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Media Summary 

High quality research environments are critical to scientific progress and maximising public 
benefit. This paper argues that the increasing complexity of emerging questions requires 
more efficient collaborative structures. Economic club theory is used to identify ways of 
incentivising collaboration including increased data access, trust-by-design solutions, and 
user-led innovation. It is acknowledged that good science is based on both aesthetic and 
ethical judgements and that environments that combine these are likely to produce 
motivated scientists and impactful research  
 

Abstract 

A major challenge facing all research communities is creating and sustaining high quality 
research environments. A model describing strategic social structures that constrain 
knowledge production suggests that targeting these structures will have greater impact than 
addressing issues surrounding individual lab cultures, as important as these are. 

A literature search identified five common themes underlying bioscience research 
environments comprising collaboration, data processing, confidence in data and scientists, 
trust, user-led development, and a deep commitment to public benefit. Club theory was used 
to develop a model describing the social structures that constrain and contextualise research 
environments. 

It is argued that collaboration underlies impactful science and that this is hindered by high 
transaction costs, and the benefits associated with competition. These combined with poorly 
defined property rights surrounding publicly funded data limit the ability of data markets to 
operate efficiently. Although the science community is best placed to provide solutions for 
these issues, incentivisation by funding agencies to increase the benefits of collaboration will 
be an accelerator. Given the complexity of emerging datasets and the collaborations need to 
exploit them, trust-by-design solutions are suggested. The underlying ‘glue’ that holds this 
activity together is the aesthetic and ethical value-base underlying good science. 

 

 

  



Context is everything 
One of the highlights of being a scientist is 
belonging to a truly international 
community that transcends race and 
creed in making sense of the world 
around us. Key to effectiveness of this 
community is creating and sustaining high 
quality research environments. For the 
biomedical sciences this problem is acute 
given the complexity, breadth, and depth 
of disciplines involved. However, what 
defines ‘high quality’ remains ambiguous. 
For example, in the recent UK Research 
Excellence Framework exercise1, although 
15% of total ranking scores is given on the 
basis of quality of the research 
environment, the latter is defined simply 
in terms of “vitality and sustainability” 1. 
How these factors are assessed remains 
obscure, but it is certain that the 
underlying reality is more complex. 

Until recently, little attention has been 
given to this problem. Periodically 
individual researchers reflect on their 
experience of research culture2 and higher 
educational institutions (HEIs) have 
policies around best practice3. In the UK, 
national initiatives include the 2018 Royal 
Society, which reported improved peer 
esteem, improved culture setting by 
leaders, greater career mobility, open 
science, and fostering scientific 
leadership, as key to a high quality 
research environment4. In 2020, The 
Wellcome Trust also investigated research 
culture, painting a bleak picture of 
dissatisfaction, particularly among early 
career researchers5. Areas identified for 
improvement included changes in funding 
structures to increase incentives, better 
support for early career researchers, 
training to strengthen managing and 
mentoring, identifying and deterring bad 
behaviour, helping researchers to raise 
concerns safely, and policies to share and 
promote good practice. Whilst cultural 

improvements are critical to the function 
of individual laboratories, these 
suggestions can easily be seen as 
mitigations of specific issues rather 
solutions to systemic problems.  

Here we examine the wider 
socioeconomic structures in which 
funders, laboratories, and individual 
scientists operate.  These structures 
fundamentally constrain scientific activity; 
like gravity, they are unavoidable. We 
consider science as a data-driven 
economy. And use socioeconomic 
conceptual tools for understanding the 
broad context of individual and 
institutional behaviour. From this 
perspective we translate the question 
‘what constitutes a high quality research 
environment? into ‘what structures better 
promote growth in a data-driven 
economy?’ This narrow definition of 
quality simplifies a complex problem in 
terms that are generalisable across 
disciplines and provides conceptual 
insights. Also, growth in the size and 
complexity of the science economy may 
be considered a proxy for diverse other 
metrics such as opportunity, culture, 
career progression, innovation, and 
outputs. 

To identify key factors underlying the 
science economy we conducted a search 
of PubMed using the term “research 
environment [Title]”. This generated 111 
articles; a surprisingly small number. This 
search strategy was sufficient to identify 
five recurring and overlapping themes. 
These were collaboration, data access, 
user-led initiatives, trust, and public 
benefit. 

