizing or unifying role. Fundamental laws allow us to include diverse 

applications within the same theory since they provide a guide to and a conceptual 

frame for the formulation of other laws (the so-called ‘special laws’), which are 

introduced to impose restrictions on the fundamental laws and thus for them to 

apply to particular empirical systems (Moulines, 1978/1984). 

5) Modal import. Fundamental laws express non-accidental regularities, are able to 

give support to counterfactual statements (if they are taken together with their 

specializations within a theory-net), even when they are context sensitive and have 

a domain of local application, they are necessary in their area of application 

(Lorenzano, 2006, 2007, 2020; Díez & Lorenzano, 2013). 

 

 

 

 
5 It is worth mentioning that the term ‘fundamental law’ is here used in a different sense from the classical 

one, i.e. as a true strict universally quantified conditional statement, see e.g. Hempel & Oppenheim 1948. 
6 For a standard presentation of the structuralist criteria of T-theoreticity, see Balzer, Moulines & Sneed 

(1987). For a discussion of different criteria of theoreticity – either linguistic or model-theoretic –, a 

comparison of both ways of presentation of criteria – including the model-theoretic structuralist criteria of 

T-theoreticity –, and a proposal of definitions of theoreticity and pre-theoreticity, see Schurz (2014). 
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Fundamental laws/guiding principles are thus “programmatic” or heuristic in the sense 

that they tell us the kind of things we should look for when we want to explain a specific 

phenomenon. But, as mentioned before, taken in isolation, without their specializations, 

empirically they say very little. They can be considered, when considered alone, 

“empirically non-restricted” in the sense that in order to be tested/applied they have to be 

specialized (“specified”). These specific forms adopted by the fundamental laws are the 

so-called “special laws”. It is worth emphasizing that this top-down specialization 

relationship is not one of implication or derivation: laws lower down are specific versions 

of top ones, i.e. they specify some functional dependences that are left partially open in 

the laws higher up in the tree. 

The resulting structure of a theory may be represented as a net, where the nodes are 

given by the different theory-elements, and the links represent different relations of 

specialization (see Fig. 3). 

 

• 

 

•                 • 

  

 •         •        • 

 

  •            • 
Fig. 3 

 

 

For instance, the theory-net of Classical Mechanics (CM) has Newton’s Second Law as 

the top unifying nomological component, i.e. as its Fundamental Law or Guiding 

Principle (Balzer & Moulines, 1981; Moulines, 1978/1984; Balzer, Moulines & Sneed, 

1987). It can be read as following: 

 

CMGP: For a mechanical trajectory of a particle with mass m, the change in quantity 

of movement, i.e. m·a, is due to the combination of the forces acting on the 

particle. 

 

As already mentioned, fundamental laws/guiding principles are programmatic/heuristic 

in the sense that they tell us the kind of things we should look for when we want to explain 

a specific phenomenon. In the case at hand, Newton’s Second Law can be heuristically 

read as follows: “When mass particles change their velocity, look for forces that when 

added together account for the change in motion.” 

The CM guiding principle at the top becomes specialized as we move down, opening 

up different branches for different phenomenon explananda. This specification/branching 
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is reconstructed in different steps. First, there are symmetry forces, space-dependent 

forces, velocity-dependent forces, and time-dependent ones; then, e.g., the space-

dependent branch specializes into direct and indirect space-dependent; the direct space-

dependent branch in turn into linear negative space-dependent and…; the indirect space-

dependent branch specializes into inverse-square and…. At the bottom of every branch, 

we have a completely specified law that is the version of the guiding principle for the 

specific phenomenon in question: pendula, planets, inclined planes, etc. (Kuhn’s “detailed 

symbolic expressions”). 

