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Abstract. The Strict Dominance Principle that a wager always paying

better than another is rationally preferable is one of the least contro-

versial principles in decision theory. I shall show that (given the Axiom

of Choice) there is a contradiction between Strict Dominance and plau-

sible isomorphism or symmetry conditions, by showing how in several

natural cases one can construct isomorphic wagers one of which strictly

dominates the other. In particular, I will show that there is a pair

of wagers on the outcomes of a uniform spinner which differ simply in

where the zero degrees point of the spinner is defined to be but where

one wager dominates the other. I shall also argue that someone who ac-

cepts Williamson’s famous argument that the probability of an infinite

sequence of heads is zero should accept the symmetry conditions, and

thus has reason to weaken the Strict Dominance Principle, and I shall

propose a restriction of the Principle to “implementable” wagers. Our

main result also has implications for social choice principles.

1. Introduction

The Strict Dominance Principle is among the least controversial principles

in decision theory: When one wager beats a second no matter what happens,

the first wager certainly looks more rational than the second. Dominance is

useful for arguments when one cannot assume that both sides of a discussion

accept more controversial decision-theoretic principles, but where one can

argue that some credential or decision-making process is irrational because

it yields an outcome sure to be worse than another process’s outcome. Thus,

dominance has been used in pragmatic and non-pragmatic arguments for the
1
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rational requirement of probabilistic consistency in credences (e.g., [4], [8],

[9]) and is of course central to discussions of the Newcomb Problem. Even

Dutch Book arguments that show that some process leads to acceptance

of a series of wagers that together result in a sure loss (e.g., [1], [13]) may

just be a special case of dominance arguments, in that arguably what is

objectionable about accepting a Dutch Book is that one is accepting a set

of wagers that are collectively dominated by the status quo.

I shall argue, however, that there is a cost to the Strict Dominance Prin-

ciple: someone who affirms it needs to either deny plausible symmetry prin-

ciples or opt for a controversial narrowing of decision theory to what one

might call “implementable wagers”. Our main example of where symmetry

and strict dominance conflict involves a paradoxical wager similar to the

case of Vitali sets, whose existence is famously proved with the Axiom of

Choice, and hence our paradoxical wager will not be one where we have an

explicit mathematical construction.

Suppose we have a sample space Ω of possible states. A wager W will

be a real-valued function on Ω whose values represent utilities and which

is bounded, i.e., there is a finite number M such that |W (ω)| < M for all

states ω. The reason for the restriction to bounded wagers through most

of the paper is to avoid paradoxes involving unbounded wagers, such as

St. Petersburg.

There are several concepts of dominance. Given wagers W1 and W2, we

say that:

(1) W2 strictly dominates W1 if and only if W2(ω) > W1(ω) for all ω

(2) W2 weakly dominates W1 if and only if W2(ω) ≥ W1(ω) for all ω

with the inequality being strict for at least one ω

(3) W2 non-strictly dominates W1 if and only if W2(ω) ≥ W1(ω) for all

ω.
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Additionally, if there is a credence function P from some algebra of subsets

of Ω to [0, 1], then we say:

(4) W2 almost strictly dominates W1 with respect to P if and only if

W2(ω) ≥W1(ω) for all ω and the inequality is strict except on some

set A ⊆ Ω with P (A) = 0.1

Strict dominance entails almost strict dominance and, if P satisfies the ax-

ioms of finitely additive probability2, then almost strict dominance entails

weak dominance. These conditions naturally extend to unbounded wagers.

Write W1 wW2 to mean that W2 is non-strictly preferred by the agent in

question to W1, and W1 ≺W2 provided that the agent strictly prefers W2 to

W1, i.e., that W1 wW2 but not W2 wW1. Write W1 ≈W2 provided that the

agent is indifferent between W1 and W2, namely W1 w W2 and W2 w W1.

It is usual to assume that w is a partial preorder, which is a reflexive and

transitive relation, and often decision theorists assume preference structures

that are total preorders, which have the additional property that at least

one of W1 w W2 and W2 w W1 holds for any wagers W1 and W2. However,

our main results will not need reflexivity, transitivity, or totality.

Say that w satisfies the Principle of Strict (or Weak or Almost Strict,

respectively) Dominance if for any wagers such that W2 strictly (or weakly

or almost strictly, respectively) dominates W1, we have W1 ≺ W2. And

say that it satisfies the Principle of Non-Strict Dominance if whenever W2

non-strictly dominates W1, we have W1 wW2.