The Collaborative imperative                                  
Science illustrates the compelling 
advantage of collaboration whether at 
research team or consortium level. Every 
further step in specialisation is a step 



towards greater interdependence as 
scientists with specialist knowledge need 
scientists with other specialist knowledge 
to address emerging questions. And herein 
lies a paradox. Or at least a challenge. 
Access to limited resources like a faculty 
position, research funds or a high-impact 
publication drive competition, but, a priori, 
because knowledge is fragmented, 
collaboration between individuals and 
groups will improve the final product. The 
extent to which competition per se has 
generated insights that would not 
otherwise have been made, is 
unknowable. In contrast, the extent to 
which collaboration has generated insights 
that would not otherwise be made is easily 
measured by the author list on any peer 
review publication. These lists measure the 
revealed preference for collaboration over 
exclusivity in creating complex knowledge. 
Author lists reveal how the competition-
collaboration paradox works itself out in 
practice. Optimising growth of a data 
economy rests, therefore, on optimising 
the balance between individual and 
collective incentivisation.  

In the absence of any meaningful data, we 
explore this problem in a thought 
experiment that models a scientific 
collaboration as a club6, where decisions 
are made by individuals regarding the 
value of joining the club (joining a 
collaboration), and by club members on 
the value of extending membership 
(increasing the number of collaborators). 
In this model the benefit of collaboration is 
the ability to address specific scientific 
questions with greater precision at lower 
cost.  

Figure 1 shows how net benefits and 
overall costs; production and transaction 
costs (vertical axis) vary according to 
complexity; the number of collaborators 
(horizontal axis). Initially, costs (green solid 
curve), largely driven by the costs of 

knowledge production, reduce with 
collaboration through the wider pooling of 
specialised knowledge and a more 
distributed workload. However, 
collaboration itself is not cost free. As the 
club increases in complexity (size), the 
overall costs increase, due to the growing 
costs of transaction (distributing 
responsibilities and rewards, ceding peer-
esteem indicators to others, etc.). This 
change in costs affects net benefits (red 
solid curve). At some point net benefits will 
be outweighed by transaction costs and 
collaboration will stall. The intersection of 
net benefit and overall cost curves 
identifies the upper collaborative limit 
(blue solid line). Figure 1 also shows where 
the difference between net benefits and 
overall costs is greatest, suggesting the 
point of optimal collaboration (grey solid 
line).  

Two parallel strategies can be used to 
extend both the upper translation limit 
(blue dashed line) and the optimal point of 
collaboration (grey dashed line). 
Infrastructure can be used to reduce 
transaction costs (red dashed curve). A 
priori, a good platform will increase the 
average size of cooperating groups and is 
likely to yield more scientific product per 
data asset. UK Biobank provides an 
example, reducing search, provenance, 
legal and many other costs of accessing 
complex, high quality longitudinal data. 

  As a result, this platform has become one 
of the world’s most used biomedical 
resources. A second strategy is to engineer 
more socially optimal decision-making into 
the value chain (green dashed curve). For 
example, preferring proposals that use 
existing infrastructure, and using metrics 
of third-party data usage to evaluate 
overall scientific impact. Of interest, both 
strategies facilitate spontaneous 
decentralised collaborative solutions. Also 
of interest, the model provides a 



framework for understanding the 
optimum size and organisation of 
infrastructure. 

Current incentive structures are strongly 
influenced by what may be described as 
the competitive dividend. This is not 
necessarily helpful. In a review of 
Australian biomedical grant proposals, 
Herbert et al. report that the opportunity 
cost for preparing new proposals averages 
at 38 working days, with a 79% failure 
rate7. For the 2,966 failed proposals 
identified in the study, this translated into 
an annual salary cost of AU$52m. Arguably, 
structures that emphasise the 
collaborative dividend, resulting in fewer, 
higher quality proposals, are likely to 

deliver greater overall benefit at reduced 
cost.  

These arguments illustrate that 
collaborative decisions are typically made 
at the margins, i.e. in terms of benefit to 
individual scientists, rather than benefit to 
the wider scientific community. The extent 
to which a marginal decision-making 
calculus will differ from an overall decision-
making calculus will vary across scientists, 
but they are not identical. Modelling the 
impact of collaboration on specific private 
and social benefits can be used to inform 
strategic funding decisions on consortium 
formation and the organisation of 
infrastructure.  