The theory-net of CM looks (at a certain historical moment) as follows (though only 

some, simplified, terminal nodes are shown here, this suffices for our present 

exemplification concerns): 

 

F=m·d2s/t 

 

 

 

  symmetry forces  s-dep. forces ds/t-dep. forces t-dep. forces 

 

 

  dir. dep. forces         inv. dep. forces         friction forces 

 

 

 

m·d2s/t = –kx      square. inv.        m·d2s/t = 

         –
(s/t)’

m·g·sen 

 

 

   m·d2s/t =       m·d2s/t =       

   –m·g·sen      G(m·m/s
2
)       

 

Fig. 4 

 

 

4. Application to Classical Genetics 

 

It is our claim that explanations in Classical Genetics follow a general pattern similar to 

that followed by explanations in Classical Mechanics. In all the paradigmatic examples 

of explanation in CG presented in Section 2, among the premises, together with 

antecedent conditions (initial conditions plus other empirical assumptions) ‒ premises 

(1)-(2) ‒ we can identify a specific law for the explanandum in each case ‒ premise (3). 

It can be shown (Lorenzano, 2006, 2007) that, although in the superficial presentation of 

specific CG explanations only specific laws appear, there is a guiding principle implicitly 

working in such explanations: as in CM, in CG the specific law present in the explanans 

is the particular application/specialization of a general, fundamental guiding principle for 

the explanandum in each case. Yet, and in contrast to CM where the guiding principle is 

explicitly formulated in papers and textbooks, it is worth noting that in CG the 
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fundamental law/guiding principle is not made explicit in standard literature but only 

implicitly assumed in case studies. The Fundamental Law/Guiding Principle of Classical 

Genetics – which is diagrammatically depicted by Fig. 2 – implicitly presupposed in 

specific CG explanations, reads in an intuitive way as follows: 

 

CGGP: The statistical communality of characters/phenotypes between parents and 

progeny (given by characters/phenotypes distributions in the progeny) is due to 

(i) the presence in parents of factors/genes, (ii) the transmission of those factors 

from parents to progeny, and (iii) a determining relation between specific factors 

and specific characters, so that factor distributions “match”/“fit” (in some 

manner to be specified) distributions of characters. 

 

As mentioned above, fundamental laws/guiding principles are programmatic or heuristic 

in the sense that they tell us the kind of things we should look for when we want to explain 

a specific phenomenon. In the case of CG fundamental law/guiding principle, its heuristic 

character can be read as follows: “When confronted to specific statistical distribution of 

specific parental characters (phenotype) in offspring, look for factors (genes) responsible 

for the characters that combine in a specific manner in parents so that they “match”/ “fit” 

the distribution of characters in offspring”. Thus, in every specific case we have to look 

for specific factors/genes and discover the specific way they combine in reproduction 

(genotype distribution) that accounts for the phenotype distribution in offspring. 

This specific way genes combine in reproduction that accounts for phenotype 

distributions, is expressed by specifying the following parameters:  

 

(i) the number of pairs of factors or genes involved (either one or more), 

(ii) how the parental factors or genes are distributed in the progeny (with 

combinations of factors or genes with the same probability or not), and 

(iii) the way in which factors or genes are related to the characters (with complete or 

incomplete dominance, codominance or epistasis). 

 

When these three types of specifications are made, terminal special laws are obtained. 

These are what we find in specific CG explanations. Thus, as in other robust unified 

theories, particular CG explanations of particular explananda include specific versions/ 

applications of this “law”. As our examples in Section 2 show, we have a specific 

version/application of CGGP, i.e. a special law, for each type of paradigmatic example. 

For instance, for the Pea Seed Color case, we have premise (3) stating that (i) plants 

belonging to the first filial generation are heterozygous with respect to the pair of factors 

responsible for seed coat color, (ii) combinations of their factors in offspring are 

equiprobable, and (iii) factors for a yellow seed coat are dominant over factors for a green 

seed coat. Or, in the Wheat Kernel Color case, premise (3) states that (i) plants belonging 

to the first filial generation are heterozygous with respect to factors for kernel color in 

wheat, (ii) whose combinations of factors are equiprobable, and (iii) in which two pairs 
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of factors for kernel color have a cumulative effect, but only one factor in each pair 

determines pigment.7 

It is worth noting that the CG fundamental law/guiding principle is implicitly assumed 

by the scientific community as a guide for dealing with the plethora of empirical 

situations/applications/explananda that geneticists face. This is what we mean when we 

say that the CG fundamental law/guiding principle guides the process of specialization, 

determining the ways in which it must be specified to obtain special laws. 