Because we did not assume reflexivity, it is formally possible for the pref-

erence structure to be empty—for the agent not to have any preference

relations between any wagers. It is also formally possible for there to be

1This condition is related to the condition that P ({ω : W2(ω) = W1(ω)}) = 0, but is
weaker. For instance, it may be that the set {ω : W2(ω) = W1(ω)} is not P -measurable,
even though it is contained in a set with P -measure zero.
2Actually, all we need is that P (Ω) 6= 0.
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some w-unrelated wagers, ones that are not related by preference to any

wagers, not even themselves. However, as soon as we have any of the four

dominance principles defined in the previous paragraph, it will follow that

for any wager W , we have W − 1 wW wW + 1, where W + α is the wager

that pays α more than W no matter what, and hence no wager will be w-

unrelated. Each of the dominance principles thus implies that the preference

structure extends to all wagers.

Now, certain sample spaces come along with intuitive symmetries. For

instance, suppose that Ω is the set of outcomes of a uniform fair spinner,

naturally identified with the set of points on the circumference of the unit

circle. Then any rotation (and reflection, for that matter) is a plausible

symmetry of Ω. We say that an agent’s preference structure w is (strongly)

invariant under a set G of permutations of Ω provided that we always have

W ≈ W g, where W g is the wager defined by W g(ω) = W (gω) and g is

in G. In the spinner case, if g is a rotation, then W g is the wager you

get by adding an extra rotation g to the end of a spin before calculating

the payoff using W , and (strong) G-invariance says that adding an extra

rotation doesn’t affect the agent’s preferences. Intuitively, if our spinner is

known by a rational agent to be truly uniform, adding an extra rotation to

the end of the spin shouldn’t affect the agent’s preferences. The wagers W

and W g are isomorphic in a very natural way—they just differ in where we

put zero degrees on the circle when defining the payoffs.

Pruss [10] showed that the Principle of Weak Dominance is incompatible

with rotational invariance. Fix any irrational number x. Let A be the set of

points on the circle at x, 2x, 3x, ... degrees, and suppose W is the wager that

pays a dollar on A and zero outside it. Then if ρ is rotation by x degrees,

W ρ pays a dollar on the set A0 of points at 0, x, 2x, ... degrees and zero
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outside A0. Thus, W ρ weakly dominates W , and so w cannot both satisfy

rotational invariance and the Principle of Weak Dominance.

However, this is not a particularly impressive example. Because A is a

countably infinite set, its Lebesgue measure is zero, and so it is reasonable

to say that the probability of any non-zero payoff by either wager is zero

on classical probability theory, or at best an infinitesimal if a non-classical

theory is preferable. It does not seem particularly costly to say that one

can ignore infinitesimally unlikely outcomes in one’s decision theory, and be

indifferent between wagers that differ in this way.

But I will show that, given the Axiom of Choice, for any irrational x and

ρ defined just as above, there is a different wager V , obtained by tweaking

a construction of Norton [6], such that V ρ strictly dominates V . Then it is

impossible to have a preference preorder w that satisfies both the Principle

of Strict Dominance and rotational invariance. I will give the simple proof

of this result in the next section, together with a simple general characteri-

zation of precisely when one can have both Strict Dominance and invariance

under a group of symmetries, and some further examples. I will then dis-

cuss philosophical consequences for decision theory. In particular I will argue

that we may well need to choose between Strict Dominance and the kind of

symmetry reasoning that underlies Williamson’s famous argument that the

probability of an infinite sequence of heads is zero rather than a non-zero

infinitesimal. One suggestion I will offer is that we should consider restrict-

ing our decision theory to “implementable” wagers. I will end with a brief

sketch of some extensions, including to analogous results regarding Pareto

conditions in social choice.
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2. Main result and some examples

First, we prove the existence of our paradoxical wager in the case of the

spinner. As before, let x be an irrational number and let ρ be rotation by

x degrees. Define the relation ∼ on points on the unit circle S1 by letting

a ∼ b hold if and only if b can be obtained by rotating a by an integer

multiple of x degrees about the center of the circle. It is easy to see that

∼ is reflexive, symmetric and transitive, and hence it divides the unit circle

into a collection of equivalence classes. By the Axiom of Choice, let E be a

set that contains exactly one element from each equivalence class. Given a

point a on the circle, there is a unique integer n such that there exists a b ∈ E

such that a is the result of rotating b by nx degrees (here the irrationality

of the number x is used).3 Let U(a) = n. Observe that U(ρa) = U(a) + 1

for any ρ.