 

Figure 1: 
Schematic of extending the collaborative limit by reducing transaction costs 

and increasing collaborative incentives 
(adapted from James Buchanan [6] and Richard Cornes and Todd Sandler [10]) 

 

 



Making data markets work 
In demonstrating the logic of private as 
well as social benefit in the development of 
consortia, Figure 1 also describes data-
sharing behaviour in practice. The largest 
barrier to scientific advance may be 
considered to be the failure of the data 
market to provide access to those who can 
add value to data already collected. In a 
survey of 3,556 articles from 333 open 
access journals Gabelica et al8 found that 
only 7% of corresponding authors 
responded positively to a data access 
request, even when their intention to 
share data was explicitly stated, meaning 
that in this experiment, the revealed 
preference of 93% of authors was not to 
share even if their stated preference was 
to share. 

If clubs of scientists act to preserve internal 
shared value of data, it is of interest to 
consider the mechanisms they use to do 
so.  Access to products in data markets is 
controlled by informal and formal rules 
that can be thought of as allocating 
property rights (a right to benefit from a 
resource). Clearly defined property rights 
reduce the costs of transacting in markets 
by providing a secure basis for decision-
making and thus incentivise creativity and 
innovation. But extant institutions do not 
necessarily allocate property rights to 
scientific data efficiently, with respect to 
either private or social benefit. 

Assigning property rights to data is a social 
preference. There is no correct approach. 
But some preferences are more socially 
efficient than others in terms of 
maximising knowledge creation, whilst 
preserving the interests of the various 
stakeholders. A rule for socially efficient 
knowledge creation would require rights to 
be assigned to those in the best position to 
use the resource for a desired outcome, 
such as ‘creating scientific opportunity’, or 
‘maximising the number of published 

studies’, or ‘maximising the chance of 
translating discoveries into impacts. 
Clearly such a rule is not typically in place 
currently, with de facto rights to further 
exploit data typically being held by the club 
of scientists who first created or came to 
hold ownership of a dataset. In this 
important sense, for publicly funded 
science, property rights are unclear9. For 
example, although a dataset is legally 
‘owned’ by a host institution, it is 
considered by funders (and the general 
public) as held in trust for public benefit. 
Problematically, as Gabelica et al9 showed, 
what constitutes ‘public benefit’ is capable 
of broad interpretation. 

There may be ambiguity in ownership of 
several kinds of rights: a funder’s right to 
require public trust responsibility; a 
university’s right to uphold this; a 
researcher’s IPR over work that adds value 
to data; a researcher’s right to subsequent 
or subsidiary research using the same data; 
a researcher’s public trust responsibilities; 
and so on. All of these are important and it 
is worth considering how they might be 
best allocated to different stakeholders to 
support the growth of the data market.  

Figure 2 categorises data on two 
dimensions that relate to the manner in 
which data are consumed by users: a) 
rivalrous consumption (congestible or 
depletable) and b) excludability (technical, 
legal, or political). A ‘club’, as an 
organisational form, is an efficient 
mechanism for organising goods that are 
non-rivalrous and excludable (cell 2)10 . By 
excluding non-members, data can be used 
without congestion and without rivalry 
within the club. Publicly funded data, 
which though not depletable, are 
congestible, in the sense that they might 
be mishandled to public harm thus 
threatening continued use or existence of 
the data. Club ownership is an efficient 
solution in such circumstances, with club 



rights allocated by scientific competence 
and bona fide purpose. Sample collections 
could be considered rivalrous and 
depletable (cell 3) with open access. 
However, with limited access, they 
become more sustainable, giving further 
justification for club ownership, and 
requiring perhaps stricter membership 
conditions.  