It is easy to see that CGGP has all the characteristics of guiding principles we 

mentioned above. 

First, CGGP can be seen as a synoptic law establishing a substantial connection 

between the most important genetics terms in a single, complex statement: it connects all 

the terms, both the CG-theoretical ones (the set of factors or genes, the distributions of 

probability of the genes in the progeny and the postulated relations between genes and 

characters) and the CG-non-theoretical ones, which are previously empirically accessible 

(individuals, the set of characters, the assignment of characters to individuals and of 

progeny to parental individuals, and the relative frequencies of characters observed in the 

progeny). 

Second, CGGP is implicitly accepted as valid in every intended application of the 

theory by the community of classical geneticists. 

Third, CGGP is highly schematic and general and it possesses so little empirical 

content that it is irrefutable taken in isolation (i.e. it has a “quasi-vacuous” character). To 

examine the empirically determined relative frequency of the characters and the 

theoretically postulated distribution of genes, and to set out coefficients in the distribution 

of characters and of genes to fit data, without introducing any kind of further restriction, 

is empirically empty. 

Nevertheless, fourth, as we would expect in the case of any fundamental law/guiding 

principle, despite being irrefutable taking alone, it provides a conceptual framework 

within which all special laws can be formulated as specializations; that is, special laws 

with a limited domain of application associated with specific empirical claims can be seen 

as particular, testable and, eventually, refutable hypotheses, which enable the 

application/explanations of classical genetics for particular explananda, with all such 

explanations being unified under the CGGP umbrella. 

And fifth, CGGP expresses a non-accidental regularity that is able to give support to 

counterfactual statements via its specializations, no matter how context-sensitive0 or 

 

 

 
7 Actually, in the formulation we made of the premise (3) in the CG-explanations above (Section 2), 

although it is clear that such premise includes the specification of parameters (i), (ii) and (iii) of CGGP for 

(deriving) the explanandum in point, the nomological aspect is less transparent. Premises (3) as formulated 

above may not look like special “laws”, since they specify such parameters but without explicitly adding 

“and these are responsible of the phenotype data in point”. Nevertheless, it is clear that they have to be read 

as implicitly saying so, for (as we emphasized in fn. 4) from them (and the initial conditions stablished in 

the other premises) one can infer the phenotypic distribution. Since this implication is “general” (do not 

apply just to a single event but to a type of phenotypic explananda) and “counterfactual-supporting” (it has 

modal import), we think it has all the elements for considering it lawful (in the minimal sense mentioned 

above). 
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domain restricted; this is the minimal, yet sufficient, sense in which we can talk of the 

modal import of specific CG models. 

 

Thus, according to the present proposal, and just as is the case of any other robust unified 

theory such as Classical Mechanics, CG can also be better analyzed as a theory-net, which 

has the following structure (see Lorenzano, 1995, 2000; and Balzer & Lorenzano, 2000, 

for full details): 

 

 

 

 CG 

 

 

 

 E    L  

 

 

 

   O          T        D 

 

 

 

       OC        OI                  TC              TM    DC  DQ 

 

Fig. 5 

 

 

At the first level of specialization of the CG theory-net, we have either that all 

combinations of factors have equal probabilities (E) or that not all the combinations of 

factors are equally probable, i.e. that “linkage” takes place (L). Pea Flower Color & Pea 

Pollen Grain Length from Section 2 is a case of the latter. We can then further specialize 

E. So, at a second level of specialization of the CG theory-net, we can consider either 

that just one pair of factors is involved in the determination of the characters, and that 

there are four different possible combinations of factors (O), or that two pairs of factors 

are involved in the determination of the characters, and that there are then sixteen different 

possible combinations of factors (T), or that three pairs of factors are involved in the 

determination of characters, and so there are sixty-four different possible combinations 

of factors (D). At a third level of specialization of the CG theory-net we reach the level 

of terminal specializations. If O is further specialized, we can have either a case of 

complete dominance (OC), like Pea Seed Color from Section 2, or a case of incomplete 

dominance (OI), like Mirabilis Jalapa Color from Section 2. If T is further specialized, 

we can have either a case of complete dominance (TC), like Pea Seed Color & Pea Seed 