Thus, Uρ strictly dominates U . However, U is unbounded. To get a

bounded wager, let V (a) = φ(U(a)) for any strictly increasing bounded

function φ on the reals (e.g., φ(y) = arctan y or φ(y) = y/(1 + |y|)). We will

still have V ρ strictly dominating V .

We can now generalize the above reasoning to show that unless a certain

technical condition on the symmetries of Ω holds (condition (iv) below),

then there is guaranteed to be a paradoxical wager like the above. The

technical condition says that for every symmetry g, there is some point of

Ω such that a finitely repeated application of g will return that point to

itself. This condition was not met in our spinner case, because repeated

rotation by x degrees will never return to the original point if x is irrational.

3First, there is exactly one member b in E such that a ∼ b, since E contains exactly one
element from each equivalence class. Now suppose a can be obtained by rotating b by nx
degrees as well as by mx degrees for integers n and m. We must show that n = m. But
the only way rotation by nx degrees and one by mx degrees applied to b can both yield
the same point a is if nx −mx = (n −m)x is an integral multiple of 360. But since x is
irrational, this can only happen if n−m = 0.
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On the other hand, if we ad hoc restricted our rotations to angles that are

rational numbers of degrees, the technical condition would be met, since if

g is rotation by p/q degrees where p and q are integers with q ≥ 1, then

360q applications of g would return any point to itself. Moreover, it turns

out that when the technical condition is satisfied, then we can prove that

there is an invariant preference structure, and even one that is total.

Proposition 1. Assume the Axiom of Choice. Let G be a group of permu-

tations of Ω. Then the following conditions are equivalent:

(i) There is a G-invariant preference structure on wagers on Ω that

satisfies the Principle of Strict Dominance.

(ii) There is a G-invariant total preorder on wagers on Ω that satisfies

the Principles of Strict Dominance and Non-Strict Dominance.

(iii) There is no wager V and g ∈ G such that V g strictly dominates V .

(iv) For every member g of G, there is a positive integer n and a member

ω of Ω such that gnω = ω.

Proposition 1 does not depend on any assumptions about probabilities

(whether classical, risk-averse, qualitative, etc.), and while it is formulated

above for bounded real-valued wagers, it works for wagers with any values

that have a bounded subset of the same order type as the integers. It further

has applications in completely non-probabilistic situations: see Section 4.4

The proof of the Proposition is given in the Appendix.

The simplest example where Strict Dominance is impossible is when Ω is a

bidirectionally infinite fair lottery with tickets corresponding to the integers,

and G consists of all forward/backwards shifts of ticket numbers. Thus, a

member of G is a permutation ρn, for an integer n, such that ρnm = n+m.

In this case, the Axiom of Choice is not needed, as we can exhibit the wager

4I am grateful to an anonymous reader for these observations.
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V explicitly as V (n) = φ(n) for any bounded strictly increasing function φ.

But while this example is mathematically trivial, the possibility of infinite

fair lotteries is quite philosophically controversial (see Pruss [12, Chapter 4]

and Norton and Parker [7]).

Here is a less trivial case. Suppose first we have a bidirectionally (count-

ably) infinite sequence of independent flips of a fair coin. For instance, we

might have a line of people, stretching to infinity in both directions, and

each one flips a fair coin, or we might have an infinite past and and an infi-

nite future and each day one fair coin is flipped. We can represent a point

ω in our space Ω as a function that assigns to each integer n either T or H,

depending on whether the nth coin is tails or heads. We denote the set of

functions from the set of integers Z to {T,H} as Ω = {T,H}Z.

In this example, one natural groupG of symmetries are shifts by an integer

amount. Thus, a permutation g in G shifts the results along the sequence,

and is of the form ρm where ρm is a shift by m to the left: (ρmω)(n) =

ω(m + n). In this example, condition (iv) is actually satisfied. For given

any shift ρm, we have ρmω = ω if ω consists only of heads or only of tails.

Thus, Proposition 1 tells us that there is a total preorder on Ω that satisfies

the Principles of Strict and Non-Strict Dominance and is invariant under all

shifts.

