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Abstract

A number of philosophers of science have argued that there are impor-
tant differences between robustness in modeling and experimental con-
texts, and—in particular—many of them have claimed that the former
is non-confirmatory. In this paper, I argue for the opposite conclusion:
robustness in modeling contexts is capable of providing confirmation,
and the same analysis should be given in both contexts—that is, the
degree to which robustness confirms depends on precisely the same
factors in both situations. The positive argument turns on the fact
that confirmation theory doesn’t recognize a difference between dif-
ferent sources of evidence. Most of the paper is devoted to rebutting
various objections designed to show that it should. I end by explaining
why philosophers of science have (often) gone wrong on this point.

0 Introduction

Sometimes we believe a hypothesis because there are experiments that sup-
port it. Sometimes, we believe a hypothesis because our best model or models
support it. A hypothesis might enjoy agreement—it might be ‘robust’—in ei-
ther context (or, indeed, across both). ‘Robustness’ in this sense is a property :
it’s something that a hypothesis has relative to a set of lines of evidence. In
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this paper, I argue that (1) this property is confirmatory in the sense that the
better the agreement between different lines of evidence, the more the hy-
pothesis is confirmed by that evidence and (2) the difference between models
and experiments has no general implications for the confirmation-theoretic
evaluation of this property. I call this position ‘unity’:

(U) Agreement across appropriately varied model reports con-
firms, and the degree of confirmation it provides depends on
precisely the same factors as are operative in other contexts.

Unity is not a widely-defended position in the literature. To my knowl-
edge, only Schupbach (2018) and, following him, Winsberg (2018) endorse it
explicitly. By contrast, quite a few philosophers have argued against against
unity. So, for example, Cartwright (1991) and Woodward (2006) argue that
the property of robustness—that is, agreement—should be evaluated in dif-
ferent ways in experimental and modeling contexts. Similarly, a number of
philosophers have argued that ‘robustness analysis,’ understood not as a
property but as a strategy of testing hypothesis involving constructing var-
ied models, ‘does not’ (Forber 2010, 37; Weisberg 2013, 167) and indeed
‘is unable to’ (Odenbaugh and Alexandrova 2011, 758) confirm hypothe-
ses about the world (at best it confirms only claims about the models).1 If
these philosophers are right, however, that would imply that even where the
method of robustness analysis yields multiple models across which a single
hypothesis is robust, that hypothesis is not thereby confirmed.

The present paper defends unity against the arguments raised by its op-
ponents: the property of robustness should be evaluated in the same way re-
gardless of context. Confirmation of a hypothesis that is robust across models
depends on precisely the same probabilistic features of the evidence as confir-
mation of a hypothesis that is robust across experiments. It’s all a matter of
filling in the same variables in the same formulas, and there’s nothing about
the difference between models and experiments that necessitates those vari-
ables taking on different values. The strategy, robustness analysis, is therefore

1I take it that sense in which strategies or methods ‘provide confirmation-theoretic
support,’ (Forber 2010, 37), ‘confirm’ (Odenbaugh and Alexandrova 2011, 758), or ‘bestow
confirmation’ (Weisberg 2013, 167) is that they deliver results that raise the probability
of the hypothesis in question (though see §2). Note that while all of Forber, Weisberg,
and Odenbaugh and Alexandrova explicitly understand ‘robustness analysis’ as limited to
the modeling context, more recent discussions (e.g. Schupbach 2018; Winsberg 2018) have
adopted a broader conception.

2



capable of providing confirmation insofar as it generates results that a hy-
pothesis can be robust across, and while there are some reasons for thinking
that the results found in experimental contexts will generally confirm more
than those found in modeling ones, there’s no ground for either the bright-
line distinctions that Cartwright and Woodward argue for or the skepticism
of Forber, Odenbaugh and Alexandrova, and Weisberg.

The positive argument for unity is simple. Model reports can serve as
evidence. Confirmation theory doesn’t recognize a difference between differ-
ent sources of evidence: it tells us to calculate the degree of confirmation in
the same way regardless. Since confirmation theory is not sensitive to the
difference between modeling and experimental contexts, therefore, we have
good reason to think that unity is true (§1). After laying out this argument, I
consider four different objections in sections 2-5. Most of these objections can
be understood as designed to show that confirmation theory should recognize
this difference, because there is some feature of model reports—the nature of
the independence relationships between them, their non-empirical character,
their reliance on idealizations—that affects the relevant probabilities. But
none of them are persuasive. Finally, I end the paper with a discussion of the
relationship between robustness the property and the strategy of ‘robustness
analysis.’ I argue that the focus on practical difficulties with the latter has led
to confusion about unity and the ability of robustness / robustness analysis
to confirm (§6).