Form from Section 2, or a case of multifactorial inheritance (TM), like Fowl Comb Form 

from Section 2. If D is further specialized, we can have either a case of complete 

dominance (DC), like Pea Seed Color, Pea Seed Form & Pea Flower Color from Section 

2, or a case of quantitative characters (DQ), like Wheat Kernel Color from Section 2. 
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5. Scientific explanation as ampliative, specialized embedding 

 

We contend that these traits of CG explanations are not explicated by any specific account 

of scientific explanation that is dominant in the literature: mechanistic, manipulativist (or 

any other specific causal account), functional, teleological, unificationist, or concerning 

statistical relevance. The main account currently applied in biology, the mechanistic 

account, does not square with CG, since the classical relation between genes/factors and 

phenotypes is not mechanistic in any non-ad hoc way. Other causalist accounts, such as 

manipulativism, may fit some aspects of CG explanations well, but remain silent on other 

aspects/components, such as gene distributions. Unificationism does not specify the 

unifying, guiding principle-driven structure of the theory. Functional and teleological 

accounts do no better. We propose to explicate CG explanations as a particular case of a 

very general account of empirical explanations as ampliative, specialized embeddings 

(ASE account) as elaborated in Díez (2014), developing some structuralist model-

theoretic ideas (as we will see, this analysis does not presuppose that all explanations are 

causal, so the causal component, if philosophers of CG agree it is always present, may be 

added later). 

The basic idea of this account is quite simple: Explaining a phenomenon (represented 

by a model of data) consists of embedding it into a nomic pattern within a theory-net, i.e. 

embedding the phenomenon (the model of data) into some branch of a theory-net (i.e. 

into some model present in a theory-net).8 (cf. Balzer, Moulines & Sneed, 1987; 

Bartelborth, 1996a, b; Forge, 2002; Díez, 2002, 2014). 

Here explanandum and explanans are certain kinds of models/structures, the former 

being the data model, DM, we want to explain; the latter, the theoretical model, TM, 

defined by certain laws and, when needed, initial conditions. Let DM = D
1
,..., D

n
, f

1
,..., 

f
n
 be the explanandum: a data model consisting of several domains of entities and certain 

functions defined on them; and TM = D
1
,..., D

m
, g

1
,..., g

m
, the theoretical model (m ≥ n, 

more on this later). For instance, in the paradigmatic Earth–Moon case, the explanandum 

is the model that represents the Moon’s spatio-temporal trajectory around the Earth 

actually measured, and the explanans is the mechanical model that includes masses and 

forces and is defined by certain mechanical laws. We explain the Moon’s trajectory when 

we embed it in the mechanical system, i.e., roughly, when we “obtain” the measured 

kinematic trajectory “from” the mechanical model. In the simplest case, leaving 

idealizations aside, this means that we find the data model to be part (a sub-model) of the 

theoretical model. In our genetic case, the explanandum is the data model that describes 

certain transmission of phenotypes – which is diagrammatically depicted by Fig. 1 – and 

the explanans is the theoretical model that includes genes and is defined by certain genetic 

laws. We explain the transmission of traits if we succeed in embedding the data model 

 

 

 
8 The embedding would take place ideally, in an exact way, but as many have emphasized this is in general 

unrealistic for there always are idealizations and approximations involved. We will not enter into this 

complication here. For a structuralist treatment of these features, see Balzer, Moulines & Sneed, 1987, Ch. 

VII. 
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into the theoretical one, that is, if we obtain the observed phenotype sequence from the 

genetic model. 

This is the basic idea of explanation as nomological embedding. As is apparent, it 

preserves (a weakened version of) the Hempelian condition of nomic expectability: 

obtaining DM from TM is a way of achieving “expectability”; and it is nomological, non-

accidental expectability in that TM is defined using non-accidental generalizations. Note, 

first, that the sense of ‘nomological’ here is very weak: just the presence of non-accidental 

regularities in the definition of the explanatory models, no matter how local, relational, 

context dependent or domain restricted they are, thus making room for nomological 

explanations in fields such as some parts of biology or economics in which it is argued 

that there are no universal or robust laws. Second, expectability is no longer committed 

to logical inferences in a literal sense, thus making room for probabilistic explanations 

with low probabilities if needed. 