However, it is too soon for friends of dominance and symmetry to rejoice

even in this case. For in this case we can show that there is no G-invariant

preference that satisfies Almost Strict Dominance. To see this, say that a

heads-and-tails sequence ω in Ω is m-periodic provided that it repeats with

a cycle of length m: i.e., ω(m + n) = ω(n). And say that ω is periodic if

for some finite m it is m-periodic. Let Ω0 be the set of sequences in Ω that

are not periodic. If g is a shift by a non-zero amount, then the only way we

can have gnω = ω for n > 0 is if ω is periodic. Thus, if replace Ω with Ω0,
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then condition (iv) will fail. Thus, by the negation of (iii) there will be a

paradoxical wager V on Ω0 and a shift g such that V g strictly dominates V .

Now observe that with respect to the classical probability measure P on

Ω that treats all the coin tosses as fair and independent, the set of periodic

sequences has zero probability. For, given any m, there are exactly 2m se-

quences that are m-periodic, and hence there are only countably many peri-

odic sequences.5 But on the classical coin-flip probability measure, every in-

dividual sequence ω has probability zero, and hence by countable additivity,

the set of all of them has probability zero. We can now take our paradoxical

wager V on Ω0 where V g strictly dominates V , and extended it to a wager

W on Ω by saying that W (ω) = V (ω) for ω ∈ Ω0 and W (ω) = 0 for a peri-

odic ω. Then W g(ω) > W (ω) for every non-periodic ω, and W g(ω) = W (ω)

for every periodic ω, so W g almost strictly dominates W . It follows that

there is no G-invariant preference w for wagers on Ω that satisfies Almost

Strict Dominance, since if w satisfied Almost Strict Dominance, we would

have W ≺W g, contrary to G-invariance.

3. Philosophical consequences

Proposition 1 shows that the following three theses are contradictory:

(5) The Axiom of Choice holds.

(6) Ideal agents’ preferences always satisfy Strict Dominance.

(7) Ideal agents’ preferences are sometimes invariant under symmetries

that fail condition (iv) of Proposition 1, such as rotational symmetry

for uniform spinners or translational symmetry for infinite countable

fair lotteries.

5The union of a countable sequence of finite sets is countable.
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I will take the Axiom of Choice for granted—it is widely accepted by

mathematicians, and a serious discussion would move us from decision the-

ory to the philosophy of mathematics. Thus, we have a choice between

rejecting Strict Dominance and rejecting the relevant cases of symmetry.

Furthermore, the following thesis is very plausible:

(8) If ideal agents’ preferences always satisfy Strict Dominance, they

also always satisfy Almost Strict Dominance.

In addition to the strong intuitive plausibility of (8), we can argue for it

as follows. Suppose (8) is not true, so that ideal agents’ preferences always

satisfy Strict Dominance but not always Almost Strict Dominance. Thus we

will have a case where an ideal agent, call her Alice, has a credence function

P and two wagers W1 and W2 have the property that W2 almost strictly

dominates W1 with respect to P , but Alice does not prefer W2 to W1. Let

A be an event with P (A) = 0 such that W2 > W1 everywhere outside of A.

Plausibly, if Alice were to gain complete “Cartesian” certainty that A did

not occur, she would prefer W2 to W1: events one is completely certain did

not occur not be included in the relevant sample space, and with the space

restricted to the outside of A, there would be strict dominance between the

wagers W2 and W1. Now, it is natural to treat probability one as a kind

of certainty, and so Alice may well have a kind of certainty that A did not

occur, but it need not be a complete certainty (e.g., even if the probability of

an infinite sequence of heads on fair independent tosses is zero, one does not

have complete “Cartesian” certainty that such a sequence won’t transpire).

The difference between complete certainty and probability one is presumably

behind why Alice, despite being an ideal agent and ideal agents’ preferences

satisfying Strict Dominance, does not strictly prefer W2 to W1.

Still, when a wager W2 is strictly preferred to W1 outside of an event A,

it seems that the only reasons an ideal agent might have not to prefer W2
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to W1 would either be (a) a worry that W1 is preferable to W2 on A or (b) a

worry that the case where A does not occur is probabilistically negligible or

(c) skepticism about the Principle of Strict Dominance. Now we’ve assumed

that ideal agents do respect the Strict Dominance Principle. Furthermore,

Alice should not worry that W1 is preferable to W2 on A, since even on A

we have W2 ≥ W1, and it is the case where A occurs, rather than the case

where it does not, that is probabilistically negligible. Hence none of (a)–(c)

apply, and Alice should prefer W2 to W1.