One final note before I begin. The thesis of this paper is a general thesis
about the relationship between robustness or agreement across multiple lines
of evidence and confirmation. The approach that I’ll take is equally general.
Of course, actual cases of robustness are extremely varied in both the degree
of variation between the different lines of evidence and how the varied tests
fits into the evidence as a whole. To determine what we should take from
robustness in any one case, examination of the details will be necessary.
As case-studies like Parker (2018) and Winsberg (2018) illustrate, however,
the evaluation of those details has to occur within some sort framework for
evaluating how robustness works in general. My contention is simply that
the fact that the hypothesis is robust across models rather than experiments
should not enter into our general framework: we should analyze both kinds
of cases in the same way.
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1 Unity and confirmation theory

Consider a simple proposition that we’ll call H: after falling for one second,
an object will be traveling at ∼10 meters per second. One way to confirm
H is to drop an object and observe its velocity after exactly one second. To
confirm H in this manner, we we would need to employ an instrument such
as a radar gun. Let I indicate the proposition that the radar gun reads ∼10
meters per second, or in other words, the proposition that the radar gun
represents the object as traveling at ∼10 meters per second. Under the right
conditions—i.e., if we have sufficient reason to believe that the radar gun
is well-designed and operated—I confirms H in the incremental sense that
p(H|I) > p(H).

Alternatively, we could confirm H by using a model of a freely falling
object. In this case, rather than an instrumental reading, we would con-
ditionalize on what I’ll call a ‘model report’—essentially, on the fact that
the model represents the target as being a particular way. In this case, we
can think of the model report, which we’ll denote R, as being the proposi-
tion that the analogue of the object in the model is traveling at ∼10, or, in
other words, the proposition that the model represents the object as travel-
ing at ∼10 meters per second. Under the right conditions—i.e., if we have
sufficient reason to believe that the gravitational model is well-designed and
operated—R confirms H in the incremental sense that p(H|R) > p(H).2

I take it that the foregoing sketch provides us with some reason to accept
the following claim:

(P1) Model reports are evidence.3

where it should be understood that here we mean that such reports provide
evidence not just about the nature of the model, but also about the nature

2Note that ‘well-designed and operated’ is doing the same work in the experimental and
modeling cases: incremental confirmation fails in cases where (e.g.) we know that the radar
gun is malfunctioning or that the model-user cannot reliably carry out calculations. We
need not assume that model reports always incrementally confirm because instrumental
readings do not either. As has been stressed by (e.g.) Cartwright (1999), Guala (2002),
and Steel (2008) taking either experiments or models to tell us about real-world situations
requires some kind of extrapolation.

3I mean ‘evidence’ here in the sense that that they are the kind of things that figure
into the confirmation of a hypothesis. I am not presuming that model reports always raise
the probability of a hypothesis.

4



of the target that the model represents. The reasoning here is simple: instru-
mental readings are a paradigm case of evidence for hypotheses about the
world, and the sketch I’ve just given indicates that model reports can serve
precisely the same confirmatory function as instrumental readings. Notably,
I take it that (P1) is uncontroversial: throughout the sciences, we often take
the fact that some hypothesis is true ‘in the model’ as a reason to increase
our confidence in a given hypothesis (see Parker 2020a). So, for example, we
consult a model of the solar system to determine the exact date of historical
eclipses or run simulations using climate models to generate ‘projections’ of
the climate under different forcing scenarios. That the eclipse happened on a
certain date in the model gives us reason to believe that it actually happened
on that date; that the average temperature increases by 3◦C under a given
forcing scenario in the model gives us reason to believe that if that scenario
comes to pass, the average temperature would increase by 3◦C. These model
reports are like instrumental readings in that they may require interpretation
and we might expect them to be more or less precise, accurate, or reliable;
just like instruments, models can be broken, misapplied, or misread. Grant-
ing these complications, however, my claim here is a minimal one: in some
cases, learning what a model reports raises the probability of propositions
that we’re interested in testing.

(P1) is interesting because there is a theorem of the probability calculus
that tells us how the joint likelihood of any two pieces of evidence is related
to their individual likelihoods:

p(E1&E2|H)

p(E1&E2|H̄)
=
S(E1, E2|H)

S(E1, E2|H̄)
× p(E1|H)

p(E1|H̄)
× p(E2|H)

p(E2|H̄)
(JL)

where H̄ is the negation of H and, following Myrvold (1996), S is defined as

S(ϕ, ψ|χ) = p(ψ|ϕ, χ)
p(ψ|χ)

=
p(ϕ&ψ|χ)

p(ϕ|χ)p(ψ|χ)

The idea is that S measures the ‘similarity’ of the propositions E1 and E2

in the sense that where S > 1 the two propositions are positively corre-
lated, where S < 1 they’re negatively correlated, and where S = 1 they’re
probabilistically independent. For any two pieces of evidence, therefore, the
degree to which they jointly confirm a hypothesis is a function of their indi-
vidual likelihoods and their ‘conditional’ similarity. Since (JL) gives the joint
likelihood, this fact is true for any incremental confirmation measure. As
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Myrvold glosses the point: ‘a diverse body of evidence confirms a hypothesis
more strongly if the hypothesis renders the evidence less diverse’ (Myrvold
1996, 663), though we can add that in fact the relationship is really one of
to the degree that rather than merely if (see Wheeler and Scheines 2013).