However, data that are technically 
excludable but unlikely to be congested by 
open use, are inefficiently organised by 
either scientific clubs or privately by the 
data’s creator. As a general strategy, 
restricting property rights to such data is a 
low-growth, low innovation path. In the 
late 1980s, the UK Ordnance Survey took 
proprietary ownership of its national 
spatial databases and charged eye-
watering sums to academic, local 
government and industry users. The USA 
took the other approach, making a raft of 
location-based databases free to all users 
who would add value. The Geographical 
Data Science community and industry in 
the USA consequently exploded in growth 
that was several orders of magnitude 
greater than in the UK. Non-congestible 
scientific data that are technically 
excludable are best not made exclusive. 
Changes in data access rights, platform 
management protocols, grant condition 
and so on can be better designed to 

remove exclusive access after the period 
during which exclusive access is 
appropriate. Within science communities 
there is a lack of clarity in switching rights 
from exclusive to the public domain. This 
arises because funders with a fiduciary 
responsibility to maximise social benefit 
from research funds give away too much of 
their right to grant bidders, who capture it 
for their own benefit. 

We should also note, however, that some 
data are both non-rivalrous and non-
excludable (cell 4). These are pure public 
goods in terms of consumption 
characteristic and are most efficiently 
placed in the public domain, i.e. with rights 
given to all. Some data become like this 
over time, where the value added to data 
by multiple, entrepreneurial, scientists and 
citizens does not devalue the data for 
others. In this, astrophysics has an 
honourable history. 

At the other extreme, some data are most 
efficiently organised as a private good 
when access can be technically, legally, and 
politically, denied (cell 1). Typically, these 
data have high novelty, sensitivity and 
commercial value, and are expensive to 
create. Private ownership is crucial to 
maintaining the production of such data 
until such time as the costs of creation has 
been recovered, or reasonable ‘creator 
rights’ have been exhausted, or the data 

Figure 2: 

The data market 

 Excludable 
 

Non-excludable 
 

Rivalrous 
(depletable) 

1. Private Good 
(privately funded science resource) 

3. Common pool resource 
 

Non-rivalrous 
(Non-depletable) 

2. Club Good 
(publicly funded data and biosamples) 

4. Public Good 
(astrophysics data) 

 



replicated more cheaply by new 
technology.  

These distinctions allow the application of 
non-arbitrary and transparent rules of 
access. Although assigning property rights 
to those best placed to achieve the desired 
outcome are user-community judgements, 
the principles on which these judgments 
can be made more explicit. 

While clubs are the natural order in the 
scientific data economy, they are not 
necessarily the most efficient mechanism 
for allocating rights to every kind of data. 
Appropriately adjusting access, use and 
ownership rights can be addressed 
implicitly and explicitly. Dementias 
Platform UK (DPUK) addresses it implicitly 
by reducing the reputational and other 
risks associated with data access; leading 
to an access request approval rate (after 
triage for egregious proposals) of 90%. UK 
Biobank addresses it explicitly through a 
standard data controllership agreement; 
leading to an approval rate of 99%. These 
platforms effectively manage responsible 
access on behalf of multiple contributors, 
achieving economies of scale and 
protecting against data ‘congestion’. 
Platforms can be thought of as shifting 
data along the continuum from restrictive 
club good, to less restrictive club good via 
a larger club and federations of clubs to 
achieve greater social benefit. Where a 
platform triage and approval≈100% of 
applications, it has effectively converted an 
inefficient club good into a public good. 

Major shifts in systems of rights that 
cohere society often follow periods of 
great upheaval. Prior to SARS-CoV-2, 
linking UK administrative health data to 
research data required months of 
negotiation involving serial licence fees. 
However, through the pandemic, use 
rights and procedures were rapidly 
reviewed, enabling accelerated access 
resulting in globally impactful science11. 

SARS-CoV-2 has demonstrated the high 
value of making these data widely 
available, and the ability to do so at pace. 
However, accessing these data for non-
Covid purposes remains tortuous and 
expensive, even though other conditions 
such as dementia, a slowly unfolding global 
pandemic, are much greater and enduring 
public health challenges. This serves to 
highlight data-pipeline inefficiencies in the 
sense we have been discussing. It may be 
that the social conversation about 
improving resilience to future pandemics, 
tips the scales in favour of a more clearly 
defined approach to data access.  

Constrained user-led innovation 
The organisation of scientists into clubs of 
different size and function evolves over 
time. Never at equilibrium, clubs will vary 
in size, longevity, and configuration. As we 
have discussed these trajectories will be 
determined by the dynamics of benefits 
and costs. For those concerned with 
building high quality research 
environments, a strategic question is can 
we grow the science-base through 
manipulating the organisation of scientific 
production? 