If we accept (8), the stakes in the conflict between Strict Dominance and

symmetry are raised. For even if one is skeptical of countably infinite fair

lotteries (e.g., [6] or [12]) and of completely rotationally symmetric spinners,

it is very plausible that preferences between wagers concerning a bidirection-

ally infinite sequence of independent fair coin flips should be invariant under

translations.

In particular, if we accept Almost Strict Dominance and (8), we will now

have a new reason to be skeptical of Williamson’s [17] famous argument

that an infinite sequence of heads has probability zero rather than being a

non-zero infinitesimal. Williamson’s argument supposes a unidirectionally

infinite sequence of independent fair coins being tossed, which we can imag-

ine arranged at spatial or temporal locations 1, 2, 3, .... Let the probability

of that sequence being all heads be ε. Williamson then has us suppose an-

other independent fair coin being tossed at location 0. The probability of

this larger sequence of coins being all heads then equals (1/2)e. But the two

sequences are isomorphic in a sense relevant to probabilistic reasoning, so

ε = (1/2)ε, which is only possible if ε = 0.

Now, if we accept the isomorphism step in Williamson’s argument, then

we should likewise hold that a bidirectionally infinite sequence of indepen-

dent fair coin tosses is epistemically isomorphic to a sequence translated by
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one coin to the left. The intuitions here are the same. But an ideal agent

would not have a strict preference between epistemically isomorphic wagers.

And yet Almost Strict Dominance forces such a preference, if translations

result in epistemically isomorphic situations. Thus, if we accept Almost

Strict Dominance, we need to reject that translations of coin flips result in

epistemically isomorphic situations, and hence we should reject Williamson’s

argument. Those readers who find Williamson’s argument compelling will

thus have reason to reject the Principle of Almost Strict Dominance, and,

given (8), the Principle of Strict Dominance.

Of course, when we reject a plausible thesis, like Strict Dominance, we

should try to find another in its place. One might consider replacing Strict

Dominance with Non-Strict Dominance, as Non-Strict Dominance can be

satisfied no matter what symmetries we want. However, the Principle of

Non-Strict Dominance is quite a weak thesis, given that it can be satisfied

trivially by the total preference preorder where one is indifferent between all

pairs of wagers.

But there is a more interesting way to weaken Strict Dominance. As

defined, the Principle applies to all wagers, and wagers are just bounded

mathematical functions. When preference structures were introduced, it was

noted that each of the four dominance principles (Strict, Weak, Non-Strict

or Almost Strict) was sufficient to imply that every wager was preference-

related to some other wager. But not every mathematical function can be

the payoff function for a physically implementable game. For instance, in the

circle case, the choice set E containing one element from each ∼-equivalence

class is a non-measurable set similar to a Vitali set. Norton [6] considers

an infinite lottery very similar to one obtained by spinning our spinner and

applying our function U to the outcome, and argues that such a lottery is not

implementable because there is no way to check whether the spinner lands
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in a particular Vitali set. The same point applies to our case. We can thus

weaken our dominance principles to apply only to physically implementable

wagers. This would leave open the possibility that some wagers (say, some

or all the unimplementable ones) are not preference-related to any wagers

or are not preference-related to any wagers distinct from themselves.

It is worth noting that in the circle case, a wager involving the paradoxical

property that W ρ strictly dominates W for some rotation ρ is always a

Lebesgue non-measurable function. For if W ρ strictly dominated W and

yet W was measurable and bounded, we would absurdly have:

0 =

∫
S1

W ρ dλ−
∫
S1

W dλ =

∫
S1

(W ρ −W ) dλ > 0,

where λ is Lebesgue measure, the first equality follows from the rotational

invariance of Lebesgue integrals, the second from their linearity, and the fi-

nal inequality follows from strict dominance and the fact that the Lebesgue

integral of a strictly positive function is strictly positive. A similar argument

shows that in the case of the bidirectionally infinite sequence of coin tosses,

any wager W such that W ρ almost strictly dominates W for some transla-

tion ρ will also fail to be measurable with respect to the standard product

measure on {H,T}Z.6 And it is plausible that non-measurable functions are

not implementable as actual games.7

Formally, we then have this fact contrasting with Proposition 1:

6The only difference is that in the last step of the proof where we will need to show that∫
{H,T}Z(W ρ −W ) dP > 0, we won’t have a guarantee that W ρ −W > 0 everywhere, but

only that this happens outside of a set of measure zero. But that’s enough for the integral
to be strictly positive.
7Solovay [14] has famously shown that assuming a certain large cardinal assumption, the
existence of a non-measurable set requires some version of the Axiom of Choice. If the
assumption holds, then any paradoxical wager like the one in the spinner case requires the
Axiom of Choice. Note, however, that the fact that the proof of something requires the
Axiom of Choice does not prove that the thing cannot be uniquely specified, as Kanovei
and Shelah’s [5] “construction” of a free ultrafilter on an infinite set shows.
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Proposition 2. Suppose µ is a countably additive probability measure on

a σ-algebra F of measurable subsets of Ω that is invariant under a group

G, i.e., if ρ in G and A ∈ F , then ρA ∈ F and µ(ρA) = µ(A). Define the

preference relation W1 wW2 if and only if W1 and W2 are µ-measurable and∫
ΩW1 dµ ≤

∫
ΩW2 dµ. Then w is transitive, is reflexive on the measurable

wagers, satisfies the restriction of Strict Dominance Principle to measurable

wagers, and has the symmetry property that W ≈ W ρ for any measurable

wager W .

This follows from the fact that the integral of W and W ρ is the same if the

measure is G-invariant and ρ ∈ G, and that if W1 < W2 everywhere, then∫
ΩW1 dµ <

∫
ΩW2 dµ for any measure µ. Lebesgue measure on the circle

will be invariant under rotations, and in many other contexts—like the coin

toss one—there will be other invariant countably additive measures.8

Restricting Strict Dominance to physically implementable wagers thus

may allow us to preserve symmetry, assuming only measurable functions

are implementable. Perhaps, though, we have higher ambitions for decision

theory, and think general principles such as Strict Dominance should apply

at least to all metaphysically possible situations. However, not only is it

unlikely that a game involving a non-measurable payoff function is physi-

cally implementable, it may even be metaphysically impossible. The only

way we know how to knowingly implement selections that use the Axiom of

Choice involves nested supertasks and it is far from clear that supertasks are

8Note that Proposition 2 becomes false if “countably additive” is replaced by “finitely
additive”, at least given the Axiom of Choice. Let G = Ω = Z be the integers, acting
on themselves by addition. Since (Z,+) is a commutative group, it is amenable [16,
Theorem 12.4], i.e., there is a finitely additive Z-invariant probability measure µ on Z.
Invariance implies that every singleton has the same measure, and finite additivity forces
that measure to be zero, so again by finite additivity the measure of every finite set is
zero. Let W1 be the wager that is zero everywhere and let W2(n) = 1/(1 + |n|). Then
W2 strictly dominates W1, but 0 ≤

∫
Ω
W2 dµ ≤ 1/n for every positive integer n, since

W2 ≤ 1/n everywhere except on the finite set {−(n− 2), . . . , n− 2} which has µ-measure
zero, so

∫
Ω
W2 dµ = 0, which is also what the integral of W1 equals.
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metaphysically possible [12]. Indeed, we might even take the tension between

Strict Dominance and symmetry, together with the apparent implementabil-

ity of the Choice-selections with supertasks, as a further argument against

the metaphysical possibility of supertasks.

We might, on the other hand, choose to weaken the symmetry condition.

Again, one way is to apply it only to physically or maybe even metaphysically

implementable wagers.

Another approach is to weaken strong G-invariance to weak G-invariance,

where instead of requiring that W ≈ W g, we require that for all W1, W2

and g, we have W1 w W2 if and only if W g
1 w W g

2 . Things look much

better for weak G-invariance. For instance, if we define a preference preorder

by stipulating W1 w W2 just in case W2 non-strictly dominates W1, then

we satisfy both Strict Dominance and weak G-invariance for any group of

permutations G. Moreover, it follows from [11, Theorem 2] that whenever

G is a commutative group (this will be true for the rotations in our spinner

example and the shifts in our bidirectionally infinite lottery and coin toss

examples), this partial preorder w can be extended to total preorder.

However, weak G-invariance does not capture our symmetry intuitions

unless it implies strong G-invariance. In the case of the spinner, it is not

only intuitive that our relative rankings between a pair of wagers should

be unchanged by rotating both of the wagers, but also that they should be

unchanged by rotating one of the wagers, and that condition immediately

implies strong G-invariance (just apply it in the case where the two wagers

are the same).