For the embedding not to be explanatorily trivial, it is essential that the 

determination/measurement of DM does not depend on TM, that is, that the identification 

of the relevant values in the explanandum is independent of the explanatory machinery 

we use in the explanans. Explanations are (at least) certain kinds of predictions, but 

construed in such a way that they are not a priori successful: they may fail. This is 

guaranteed by the fact that the model operating as the explanandum is defined using T-

non-theoretical terms: terms whose extension is determined/measured without 

presupposing the validity of the laws through which theoretical models are defined. 

All this sounds pretty much like neo-Hempelianism in model-theoretic jargon. But, 

one may complain, among philosophers of science it is common knowledge that 

Hempel’s account patently failed, and not only due to eventual problems it may have 

encountered in fields such as biology, but for general reasons that have to do with the 

well-known counterexamples to the sufficiency of Hempel’s conditions: symmetries (e.g. 

the pole and the shadow), forks (e.g. the barometer and the storm), irrelevances (e.g. anti-

pregnancy pills) and time order (e.g. eclipses) all bear witness to the fact that we have 

pairs of nomological expectabilities that are indistinguishable according to Hempel’s 

conditions but such that one of them intuitively qualifies as a possible explanation 

whereas the other obviously does not (Salmon, 1989). To the extent that this model-

theoretic version preserves the sufficiency of nomic expectability, the objection goes, it 

falls prey to the same problems. Here is where Díez’s (2014) ASE account enters into 

play. It departs from this neo-Hempelian model-theoretic nomological expectability but 

introduces additional constraints, precisely to resolve the traditional counterexamples and 

to distinguish merely phenomenological, non-explanatory embeddings (e.g. Galilean 

kinematics, Keplerian astronomy, etc.) from explanatory ones (e.g. Newtonian 

mechanics). 

Not every model-theoretic embedding is (potentially) explanatory. In order to be so, 

the embedding must satisfy two additional conditions. First, the embedding must be 

ampliative: the explanans system must introduce new (conceptual or, if we prefer, 

ontological) machinery with respect the one already present in the explanandum system. 

The difference between e.g. Keplerian non-explanatory embeddings/predictions and 

Newtonian explanatory ones is that the former predict spatiotemporal phenomena 

(trajectories of planets) from spatiotemporal regularities (Kepler’s Laws) and initial 

spatiotemporal conditions, while the latter predict spatiotemporal trajectories through 

introducing into the theoretical model dynamic parameters, i.e. masses and forces, that 
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are not part of the explanandum. In a standard, well-developed theoretical explanation by 

a theory T, the T-data models are build up from T-non-theoretical terms (which are used 

by T but whose determination/measurement does not require the use of T-laws), while 

the T-theoretical models introduce T-theoretical entities that do the explanatory work: T 

explains T-data, data consisting of the values of certain properties/functions determined 

T-independently, by postulating the existence of additional T-theoretical entities that 

interact with the T-non-theoretical ones in the way specified by T-laws. 

However, being ampliative does not suffice. In order to exclude ad hoc, purely formal, 

not-really-empirical embeddings a second condition is needed. We have seen that guiding 

principles have a peculiar confirmational status: without their specialization laws they are 

very easy to satisfy. For instance, if the only constraint on embedding in CM were 

Newton’s Second Law (f = m·a), then with just some mathematical skill we would be 

able to embed any trajectory, no matter how crazy, devising a series of functions, no 

matter how strange, whose vector addition would embed the trajectory in CM. The same 

is true in the case of Ptolemaic astronomy, whose guiding principle is that any apparent 

orbit is a combination of a series of epicycles on a deferent (Carman, 2015): if (contrary 

to what was actually the case in Ptolemy’s work) this were the only constraint, then again 

it would be possible to embed any (closed, periodical, continuous) orbit just through 

mathematical skill (see Carman, 2010, for funny examples). Of course, these embeddings 

are not “really” empirical but just purely mathematical exercises. In order to have 

genuinely empirical embedding, some specific specialization of the guiding principle 

must be used. These specializations are what introduce the specific empirical constraints. 