‘Top-down’ solutions typically lack agility 
and responsiveness in the face of changing 
needs, whilst spontaneous, decentralised, 
user-led solutions are hallmarks of an 
innovative research culture. However, in a 
data-driven economy, uncoordinated and 
competitive user-led solutions frequently 
generate perverse outcomes. These 
include multiple idiosyncratic data models, 
poorly annotated data, poorly 
documented metadata, and duplicative 
non-standard data processing pipelines. All 
of these contribute to increased 
production and transaction costs through 
extended research cycles and non-
reproducible analyses. In this way, too 
much decentralised control makes 



accessing the data market more difficult. 
This is a dilemma.  

To address this, it is helpful to understand 
that successful decentralised systems of 
exchange require well-oiled sets of 
enabling institutions that create an 
ecosystem to underpin efficient collective 
behaviour. From informal rules that 
operate within individual labs, to legal 
obligations regarding data access, 
agreements emerge that constrain some 
activities in order to promote others. These 
institutions form the structure that 
governs scientific activity. In a data driven 
economy, institutions governing data 
standards deserve close attention. In 
market-driven sectors this tends quickly to 
lead to industry-organised standards. 
Without standards, for example, regarding 
the colour of ‘live’ wires in electrical goods, 
spontaneous exchange of data and goods 
rapidly slows.   

In the biosciences, an example is reference 
SNP cluster ID (rs) numbers12. By 
establishing rules around how (and how 
not) to annotate genetic data, confidence 
in the provenance of data is increased, 
transaction costs of data access are 
lowered, and the pooling of property rights 
to support rapid publication is incentivised. 
The introduction of rs numbers has been 
transformative. From this example, two 
lessons can be learned. The first is that 
institutions to support scientific activity 
emerge according to need; Rs numbers are 
a response to the need for greater 
reproducibility. Second, the emergence of 
institutions can be accelerated by the 
leadership of stakeholders with critical 
mass. Interestingly, although in the case of 
rs numbers, the scientific community 
generated the solution, it was coordinated 
action by two major stakeholders (National 
Center for Biotechnology Information and 
National Human Genome Research 
Institute) that realised the ambition. 

Without this leadership, it is likely that rs 
numbers would have been just one of a 
number of (equally useful) solutions, each 
with its own band of disciples.  

Arguably, non-proprietary research 
funders exist to support collective scientific 
goals and activity, and have a role in 
supporting the science community to 
develop efficient institutions. Not least 
because these make science attractive to 
potential scientists, avoid wasting 
resources, and grow the national 
innovation base. However, funders tend to 
eschew this subtle but critical role, as it can 
be interpreted as an imposition on 
academic freedoms. An alternative 
perspective is that funders have a 
responsibility to work with scientists to 
support the development of mature 
institutions that provide an efficient 
science data ecosystem.  

Consider the example of research cohort 
data. Cohort studies are a critical 
component of biomedical science’s 
armamentarium. The growing importance 
of cohorts is demonstrated in that, for 
dementia alone, the number of cohort-
based publications per year increases 
monotonically; currently exceeding 2,000 
13. Typically, each cohort uses a bespoke 
data model and governance structure that 
has evolved over time according to its 
scientific priorities and resource 
constraints. This ‘exercise in entropy’ 
incurs substantial knowledge production 
costs and leads to significant transaction 
costs for third-party researchers. Although 
the value of curating cohort data to a 
defined standard is widely accepted, few 
research groups have been willing to invest 
in this14,15. The rise of multi-cohort data 
management platforms such as DPUK16,17 , 
Dementias Platform Australia,18 and the 
Alzheimer’s Disease Data Initiative (ADDI) 
Workbench,19  has demonstrably improved 
the ‘public good’ quality of data created by 



federating clubs of scientists; and provide 
a model for improvement. The argument is 
not that some higher authority should 
coerce data providers to invest in 
something that is not in their interest. It is 
that funders can steer scientists to engage 
in win-win collaboration through lowering 
systemic transaction costs of data 
exchange and increase the public good 
value of data they fund. 