Robustness is a special case: a hypothesis is robust across two pieces
of evidence when they ‘agree’ that it is true. In confirmation theory, this
condition is plausibly interpreted in terms of each of the pieces of evidence
increasing the probability of the hypothesis when considered individually
(i.e., as each Ei being such that p(H|Ei) > P (H)).4 Then the two pieces
of evidence jointly raise the probability of the hypothesis just in case the
ratio between S(E1, E2|H) and S(E1, E2|H̄) is not so negative as to offset
the effect of the individual pieces of evidence, and further the larger this ratio
the more evidence confirms. We can even use the ratio between S terms as a
measure of the value added by the variation between the different pieces of
evidence. Nothing about this reasoning depends on where the evidence comes
from—it doesn’t matter whether we replace the E variables in (JL) with R
variables or I variables or indeed combinations of the two. The upshot is
powerful motivation for the principle I’ll call (P2):

(P2) If model reports are evidence, then agreement across ap-
propriately varied model reports confirms, and the degree
of confirmation it provides depends on precisely the same
factors as are operative in other contexts.5

Together, (P1) and (P2) provide an extremely simple argument for unity:

(P1) Model reports are evidence.

(P2) If model reports are evidence, then agreement across ap-
propriately varied model reports confirms, and the degree

4I should note that while this interpretation is natural, it isn’t universal. Parker (2018,
290–91, fn 2), for instance, offers a more pre-theoretic interpretation. These interpretations
will come apart only where an individual result supports a hypothesis in some pre-theoretic
sense while failing to confirm it—e.g., where what appears to be a result in favor of
a hypothesis relies on the tacit assumption of that hypothesis. Perhaps such cases are
more common in modeling contexts, but there’s no reason that they couldn’t arise in
experimental ones as well, and so this is not a reason to reject unity.

5‘Appropriately varied’ here should be understood simply as shorthand for the claim
that the ratio between S(E1, E2|H) and S(E1, E2|H̄) is not so negative as to offset the
effect of the individual pieces of evidence.
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of confirmation it provides depends on precisely the same
factors as are operative in other contexts.

∴ (U) Agreement across appropriately varied model reports con-
firms, and the degree of confirmation it provides depends on
precisely the same factors as are operative in other contexts.

Essentially, whenever we have robust evidence from multiple sources, confir-
mation theory tells us to take account of only the likelihoods and probabili-
ties, not whether the evidence comes from a model or an instrument. Or, in
other words, if we hold fixed the relevant probabilities, there is no effect of
varying whether the terms in the formalism represent instrumental readings
or model reports.

Given the simplicity of this argument, anyone wanting to contest unity
must either reject (P1) or (P2). Since (P2) is motivated by a theorem of the
probability calculus, an argument against (P2) must consist of a demonstra-
tion that in fact some feature of modeling contexts makes them a special case
that should be analyzed differently than the fully general case represented by
(JL). As we’ll see, a number of arguments to this effect have been advanced
over the last few decades. In the next few sections, I’ll argue that none of
them are successful.

Before that, however, two comments. First, I want to be clear that I
don’t take myself to have established that (JL) provides the formal analysis
of robustness. I think that the analysis that I’ve given—which is based in the
work of Myrvold (1996) and Wheeler and Scheines (2013)—represents the
most general and simple picture of variation in evidence. Other accounts—
such as those put forward by Bovens and Hartmann (2003) and Schupbach
(2018)—require stronger assumptions that I think are not always plausible.
There’s room for disagreement on this point, however. What’s important is
that none of these accounts of robustness or variation in evidence naturally
recognize a difference between modeling and experimental contexts. Absent
some strong argument for introducing one, therefore, it seems like there’s
good reason to think that the difference between the two cases is not relevant
to how the contribution to confirmation should be analyzed. And, thus, if I
can show that none of the extant arguments to this effect are persuasive, we
will have good reason to accept unity.

Second, it might be thought that this argument shows too much. So, for
example, a similar argument might be taken to show that robustness operates
the same way in testimonial contexts as in experimental ones. I don’t see a
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problem with this result: structural relations like robustness should have
the same implications in all domains. Note, however, that the real meat
of my argument lies in the discussion of the proposed differences between
models and experiments that follow. To show robustness works in similar
ways with respect to testimony and experiments, we would need to carry out
the same kind of evaluation of the arguments for building differences between
testimony and experiments into the framework.

2 Arguments against (P1)

A large number of philosophers—Forber (2010) and Orzack and Sober (1993)
perhaps most explicitly—have argued that robustness across model reports
fails to confirm because it doesn’t provide empirical evidence, just clarifies the
nature of the models. Even some defenders of robustness—such as Kuorikoski,
Lehtinen, and Marchionni (2010, 2012) and Weisberg (2013)—seem to ac-
cept this argument and instead argue for some facilitating but ultimately
non-confirmatory role for robustness across model reports. Robustness across
different experimental setups, by contrast, is supposed to provide empirical
evidence and thus confirmation. Hence unity fails. Call this the argument
from non-empiricality.