In other words, scientists establish the specific empirical hypothesis/constraints/laws 

through postulating specializations of the guiding principle. Thus, for instance in 

mechanics, in order to have a really empirical explanatory embedding, a specific 

specialization of Newton’s Second Law must be used: not just any (crazy) mathematical 

function is permitted. Which specializations are permitted is something that theorists 

“establish” (often only implicitly); there is nothing formally specifiable a priori, scientists 

specify this in their scientific practice when developing the theory/paradigm, the theory-

net, which determines the limits of acceptability. This is an irreducible pragmatic 

component of scientific practice. 

With these two additional conditions to hand, we can face down traditional objections 

to nomic expectability accounts of explanation (Díez, 2014), and obtain a minimalist 

analysis that works for all varieties of explanatory practices, some of which will, in 

addition, be causal, or mechanistically causal, or unifying, or functional, etc. For instance, 

according the ASE account, we explain, e.g., the spatio-temporal trajectory of the Earth 

and its acceleration effectively measured around the Sun (represented by a structure/data 

model of the type P, T, s (where P = pE, pS, with pE being the Earth and pS the Sun, 

and time T and space s having specific trajectory values), by embedding it into some 

branch of the CM theory-net, i.e., into some of its (theoretical) models of the type P, T, 

s, m, F that introduce new dynamical functions (masses and gravitational force) that are 

related to the kinematical functions in the way some specialization law establishes, in this 

case the law of gravitation. The data model is (approximately) embedded into the 

theoretical model in the sense that by the latter introducing additional parameters that, 

together with the previous ones, behave in the way the special laws say, one can 

(approximately) obtain the actually measured data model of the trajectory. Likewise, we 
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explain the color of the seed albumen in peas (represented by a structure/data model of 

type J, P, APP, MAT, DIST) by embedding it into some branch of the CG theory-net, 

i.e., into some of its models, represented by a structure/theoretical model of the type J, 

P, G, APP, MAT, DIST, DET, COMB. 

Let us consider the case of Pea Seed Color in more detail. The system under 

consideration consists of a set, J, of individuals (plants or animals in general, peas in this 

case, parents and offspring), which form the objects involved in this intended application: 

J = {i1,..., in}. The characteristic considered is only the color of the seed. Thus, P = {c1, 

c2}, where c1 symbolizes yellow and c2 green. These are the only characteristics possessed 

by the individuals: APP(ii) = c1, APP(ii) = c2. If we represent the crossing of the parental 

individuals that gives rise to the first filial generation (or F1) by MAT, we have: MAT(i1, 

i2) = i1,..., im; the same applies to the second filial generation (or F2): MAT(i1, i2) = i1,..., 

im. If we represent the distribution of parental characteristics in the offspring by DIST, 

we have: DIST(c1, c2) = 1c1 in F1, and: DIST(c1, c1) = 0,7505c1, 0,2495c2 in F2. We can 

now represent the data model for the case of a monohybrid cross ‒ for the color of the 

seeds ‒ in peas by J, P, APP, MAT, DIST, which expresses what we want to explain, 

i.e., the relative frequency 0,7505c1, 0,2495c2 of yellow and green seed coats, 

respectively, or (approximately) ¾ of offspring have a yellow seed coat and ¼ have a 

green seed coat or a proportion of 3:1, as follows: {i1,..., in}, {c1, c2}, {i1, c1, i2, c1}, 

{i1, i2, i1,..., im}, {c1, c1, 0,7505c1, 0,2495c2}, in F2. So, let us call such a structure “the 

CG data model of Pea Seed Color”, or DMCG(PSC) for short. 