Trust-by-design  
Trust is the implicit operating principle 
underlying human collective activity. Trust 
simplifies otherwise complex and 
unpredictable environments; identifying 
points of certainty around which to 
organise; and agreeing on a culture where 
key uncertainties are removed on the basis 
of mutual agreement, respect and ethical 
codes. By facilitating better prediction of 
the likely reciprocal behaviour of others in 
sharing costs and benefits, trust fosters 
collaboration, and the efficient assignment 
of informal and formal property rights. 
Trust is also foundational to the 
provenance of data and technologies. As 
datasets grow in size, complexity and 
sensitivity, confidence in the provenance 
chain becomes increasingly central to the 
viability of the entire science economy.  

Informal trust-based solutions work well 
for bilateral collaboration and can work for 
small communities. However, emerging 
research questions frequently require 
multi-lateral collaboration involving large 
numbers of diverse stakeholders, and for 
these, time-tested less formal solutions are 
inadequate. Multiple actors with multiple 
interests involving multiple data-sources 
generate complexity leading to potentially 
prohibitive transaction costs. An 
alternative strategy for managing multi-
lateral collaboration is trust-by-design. 
Here, legal, privacy, security and scientific 
requirements are embedded within 
technical and organisational workflows, 

that are explicit, transparent, and fully 
auditable. This enables systematic 
streamlining, standardisation, and 
automation. Although designed to service 
multi-lateral collaboration, embedded 
workflows have utility for collaboration in 
general.  Trust-by-design solutions provide 
the information necessary for accurate and 
rapid judgements of trustworthiness and 
scientific value. It involves a shift from trust 
in a person or a group, to trust in a system. 
It is a process that underpins all but the 
most primitive of economies and is 
fundamental for human collective 
advancement in all senses. 

For data management, trust-by-design 
solutions include trusted research 
environments (TREs) where data are 
stored and processed and accessed within 
a secure and fully auditable context. In the 
DPUK Data Portal, for example, data are 
ingested, curated, and made available to 
third-party researches upon approval from 
data controllers. Data cannot be 
downloaded and discovery, access, and 
analysis occur remotely. Standard legal 
agreements cover data deposit and data 
access, and access rights can be withdrawn 
if those agreements are abrogated15. 
Trust-by-design solutions also provide a 
level of familiarity and certainty that 
further extend trust. In DPUK, this enables 
rapid decision-making with a median 
decision time of 23 days.  With the 
increasing complexity and sensitivity of 
emerging datasets, trust-by-design is likely 
to prove the only scientifically and socially 
acceptable solution for at-scale research 
environments.  

Blockchain technology is a similar game-
changing collaborative technology. In 
principle, it provides a technology for 
vastly reducing transaction costs of data 
access by embedding formerly lengthy 
administrative procedures into smart 
contracts. In distributing legal agreements, 



access rights, and transactional records 
across all users, it obviates the need for 
trust in a single organising authority. It is 
not yet a proven technology for scientific 
use, but there is no reason why that should 
not happen.  

On values 
Our brief survey of abstracts shows that to 
many scientists it is important that their 
work contributes some form of scientific 
and social benefit. It is worth considering 
what this does and does not mean for 
research environments. 

The intellectual underpinning of science 
comprises observation, causal inference, 
and application. As scientists, we are 
familiar with the systematic observation of 
phenomena and consider this delivers 
objectivity (ontological order). We are also 
familiar with deriving insight by applying 
causal inference to observation 
(epistemological order). Both activities are 
considered intrinsically aesthetically 
satisfying. Furthermore, their utility lies in 
being untrammelled with extrinsic 
judgements of social benefit.  

For application, however, the situation is 
reversed. Wittgenstein observed that if we 
compiled an exhaustive book of all the 
observations in the universe, and the 
insights derived, it would not contain a 
single objective value statement20 i.e. not 
provide a basis for objectively evaluating 
social benefit. It appears, that as scientists, 
we are compelled to make judgements of 
value (regarding social benefit or 
otherwise) that cannot ultimately be 
derived from observation or causal 
inference. Responses to this predicament 
vary, and their expression is contingent on 
the state of knowledge. Nevertheless, at 
the root of every value chain there lies 
what may be described as an ethical 
judgement, be it based on a belief in some 
ultimate value, or deontological 

framework, or some other more capricious 
basis of judgement. 