Furthermore, in the case of the spinner, the countably infinite fair lottery

and the bidirectionally infinite sequence of coin tosses, it is just as intuitive
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to think that we should have weak invariance under reflections9 as that we

should have weak invariance under rotations or translations. However, weak

invariance of a total preorder under all reflections implies strong invariance

under all reflections by [11, Prop. 2], and any rotation (in the spinner case)

or translation (in the lottery and coin cases) can be generated by a pair of

reflections.10 Thus, at least in the case of a totally preordered preference

structure, weak invariance under reflections implies strong invariance under

rotations or translations (depending on the case), and we have seen that

strong invariance cannot be had.

We thus have a choice: To limit the scope of decision to implementable

wagers and argue that the paradoxical wagers in this paper are not imple-

mentable, to reject Strict Dominance, or to reject very plausible symmetry

principles, including the one underlying the Williamson argument.

4. Some extensions

While the vocabulary of wagers has been used so far, and Ω in Proposi-

tion 1 has been interpreted as a sample space, the Proposition as a mathe-

matical result has implications that go beyond these interpretations.11

For instance, we can reinterpret Ω as a set of sites of value (e.g., persons

at spatiotemporal locations) and a wager as a deterministic distribution of

goods across sites, and get a result for non-probabilistic social choice princi-

ples. For the Proposition implies that a preference structure on distributions

of goods (even ones of bounded value) across the sites that is invariant under

9In the case of the spinner, we can reflect the result in a line through the center of the
spinner. In the lottery, for any fixed m such that 2m is an integer, we can map an outcome
n to its reflection m− n around m, and in the coin toss example, for any such m, we can
map ω to ωm defined by ωm(n) = ω(m− n).
10A rotation by an angle α can be generated by reflecting about a line at angle α/2 and
then a line at angle 3α/2; a translation by a distance x can be generating by reflecting
about the point x/2 and then the point 3x/2.
11I am grateful to an anonymous reader for pointing me to these applications.
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some group G of symmetries of the sites can only satisfy the weak Pareto

condition that a distribution that is better for everyone is always preferred

to a distribution that is worse for everyone if the symmetries satisfy con-

dition (iv) of the Proposition (i.e., if there is a symmetry g that does not

move any point of Ω around a finite cycle). For instance, if the persons are

located at all the intersection points of a two- or three-dimensional rectan-

gular grid, and the symmetries are translations along the axes of the grid,

then condition (iv) fails, and no symmetry-invariant preference structure

satisfies the weak Pareto condition.12 If one is confident of the weak Pareto

condition, this provides another argument that spatiotemporal location may

be morally significant (cf. [3]), or it might make one suspicious of the weak

Pareto condition.

Or, more generally, following Easwaran [2] we can consider Ω to be a set

S×Ω1 of pairs (z, ω) where z ∈ S is a site of value and ω ∈ Ω1 is a location in

a probabilistic sample space, allowing one to consider probabilistic situations

where values are not aggregated into a single value. In this case, G can be

a set of symmetries that act on the sites, on the sample space Ω1, or on

combinations of the two, and once again we can conclude that if condition

(iv) fails, then any symmetry-invariant preference structure fails the weak

Pareto condition that if W1 < W2 everywhere on Ω, then W2 is strictly

preferable.

Finally, it is worth noting that if we do not require the values to be

bounded, then the proof of the Proposition shows that we can replace the

12That said, in this special case the non-existence of such a preference structure does
not need the Axiom of Choice and is in fact obvious. Suppose the sites have integer
coordinates (x, y, z). Let W (x, y, z) = φ(x) for any strictly increasing bounded function
φ (e.g., arctan) and let τ be translation by one unit to the right along the x-axis. Then
W (x, y, z) < W (x + 1, y, z) = W τ (x, y, z) for all sites (x, y, z), and hence a translation-
invariant preference structure cannot satisfy the weak Pareto condition.
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Strict Domination Principle with what we might call the Very Strict Domi-

nation Principle that if W1 + ε < W2 everywhere on Ω for some fixed ε > 0,

then W2 is strictly preferable to W1. In the social choice setting, this yields

a result for an even weaker Pareto condition, also discussed by Easwaran [2,

Section III].13

Appendix: Some proofs

Proof of Proposition 1. We will show (i)→(iii)→(iv)→(ii)→(i).

That (i) implies (iii) is clear: if we had V g strictly dominating V and yet

w was a G-invariant preference structure satisfying Strict Dominance, then

by Strict Dominance we would have V ≺ V g, contrary to G-invariance.

Now we show that (iii) implies (iv). Assume (iv) is false. Thus there is a

symmetry g such that gnω 6= ω whenever n > 0 and ω ∈ Ω. More generally,

it follows that if gnω = gmω, then n = m. For, otherwise, we could suppose

without loss of generality that n > m and we would have gn−mω = ω.