Recall that, in order to account for this data model, it is now postulated hypothetically 

that: 

(i) there is only one pair of factors or genes involved (that we can symbolize by f1, 

f2), 

(ii) the factors or genes combinations are equally probable, the parental factors or 

genes are distributed in the offspring with the same probability; such a function 

can be in general represented in the following manner: COMB(a1, b1, c1, d1) 

= (¼ a1c1 + ¼ a1d1 + ¼ b1c1 + ¼ b1d1), where a1, b1, c1, d1 symbolize any factor 

or gene, and, in a specific manner, for the crossing carried out (F2) with one pair 

of factors or genes involved (symbolized by f1, f2): COMB(f1, f2, f1, f2) = (¼ 

f1f1 + ¼ f1f2 + ¼ f2f1 + ¼ f2f2), and 

(iii) one of the factors (f1), which is “responsible” for the yellow color of the seed 

albumen, is dominant over the other (f2), recessive one, which is “responsible” 

for the green color of the seeds; the determining function can be represented as 

follows: 

 a) DET(f2, f2) = c2 

 b) DET(f1, f1) 

  DET(f2, f1) = c1 

  DET(f1, f2) 

 

All three assumptions are represented in the theory-net of CG by the terminal 

specialization OC (Fig. 5). If we put all this information together with the antecedent 

conditions (initial conditions plus other empirical assumptions) and the theoretical 

predictions for the “empirical”, i.e. CG-non-theoretical, values for the distribution of 

characteristics (DIST) in F2, we obtain the following type of structure: x = J, P, G, APP, 
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MAT, DIST, DET, COMB: {i1,..., in}, {c1, c2}, {f1, f2, f1, f2}, {i1, c1, i2, c1}, {i1, i2, 

i1,..., im}, {c1, c1, 0,75c1, 0,25c2}, {f1, f1 , c1, f2, f1 , c1, f1, f2 , c1, f2, f2 , c2}, (¼ f1f1 

+ ¼ f1f2 + ¼ f2f1 + ¼ f2f2). Let us call it “the CG theoretical model of Pea Seed Color”, 

or TMCG(PSC) for short. 

Now, it can be seen that the CG data model of Pea Seed Color (DMCG(PSC)) is 

explained by embedding it into the CG theoretical model of Pea Seed Color 

(TMCG(PSC)): 

 

{i1,..., in}, {c1, c2}, {i1, c1, i2, c1}, {i1, i2, i1,..., im}, {c1, c1, 0,7505c1, 

0,2494c2} is (approximately) embedded into c1, c1, 0,75c1, 0,25c2}, {f1, f1 , c1, 

f2, f1 , c1, f1, f2 , c1, f2, f2 , c2}, (¼ f1f1 + ¼ f1f2 + ¼ f2f1 + ¼ f2f2), 

 

In brief: DMCG(PSC) is (approximately) embedded into TMCG(PSC). For such an 

embedding to be possible, it is clear that any given TMCG must have at least as many 

components as the specific DMCG in question. This is the m ≥ n condition that we mention 

in the previous section. 

As we have said, sometimes, but not necessarily always, the ampliative machinery, the 

new T-theoretical concepts/entities, may be interpreted in a causalist way. For instance, 

in Classical Mechanics (CM), forces may be interpreted in a causalist way. But in 

Relativistic Mechanics, where what is introduced and carries the explanatory weight is 

the geometry of space-time, the causal nature of the explanation is far from clear (see 

Hoefer, 2009, for a discussion). In the theory of interest here, CG, part of the ampliative 

machinery introduced, genes (G), and the determination relation DET between 

genes/genotypes and characteristics/phenotype, may be interpreted in a causalist manner 

(plausibly in the difference-making sense), but other elements that are introduced and are 

also essential for the explanatory import of the theoretical model, such as the distribution 

of parental genes/genotypes in the offspring (given by the function COMB) are not so 

clearly interpretable in causal terms. Thus, even if CG explanations include some causal 

components, not every component that is explanatorily relevant in the explanans has a 

clear causal nature. So, causation does not exhaust the explanatory dimension of CG, 

which is better explicated by the ampliative, specialized model-theoretic embedding 

account, to which one may add a causalist interpretation (mechanistic, manipulativist, or 

some other) of part of the ampliative machinery. 

Before concluding, it is worth emphasizing the novel aspects of our account compared 

to other approaches in the literature that may look similar in some regards. Besides its 

structuralist ancestors, already mentioned, the account in the literature that may have 

similarities with ASE is Leuridan’s (2014) causal structural account. Leuridan combines 

ideas from Sneedian structuralism, Kitcher’s unificationism, Woodward’s 

interventionism and Bayesian causal nets to elaborate his causal structural account in 

terms of casual nets, and applies it as a case study precisely to Classical Genetics. 