In the present context, the argument from non-empiricality can be read
as rejecting either of the premises given in §1. If we read it as rejecting (P1),
then the argument is simply that model reports do not confirm and thus are
not evidence: models are theoretical constructs, not empirical information,
and only the latter confirms. This position strikes me as unacceptable for a
number of reasons. Most prominently, it would render a large proportion of
our best sciences unconfirmed. Not only are there a wide variety of results
that depend explicitly on models, but—as emphasized by recent work on
measurement, such as Morrison (2015) and Tal (2012)—models often play
crucial roles in even the most paradigmatic cases of empirical evidence. And
it’s worth noting as well how difficult it is to draw sharp ontological distinc-
tions between models on the one hand and experiments on the other (Mäki
2005; Parker 2009; Winsberg 2010, chapter 4): after all, many models provide
results by means of computer simulations, in which case they can be seen as
experiments on the behavior of electrical signals through various metals.6

6This is an independent reason to suspect that unity is true, but I won’t belabor the
point here.
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Perhaps I’m being too quick here, however. One way of pushing the idea
that models don’t themselves confirm is by seeing them as encoding prior
knowledge (compare Beisbart 2012, 2018). A model, on this view, can’t tell
us anything new about the world. Rather than acting like empirical evidence,
therefore, model reports are more like propositions deduced from what we
already know. Suppose that’s right. If it is, then the support offered by model
reports is easily assimilated to the problem of old evidence: basically, we’re
learning that the prior empirical research that went into building the model
supports the hypothesis in a way that we didn’t previously recognize.7 I’m not
particularly concerned with whether or not it’s the model report itself that is
‘responsible’ for the confirmation or if there’s some important sense in which
it’s ‘really’ previously collected empirical evidence that does the confirming
by way of some mechanism of accounting for old evidence. In either case, our
confidence in the hypothesis can go up when we learn the model report. And
that’s all that’s needed for the argument of the last section. That is, even
if model reports aren’t ‘really’ evidence thus can’t ‘really’ confirm, they’re
capable of providing new information and thus of leading us to raise our
probability in the hypothesis when we learn them, and that’s enough.

One more way of objecting to (P1) is worth considering. Models—presumably
unlike experiments, though I think this presumption is false—are often heav-
ily idealized. One might think that the reports of heavily idealized models
cannot confirm. Odenbaugh and Alexandrova suggest something along these
lines when they say that ‘there are assumptions we know to be false or whose
truth we cannot evaluate. ... unless we can ‘de-idealize’ our Galilean assump-
tions ... we do not know that we have adequately represented a causal rela-
tionship’ (Odenbaugh and Alexandrova 2011, 763; see also Odenbaugh 2011).
The idea: unless we can show that the idealizations present in a model can
be removed without changing its implications, we don’t have good reason
for increasing our confidence in a hypothesis based on the reports given by
the model. Since we’re rarely (if ever) in a position to remove all of the
idealizations in a model, (P1) fails.

Whether or not this argument is what Odenbaugh and Alexandrova in-
tend (more on that later), its conclusion is mistaken for the same reasons
discussed above: rejecting (P1) in this manner is simply not plausible be-
cause it would leave far too much of our most successful sciences uncon-

7For an extended defense of this kind of thought, see Beisbart (2012, 2018) and Parker
(2020a).
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firmed. It’s even commonly thought that all models are idealized (see, e.g.,
Teller 2001), which would render virtually all scientific results unconfirmed.
Furthermore, the de-idealization method for showing that idealizations are
harmless is clearly not the only one. For instance, we can show that an ideal-
ized model delivers consistently accurate predictions within a given domain.
In such cases, even if we cannot build a model of the phenomenon with no
idealizations, the past success of the model reports provides us with at least
some reason to believe whatever is indicated by the model’s next report.
There’s no persuasive reason to take the mere presence of idealizations in
models as a reason to reject (P1).

Frankly, I take (P1) to be unassailable. A much more plausible route to
rejecting the argument of the last section involves rejecting (P2) by arguing
that agreement across model reports is special in a way that the argument
I’ve given doesn’t account for. I turn to objections along these lines now.

3 The argument from independence

The oldest argument against unity goes back to Nancy Cartwright, who urges
that unlike what is the case when experiments or measurements agree, differ-
ent models ‘do not constitute independent instruments doing different things,
but rather different ways of doing the same thing: instead of being unrelated,
they are often alternatives to one another, sometimes even contradictory’
(Cartwright 1991, 153). There is some important sense in which at most one
of a set of models of the same phenomenon can be correct, and so varia-
tion among models must be given a very different analysis from variation
among instruments, where the correctness of one instrumental reading does
not preclude the correctness of another. Variations on this argument have
been expressed as well by Woodward (2006), and similar ideas arguably lie
behind at least some of the objections of critics like Houkes and Vaesen
(2012), Odenbaugh and Alexandrova (2011), and Orzack and Sober (1993).

In the present context, we can see the argument just presented as un-
dermining (P2). The critic of unity can grant the claim that the two types
of robustness can be represented within the probability calculus in the same
way. Their contention is that while in both cases we’ll want to appeal to
similarity measures—represented by S(E1, E2) given either H or H̄—these
similarity measures will behave in radically different ways in experimental
and modeling contexts. In the experimental context, this measure represents
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how well the hypothesis unifies the different pieces of evidence. In the model-
ing context, by contrast, any two models will be mutually exclusive, meaning
that they can’t be unified (at least not by the true hypothesis). As such, in
any modeling context, we should expect the ratio between S(E1, E2|H) and
S(E1, E2|H̄) to be small, arguably smaller than 1. So even if the form of (JL)
is maintained on this picture, there’s a fact about the nature of models that
makes robustness across modeling a very special case—importantly, a special
case that is much less interesting or powerful than robustness in general. Call
this the argument from independence.