Wittgenstein’s exposition is extreme, as it 
does not acknowledge the rich tapestry of 
instrumental (utilitarian) values that we 
use to guide marginal decision-making. 
But, it helps make the point that for 
research environments, confusing 
aesthetic and ethical judgements is 
unhelpful. For example, the desire for 
inclusive science has both aesthetic benefit 
(more informative data) and ethical 
benefit (reduced inequality).  They are 
closely entwined, but are distinct, involving 
different and sometimes conflicting 
priorities that need to be clearly 
understood for optimal decision making.  
Nevertheless, for research environments, 
systems and practices that address both 
are likely to be most attractive. The more 
deeply we understand the aesthetic and 
ethical implication of our research, the 
better positioned we are to develop a 
research environment that motivates 
individual scientists and clubs thereof, 
towards a higher calling.  

But perhaps, for the consideration of 
research funders and others in a position 
to lead a change of culture, it more 
powerfully begins with the ethical. To 
acknowledge the dignity of the individual 
in terms of academic attribution, training, 
career structure, etc.  will create a cadre of 
collaborative, efficient, innovative and 
trustworthy scientists who are better 
positioned to conduct rigorous science for 
social as well as private good. If a highlight 
of being a scientist is belonging to a truly 
international community that transcends 
race and creed, then an intrinsic 
motivation exists to realise this ideal, in 
which aesthetic and ethical motivations 
coalesce.  



Towards high quality environments 
The science economy described here 
informs a strategic approach to developing 
high quality research environments. It 
identifies key socio-economic structures 
that contextualise and constrain the 
behaviour of research groups and 
individuals. The model suggests that 
intervening to improve these structures 
will generate greater benefit than 
addressing individual sub-cultures within 
specific research teams, as important as 
these are.  

 

The problem is configured as how to 
facilitate growth in a data driven economy. 
Core issues are reducing the costs of 
collaboration, clarifying property rights, 
developing efficient institutions, creating 
trustworthy environments, and being 
explicit about our value-base to the point 
of building this into data contracts. Figure 
3 is a schematic of this model showing how 
a values-base and user-led innovation 
provide the context and engine underlying 
collaboration, data access, and 
trustworthiness.  

 

Figure 3: 

A model for high quality research environments 



An implicit tension between competition 
and collaboration underlies the argument 
and shapes any scientific data economy. 
Competition between scientists and a 
judicious degree of private property rights 
provides a necessary incentive for the 
investment of personal energy, resources 
and funding into worthwhile projects, thus 
sustaining the quality of science. 
Competition between funders, in the sense 
of complimentary agendas, also helps 
maintain the quality of science, particularly 
in the originality of research. However, 
especially here, there is a substantial 
collaborative dividend available for 
synergising and not duplicating effort. 
Remove competition from either supply or 
demand sides, and the quality of funding 
calls and bids declines. However, to 
improve overall benefit from limited 
resources, aspects of competition need 
moderating. 

To convey the argument, we have 
characterised this as a problem of club 
formation, since scientists by and large 
behave as though scientific data is a club 
good. One distinction of a good that is best 
organised in clubs is that the efficient 
quantity and quality of the good (research) 
is determined simultaneously with club 
size. This clearly happens routinely as 
scientists invite/join collaboration based 
on the likely outputs of a particular 
configuration. Our argument is that this 
type of market under-supplies science. In 
elaborating the argument, we point to 
platform technologies and collaborative 
incentives as market-corrective 
mechanisms likely to lower the transaction 
costs that hinder collaboration. 

We argue that providing an efficient 
ecosystem in which these negotiations can 
take place requires the development of 
mature institutions around practice. These 
institutions are not restrictive, but 
supportive of decentralised and 

spontaneous decision making, and provide 
the conceptual framework around which 
automated procedures that serve the 
interest of all stakeholders can be 
developed.  Here, funders have a key 
leadership role to coordinate effort. 

Finally, we focus on the value-base that 
underpins the science ecosystem; 
understanding the distinction between 
aesthetic and ethical judgement. We argue 
that promoting both motivates high quality 
science, by providing a framework for 
personal motivation, the efficient 
formation of clubs and the coalescence of 
clubs into ‘super-clubs’ for addressing 
specific scientific challenges. This 
framework rescues us from the trivial, 
helps us rise above self-interest, and 
provides the sense of common purpose 
that is characteristic of science at its best. 
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