Leuridan’s account is probably the richest and most complex, and we think the most 

promising, version of a causal theory of explanation, but space limitations do not allow 

us to enter into its details here. What matters to our present concerns is that, despite the 

use Leuridan makes of some structuralist ideas (mainly the different theory-elements 

within the same theory, the notion of T-theoreticity and the general idea of explaining by 

embedding ‒ which actually as we have said is just the model-theoretic version of 
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expectability), there are essential differences between his account and ASE. To begin 

with, Leuridan does not impose as conceptual conditions that the explanans must be 

ampliative and specialized, at least not explicitly as clauses in the analysans of his 

analysis. It is true that in his application to CG he makes use of the new, CG-theoretical 

concepts, and also of special genetic laws, but these two ASE conditions are not 

explicitly demanded in his analysis as conceptually necessary for every explanation. Yet, 

the most important difference is that Leuridan’s account is explicitly causal; actually, he 

explicitly takes the lack of causal conditions in previous accounts as defective, while ASE 

is explicitly non-causal. 

According to Leuridan, it is causal information (structured in some specific manner) 

that constitutes explanatoriness, while according to ASE causation is not conceptually 

necessary for explanatoriness, just ampliative and specialized embedding is. ASE defends 

as one of its virtues that the account does not conceptually require causation, which allows 

ASE to explicate cases of non-causal explanations with the same analytical framework, 

while Leuridan’s takes causation as conceptually necessary for his explication (whether 

because he takes that every explanation is causal or because he confines his analysis only 

to causal explanations, is not clear to us). We agree that in the case of CG the T-

theoretical entities (mainly genes) have a causal role, but according to Leuridan, this 

causal nature is what constitutes the explanatory import of these explanations, while for 

us it is not, it is the (not necessarily causal) specialized ampliative embedding what carries 

explanatory import, in this case, and in all other cases. According to ASE, all explanations 

are conceptually ampliative specialized embeddings and this is why they are explanatory. 

Some explanations have additional features, that is, some explanations are in 

addition causal, or causal-mechanist, or unifying, or etc., but according to ASE this is not 

what makes them explanatory, but what makes them specific (causal, mechanist, 

unifying,…) sub-types of explanations. Be ASE correct or not in not making causation a 

conceptually necessary condition for explanation, in any event this is an essential 

difference with respect Leuridan causal structural account. 

 

 

6. Concluding remarks 

 

By analogy with a paradigmatic unified explanatory theory (Classical Mechanics), we 

have applied the model-theoretic account of explanation as ampliative, specialized 

embedding (ASE) to the case of Classical Genetics. Other accounts of explanation do not 

suit the case of CG well. The main account applied nowadays in biology, the mechanistic 

account, does not square with CG, since the classical relation between genes/factors and 

phenotypes is not mechanistic in any non-ad hoc way. Other causalist accounts, such as 

manipulativism, may fit some aspects of CG explanations well, but remain silent 

concerning other aspects/components. Unificationism may explicate the unifying power 

of CG, but does not specify the unifying, guiding principle-driven structure of the theory, 

and does not draw any distinction between ampliative/explanatory and non-

ampliative/non-explanatory unifications. Functional and teleological accounts do no 

better. It is our claim that ASE fares better than its competitors, and well enough to 

explicate the general aspects of CG explanations, both those that are causal and those that 

are not. ASE also explicates the unifying structure of CG in detail, as a guiding principle-

driven theory, in this case via a guiding principle not explicitly formulated in the theory’s 
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literature. ASE identifies the key explanatory elements of CG as the new ampliative 

elements that are introduced and their specialized lawful connection with the components 

already present in the explanandum. This also sheds light on the sense in which CG 

explanations are nomological: a sense that is weak yet strong enough to allow us to 

understand the counterfactual-supporting dimension of CG explanations. We claim that 

all these aspects, as explicated by ASE, dispel the alleged oddities of CG and clarify the 

unifying, nomological, and partially non-causal explanations in Classical Genetics. 
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