So understood, the argument fails for a straightforward reason. Recall
that the S terms in our model track the degree of correlation between re-
ports, not the degree of independence between model assumptions. So the
argument from independence simply misses the mark: even if we grant that
there is a difference between models and instruments regarding when they’re
likely to be mutually exclusive, that difference is irrelevant to the behavior
of robustness in the two contexts.8

The rejoinder just given rests on two observations about the relation-
ship between model reports, confirmation, and model assumptions. First,
the representational accuracy of a model report is not generally or typically
dependent on the truth of the model assumptions. It’s unproblematic that
idealized models can in some cases deliver reports that accurately represent
the target system. An eclipse can occur at the right time and location in the
model even if the model misrepresents many other parts of the system. The
straightforward implication is that two models whose assumptions are mu-
tually inconsistent will not necessarily deliver mutually inconsistent reports.
On the contrary, there are well-known cases where the opposite is the case:
Newtonian physics and general relativity rest on mutually inconsistent as-
sumptions, but there’s a wide class of phenomena for which either will make
reports that are accurate up to extremely high levels of precision.

The second observation is that in general, when we’re evaluating what
we should think given a particular report, the question to ask is how likely it
is that said report accurately represents the target—not how likely that the
model that produced the report has true assumptions. As Dethier (2019) has
argued, the latter question is largely irrelevant, like asking how likely it is
that thermometer outside my window would deliver an accurate report under

8Kuorikoski, Lehtinen, and Marchionni (2010) have advanced a similar argument based
on distinguishing between different parts of the model.
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conditions radically different from those currently under consideration.9 This
is particularly clear when we represent the effects of a model report within a
Bayesian framework:

p(H|R) = p(H)p(R|H)

p(H)p(R|H) + p(H̄)p(R|H̄)

The likelihood of the report factors into the conclusion that we should draw
from it, while the probability that the model has true assumptions doesn’t
appear in the formulation at all.

Given these two observations, it should be unsurprising that our account
of agreement across model reports turns on relationships between different
model reports rather than model assumptions. But this fact blocks the ar-
gument from independence: we have no reason to think that the relevant
relationships between model reports systematically differ in any important
way from the evidence found in experimental settings.

4 The argument from non-empiricality

Above, we encountered an argument to the effect that (P1) is false because
model reports don’t provide empirical evidence. (P2) can be challenged along
the same lines; indeed, this may be a better reading of what the critics
have in mind. On this reading, the critic grants that models can confirm by
incorporating the treatment of models into the problem of old evidence: what
the model report demonstrates is that there’s a (previously unappreciated)
connection between any empirical evidence that gives us a reason to think
that the model is likely to be accurate and the hypothesis, and learning this
fact provides a kind of confirmation (see Parker 2020a). This critic could even
grant the point, recently stressed by Lehtinen (2016, 2018) and Lloyd (2015),
that under some circumstances, robustness across model reports will confirm
for this same reason: where learning the report of an additional model has the
effect of bringing previously irrelevant (but ‘old’) empirical evidence to bear
on the hypothesis, robustness across model reports will confirm. What the
critic contends is that whereas robustness across experiments always brings
new empirical evidence to bear, robustness across model reports does so
only sometimes (at best), and so the two shouldn’t be analyzed in the same

9See also Currie (2017) and Parker (2020b).
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framework—at least as I read them, this is essentially the argument given
Forber (2010) and Woodward (2006), who are concerned that agreement
across model reports is radically different from paradigm cases of robustness
across experiments.

I’m sympathetic to this line insofar as the point is that usually we have
better overall evidence in experimental cases of robustness than in modeling
cases (see §6). What I want to contest is that this phenomenon—if it actually
exists—has implications for the analysis of the property of robustness. That
is: understood as a critique of the position I’ve termed unity, I think it’s mis-
taken, for the reason that it requires us to run together what seem to be two
different phenomena.10 The basic intuition behind robustness is that running
a second, varied, experiment (or model) provides better evidence than simply
repeating the same experiment again. Repeating an experiment is valuable: it
generates more data and, as a consequence, lowers the probability of random
sampling error. Intuitively, varying the experimental setup is more valuable
than repeating the same experiment because it doesn’t just provide more
data and thus decrease the risk of sampling error, it also decreases the prob-
ability of systematic error due to instrumental bias. Change the instrument
employed and any defects in the original instrument can no longer affect the
results. As the data sets involved get larger, the probability of random error
asymptotically approaches zero, and thus the amount of support offered by
each additional run with the same experimental setup also asymptotically
approaches zero. By contrast, the probability of error due to instrumental
bias remains constant so long as the experimental setup is unchanged. In the
infinite data limit, an additional data point produced by the same experi-
ment provides no confirmation, while an additional data point produced by
a different experiment provides some.