Let a ∼ b if and only if a = gnb for some integer n. Then ∼ is an

equivalence relation, and we can let E contain exactly one element from

each equivalence class by Choice. Given a ∈ Ω, let b ∈ E be such that

a = gnb for some integer n. The integer n is unique, since otherwise we

would have gnb = gmb for distinct n and m. Let U(a) = n, observe that

Ug(a) = U(a) + 1 and, as before, let V (a) = φ(U(a)) for a bounded strictly

increasing φ. Then V g strictly dominates V , and we have not-(iii).

Now we show (iv) implies (ii). Assume (iv). Say that V w W just in

case there is a g ∈ G such that V (ω) ≤ W g(ω) for all ω ∈ Ω. Then w is

a G-invariant partial preorder, and it clearly satisfies the Principle of Non-

Strict Dominance. We now show that it satisfies Strict Dominance as well.

For suppose it does not, so that there are W1 and W2 such that W1 < W2

13I am grateful to [anonymized] for [anonymized], and to two anonymous readers for a
careful reading and a number of suggestions that have significantly improved the paper.
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everywhere but notW1 ≺W2. By Non-Strict Dominance, we haveW1 wW2.

Thus, for W1 ≺ W2 to fail, we must also have W2 w W1. Hence there is a

g ∈ G such that W2 ≤ W g
1 everywhere. Therefore, W2 < W g

2 everywhere,

since W1 < W2 everywhere. By (iv), there is a positive n and an ω such that

gnω = ω. We then have W2(ω) < W2(gω) < W2(g2ω) < · · · < W2(gnω),

which contradicts gnω = ω.

However, w may be only a partial preorder, and we need a total one. To

that end, let [W ] be the equivalence class of the wager W under the relation

≈ (where, recall, W1 ≈ W2 if and only if W1 w W2 and W2 w W1). Define

the partial order� on these equivalence classes by stipulating that [W ] � [V ]

if and only if W w V (this is well defined because w is transitive). By the

Szpilrajn order extension theorem [15] (this uses the Axiom of Choice), we

can extend � to a total order �∗. Now define W1 w∗ W2 if and only if

[W1] �∗ [W2]. Then w∗ is easily seen to be a total preorder that extends

w. It is strongly G-invariant because it extends the strongly G-invariant

preorder w. It remains to check that w∗ satisfies the Principles of Non-Strict

and Strict Dominance. Non-Strict Dominance follows from the fact that w∗

extends w and the latter satisfies Non-Strict Dominance. That leaves the

Strict case. Suppose W2 strictly dominates W1. By Strict Dominance for

w, we have W1 ≺ W2. Therefore, [W1] � [W2] and not [W2] � [W1]. Hence

[W1] �∗ [W2], since �∗ extends �. Since we do not have [W2] � [W1], we

have [W2] 6= [W1], and since �∗ is an order, and not merely a preorder, it

follows that we do not have [W2] �∗ [W1]. Thus, we have W1 w∗ W2 but

not W2 w∗ W1.

Thus, (iv) implies (ii).

Finally, (ii) trivially implies (i), which completes the proof. �
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[10] Pruss, Alexander R. 2013. “Null probability, dominance and rotation”, Analysis

73:682–685.

[11] Pruss, Alexander R. 2014. “Linear extensions of orders invariant under abelian group

actions”, Colloquium Mathematicum 137:117–125.

[12] Pruss, Alexander R. 2018. Infinity, Causation and Paradox, Oxford: Oxford Univer-

sity Press.

[13] Ramsey, F. P. 1931. “Truth and probability.” In: The Foundations of Mathematics

and Other Lgoical Essays, Routledge and Kegan Paul, 156–198.

[14] Solovay, R. M. 1970. A Model of Set-Theory in Which Every Set of Reals is Lebesgue

Measurable, Transactions of the American Mathematical Society 92/1: 1–56

[15] Szpilrajn, Edward. 1930. “Sur l’extension de l’ordre partiel”, Fundamenta Mathemat-

icae 16:386–389.



STRICT DOMINANCE AND SYMMETRY 21

[16] Tomkowicz, G., and Wagon, S. 2016. The Banach Tarski Paradox, 2nd ed. Cambridge

University Press: Cambridge.

[17] Williamson, Timothy. 2007. “How probable is an infinite sequence of heads?”, Anal-

ysis 67:173–180.