The point is the following: not only can we conceptually distinguish be-
tween the effects of robustness and the effects of gathering more data, we
can—at least in principle—imagine experiments that lack the ‘more data’ ef-
fect that is supposed to distinguish robustness in experimental contexts from
robustness across model reports. The natural conclusion is that experimen-
tal cases of robustness involve two separate phenomena: the pure more data
phenomenon and the robustness phenomenon—the latter of which occurs
not just in the experimental context but also in modeling contexts as well.

10For an extended discussion along the same lines offered in the rest of this paragraph,
see Staley (2018).
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If that’s right, then we should treat robustness the same in both contexts;
even granting the full strength of the critic’s argument that there’s some-
thing importantly non-empirical about robustness across model reports, the
most natural conclusion is not that robustness in modeling and experimental
contexts should be treated differently, but that there are additional empirical
factors in experimental contexts above the ‘non-empirical’ (according to the
critic) probability-raising effect of robustness. There’s no reason to think that
the alleged non-empirical character of robustness provides us with any reason
to distinguish between robustness in modeling and experimental contexts.

5 The argument from idealization

Just as the non-empiricality argument can be understood as attacking either
(P1) or (P2), so too can the argument from idealization. The second reading
of the argument is suggested by Houkes and Vaesen (2012) and some pas-
sages in Odenbaugh and Alexandrova (2011). So, for instance, Odenbaugh
and Alexandrova argue that in real life, groups of models will always share
some set of idealizations, and this means that robustness across models has
‘confirmatory value’ only when we can remove all of the idealizations (Oden-
baugh and Alexandrova 2011, 764).

I think that the most charitable way of reading this argument is as follows.
Odenbaugh and Alexandrova in particular are concerned with a case in which
(a) the models that generate the reports are all known to share idealizations
and (b) we don’t have any other information about the models, such as infor-
mation indicating that the models, though idealized, are highly reliable with
respect to similar hypotheses. In this case, they claim, robustness does not
confirm. If we understand ‘confirm’ here in terms of providing the hypothesis
with a high probability (what’s sometimes called ‘confirmation as firmness’;
see, e.g., Fitelson 2017), then this claim is true: in the situation described,
it’s at least arguable that robustness across the different model reports does
not provide us with sufficiently high confidence for (e.g.) knowledge. Houkes
and Vaesen can be read similarly: when there are idealizations present across
what they term the ‘model family,’ agreement across model reports can only
raise our confidence up to the level of our confidence that one of the members
of the family is accurate. Presumably, this feature of robustness in modeling
contexts is in contrast to robustness in experimental contrasts; Odenbaugh
and Alexandrova (2011), at least, explicitly position themselves as against
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any analogy between the two.
I’ll register two responses to this objection. The first is that in the scenario

described, robustness can still offer confirmation in the sense of increasing
probability; that is, adding an additional model report that supports the hy-
pothesis can increase our confidence in the hypothesis, even if there remain
serious idealizations that should prevent us from accepting or believing the
hypothesis. Whether or not robustness confirms in the probability-raising
sense is simply determined by (JL), and so there are clear sufficient condi-
tions on robustness providing ‘confirmatory value’: for instance, if the model
reports are sufficiently diverse in the sense that the ratio between S terms is
at least 1, then multiple reports, each of which supports the hypothesis when
considered individually, will jointly increase the support for the hypothesis.
Indeed, under the same conditions, adding an additional report will always
serve to increase the degree of confirmation, as can be seen clearly in following
trivial consequence of (JL):

p(E2|H,E1)

p(E2|H̄, E1)
=
S(E1, E2|H)

S(E1, E2|H̄)
× p(E2|H)

p(E2|H̄)

Since our stipulation of sufficient variation and robustness respectively guar-
antee that the two terms on the right-hand side are greater than 1, the left-
hand side has to be greater than 1 as well. The implication is that robustness
across model reports can provide confirmation in the sense of probability rais-
ing regardless of whether it provides confirmation in the sense of providing
us with sufficiently high confidence for something like knowledge. In this re-
spect, however, robustness across model reports is no different from any other
empirical evidence, let alone from robustness in experimental contexts.

The other rejoinder is that there’s nothing particular to models in the
objection given above; indeed, insofar as it works, it works equally well in
experimental contexts. Consider the case in which we vary our instruments
or assumptions across a series of experiments but where a central instru-
ment or assumption—and one whose reliability is questionable in the present
context—is shared across each of the different instances. Precisely the same
worries apply to this case as Odenbaugh and Alexandrova raise with respect
to modeling: since the instrument or assumption in question could be leading
us astray, we don’t have knowledge until we show that it isn’t. Furthermore,
these different experiments should not raise our confidence in the hypothesis
above our confidence in the ‘experiment family’ where this is understood in
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the same way as ‘model family’ in Houkes and Vaesen (2012).11

When talking about robustness in experimental contexts, we tend to gloss
over the marginally varied cases of variation in experiments such as the ev-
eryday use of multiple thermometers or observers and focus instead on the
dramatic cases like Perrin’s measurements of Avogadro’s number. By con-
trast, the literature on robustness in modeling contexts has tended to focus
on cases in which the models vary relatively little and share a large num-
ber of assumptions. If we’re going to compare the value of robustness in the
two contexts, however, the comparison should be with all other things being
equal. The argument that I gave in the beginning of this essay indicates that
when the ceteris paribus comparison is carried out, the two cases are iden-
tical: under the right circumstances, which are the same in both contexts,
robustness increases probability and thus confirms.12 There’s no good reason
to reject unity.

6 Robustness and robustness analysis

So far in this essay, I’ve gone to bat for the thesis I termed ‘unity’: robust-
ness confirms in both experimental and modeling contexts, and the degree of
confirmation that it provides depend on precisely the same factors in both
contexts. The confirmatory value of robustness, while variable, doesn’t de-
pend on whether what’s varied over are aspects of an experimental setup or
modeling assumptions. I’ve offered an argument for this position and consid-
ered a number of possible objections against it, none of which are persuasive.

So what accounts for the widespread rejection of unity among philoso-
phers of science? As indicated above, I think that part of the explanation is
that there’s a history of contrasting the best and most famous cases of ro-

11Well, not quite: that depends on the distribution of the prior. But the same point
applies in the modeling case: we can imagine, for instance, that our prior is such that
we’re extremely confident that (a) all of the instruments/models are working, (b) the
hypothesis is likely false, and (c) if one of instruments/models isn’t working, then the
hypothesis is true. Then learning that the model reports support the hypothesis should
plausibly lead us to have higher confidence in the truth of the hypothesis than in the
reliability of the ‘family.’

12Of course, it’s open to my opponent to argue that my way of cashing out the ceteris
paribus condition in this case begs the question. What they owe us, then, is an alternative
conception of what it means for ‘all other things to be equal’ in this case that vindicates
the view that there’s some important difference between the two cases.
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bustness in experimental contexts—particularly Perrin’s work on Avogadro’s
number—with the worst and least compelling cases of robustness in model-
ing contexts. Since the confirmatory value of robustness varies, this kind of
comparison is guaranteed to mislead.

I think that there’s another, perhaps deeper, explanation. Much of the
literature on robustness in modeling contexts has been focused on ‘robust-
ness analysis,’ which can be thought of as a strategy for testing a hypothesis:
construct a number of different models or conduct a number of different
experiments, and show that each of them supports this hypothesis.13 My
view is that philosophers have tended to focus on the difficulties with apply-
ing this strategy in modeling contexts, which are arguably more substantial
than those associated with applying the strategy in experimental contexts.
In making this point, however, they’ve expressed this fact by saying that
in modeling contexts, ‘Robustness analysis does not itself bestow confirma-
tion’ (Weisberg 2013, 167) or by claiming that robustness analysis is ‘unable
to confirm’ (Odenbaugh and Alexandrova 2011, 758). Read in a straightfor-
ward way, these comments are misleading. It isn’t the case that robustness
analysis cannot confirm, because if the strategy reveals agreement across
appropriately-related pieces of evidence, then it confirms. This is true re-
gardless of whether the context is one of experiment or modeling. In other
words, unity is perfectly compatible with the claim that robustness anal-
ysis tends to be less effective in modeling contexts; if I’m right, however,
arguments for the latter claim have obscured the truth of the former.

Why might it be more difficult to apply robustness analysis in a modelling
contexts? Two major reasons come to mind. The first concerns an important
difference between experiments, modeling, and our knowledge of a target.
The second concerns our ability to evaluate evidence. Beginning with the
first. In general, the more we know about a phenomenon, the more stringent
our requirements on models of that phenomenon and thus the harder it is
to build distinct models of it. The solar system provides a nice exemplar:
it’s much easier to build a new model of the solar system if the criterion of
success is replicating broad patterns in the movements of the planets than it is
if the criterion includes accounting for the precession in Mercury’s perihelion
down to mere seconds of arc. The difficulty increases when we also want

13It’s worth reiterating that much of the literature on ‘robustness analysis’—virtually
everyone prior to Schupbach (2018) explicitly limits their discussion to the modeling con-
text.
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the models to be varied or dissimilar. We can always create a new model
by adding undetectable teacups to an old one, but I take it that robustness
across models with varying numbers of undetectable teacups isn’t very useful
or interesting.14

By contrast, the ease of developing separate means of instrumental or
experimental access increases with our knowledge of a phenomenon. Take
Perrin’s work on Avogadro’s number. Crucial to Perrin’s diverse means of
measuring Avogadro’s number was prior knowledge about its relationship
to quantities like the mean kinetic energy of the system or the diameter
of the component molecules. For example, as Perrin (1910, 51) explicitly
notes, Einstein’s work connecting the energy of a ‘granule’ suspended within
a volume and the mean energy of the molecules within that volume allowed
Perrin to use the displacement of a granule via Brownian motion as a proxy
for the mean kinetic energy of the system and thus for Avogadro’s number.
The measurement of the quantity would not have been possible without the
theory.15 Similar comments apply to the measurement of the mass and charge
of an electron. If all we know about electrons is that they make up cathode
rays, there are only so many independent ways that we can measure quantities
like charge or mass. The more knowledge we gain about electrons—the more
testable phenomena in which they play an identifiable role—the more diverse
our means of measurement can be.

These are generalities, not hard and fast laws. But the first generality
makes it likely that most cases in which it pays to build multiple models of a
phenomenon and test the robustness of a result across them will be cases in
which we have relatively poor knowledge of the nature of said phenomenon—
and thus makes it relatively likely that the amount of confirmation offered
by a single model report will be low. By contrast, it’s only when we have
relatively substantial knowledge of a phenomenon that we’re able to develop
multiple lines of empirical access to it. The second generality thus makes it
likely that the confirmation offered by each experiment is relatively high. So,
the strategy of robustness analysis is likely to be more effective in experi-
mental contexts than in modeling ones, because the overall quality of the
evidence produced by the strategy is likely to be greater in the former. I
stress again, however: that it is likely to be harder to show that a hypothesis

14The point made here is a variant of one familiar from debates about underdetermina-
tion, namely that it’s quite hard to generate empirically adequate competitors to successful
theories without relying on tricks (see Laudan and Leplin 1991).

15For an extended analysis of the implications of this point, see Smith and Seth (2020).

18



is true using agreement across varied models than it is to do the same with
agreement across varied experiments does not mean that we should analyze
actual cases of agreement differently in the two contexts. And, further, even
if it is true that the strategy of robustness analysis is likely to be less effective
in modeling contexts, that doesn’t vindicate the claims that it does not or
cannot confirm.

Turning now to the second reason. In order to use any sort of scientific
evidence as part of an argument for accepting a hypothesis, we need to be
able to evaluate what that evidence actually supports and to what degree. It
might be the case that in experimental contexts, we can generally make these
judgments with some confidence (I’m skeptical); it certainly isn’t always true
that we can make accurate evaluations of the quality of evidence in cases of
robustness across model reports. As Parker (2018) emphasizes, for instance,
we’re just not in a position to evaluate the value of robustness across ensem-
bles of climate models for hypotheses about the future of our climate: the
models are too complex, their parts too interconnected, and their parameters
too calibrated. It’s one thing to say that robustness provides us with some
evidence in these sorts of cases; it’s another thing entirely to actually evalu-
ate how good the evidence is or to derive actionable conclusions from it. As
Odenbaugh and Alexandrova (2011) stress, for example, it’s hard to know
what we should conclude when two heavily idealized models lead to the same
result. Perhaps the hypothesis is true; perhaps the shared idealizations are
seriously problematic.

The fact that it’s often very hard to judge or even estimate what’s gained
from an additional confirming model report clouds our judgment about cases
of robustness across model reports. Cases of agreement across experiments
are arguably easier to evaluate, at least insofar as we can usually say that
this or that instrument is behaving as desired and thus rule out one possible
source of error. In modeling contexts, by contrast, the presence of inelim-
inable idealizations and complex model structures make these sorts of simple
judgments much more difficult and much less reliable. In the climate case, for
instance, it’s simply not clear what has been gained by replacing one ideal-
ized representation of cloud cover dynamics (say) by another when we know
that both are flawed in various ways. It’s plausible that there’s some degree
of confirmation when there’s agreement in cases like these, but evaluating
how much this agreement moves the needle is virtually impossible.

As I’ve indicated, the difficulties discussed in this section are difficulties
for robustness analysis—for the practical project of using the evidence pro-
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vided by robustness to argue for this or that hypothesis. They don’t have
have any bearing on unity, however, since unity is a claim about the evi-
dence provided by the property of robustness itself, not our ability to find
and evaluate it. Indeed, the arguments I’ve just sketched for the existence
of problems with robustness analysis in modeling contexts rely on under-
standing robustness as fundamentally of the same kind in both contexts; it’s
precisely because the two contexts differ in ways that are relevant to apply-
ing the shared evaluative framework that makes robustness analysis more
difficult to effectively employ in one than in the other. I suspect that the at-
tention that has rightly been drawn to the difficulties inherent in evaluating
robustness across model reports clouds our judgments about unity; attention
to these difficulties makes it seem as though robustness across model reports
is different in kind from robustness across experiments, when in reality what’s
going on is merely that the evidence is generally harder to find and interpret
in the former context.

7 Conclusion

In this article, I’ve argued for unity: robustness across appropriately varied
model reports confirms, and the degree of confirmation it provides depends on
precisely the same factors as are operative in other contexts. I began by giving
a straightforward argument to this effect, namely that if model reports can
serve as evidence—which they can—then the probability calculus entails that
the evidence that they provide has the same confirmation-theoretic effects as
empirical evidence. I then considered a number of arguments against unity,
all of which I’ve contended are unpersuasive. Finally, I argued that while
it’s plausible that the strategy of robustness analysis will be less effective
in modeling contexts, this shouldn’t be taken as evidence against unity: at
best, these arguments show that there may be differences in the degree of
confirmation provided that tend to correlate with the differences between
models and experiments. But unity is a claim about whether robustness
across models should be given the same confirmation-theoretic analysis as
robustness across experiments; the way to show that it is false is to show
that the alleged tendencies should be accounted for via applying a different
(formal) framework in the two cases. And there’s simply no good argument
for that conclusion.
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