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Abstract

We argue that subjective Bayesians face a dilemma: they must offend
against the spirit of their permissivism about rational credence or reject
the principle that one should avoid accuracy dominance.

1 Introduction

According to subjective Bayesianism, one’s credences prior to receiving evidence
are rationally permissible so long as they satisfy the axioms of probability. We
show that subjective Bayesians face a dilemma: they must offend against the
spirit of their permissivism about rational credence or they must reject the
principle that one should avoid accuracy dominance. This is surprising, because
a popular way to motivate subjective Bayesianism is to appeal to an equivalence
between satisfying the axioms of probability and avoiding accuracy dominance.
However, this equivalence only holds when an agent has finitely many credences,
which gives rise to our dilemma. We spell out the dilemma in detail and then
consider how the subjective Bayesian might respond.

∗We would like to thank Wesley Holliday, Mathias Böhm, Kiran Luecke, Snow Zhang and
two anonymous referees for helpful comments on earlier drafts which have made this paper
significantly better.
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2 The Dilemma

According to Bayesian epistemologists, agents have degrees of belief or credences
in propositions. For example, an agent might have credence .5 that it is going to
rain tomorrow or credence .25 that a fair coin will land heads twice in a row. We
model propositions as subsets of a set W of possible worlds, and we model one’s
credences with a credence function c : F → [0, 1] for F ⊆ P(W ) an opinion set
of propositions. Here, p ∈ F represents the fact that the agent assigns some
credence to p, and c(p) represents the agent’s credence in p.

According to subjective Bayesians, one’s initial credence function prior to
receiving evidence relevant to the opinion set—what we will call one’s prior
credence function—is rationally permissible insofar as it is coherent, that is,
satisfies the axioms of probability.1 So ascribing to subjective Bayesianism
involves, by definition, accepting the following principle:

Subjective Credence: A prior credence function is rationally per-
missible if and only if it is coherent.

Objective Bayesians, on the other hand, deny Subjective Credence; they
think that there are constraints on one’s prior credence function beyond co-
herence, such as the Principle of Indifference (Joyce 2004, pp. 423-31). These
constraints might single out a unique permissible prior credence function or
a class of permissible prior credence functions (Carnap 1952). We pose our
dilemma for subjective Bayesians since it most sharply targets their view, but
the dilemma applies to plausible versions of objective Bayesianism as well (see
Footnote 10 for further discussion).

So according to the subjective Bayesian, besides the minimal constraint of
coherence, it is ‘up to you’ which prior credences to adopt. From a subjective

1More precisely, c : F → [0, 1] is coherent just in case it can be extended to a finitely
additive probability function—there is a function c : A(F)→ [0, 1], where A(F) is the algebra
generated by F , with the following properties:

• c(W ) = 1;

• c(A ∪B) = c(A) + c(B) for A,B ∈ A(F) with A ∩B = ∅;

• c(A) = c(A) for all A ∈ F .
One might ask why we do not assume that a credence function is defined on an algebra.
First, there is a robust tradition within the accuracy literature where credences are defined
over arbitrary (finite) opinion sets (e.g., Pettigrew 2016a; Predd et al. 2009); second, we will
consider a principle which explicitly allows agents to have an opinion set other than an algebra,
so we would not want to rule out such a principle by the definition of a credence function;
finally, as we will discuss in detail later, the dilemma we pose goes through even if credence
functions are defined on algebras.
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Bayesian point of view, it then looks natural to think which propositions you
assign prior credences to is ‘up to you’ in the same way. That is, it looks like
the following principle is very much in the spirit of subjective Bayesianism:

Subjective Opinion Set: One is rationally permitted to assign
prior credences to any set of propositions.

Up until recently, it seemed that Subjective Credence and Subjective
Opinion Set are not only consistent with but motivated by concern for accu-
racy. In particular, it is well known that on any finite opinion set, coherence is
equivalent to avoiding accuracy dominance, where credence function c accuracy
dominates credence function d if d is less accurate than c in all possible worlds
(de Finetti 1974; Joyce 1998; Schervish et al. 2009; Predd et al. 2009; Pettigrew
2016a).2 This equivalence between coherence and avoiding accuracy dominance
motivates both the requirement of coherence and the thought that nothing more
than coherence is needed for rational credences. So subjective Bayesians have
reason to accept the following principle:3

Avoid Accuracy Dominance: If a credence function is accuracy
dominated, then it is not rationally permissible.

Our dilemma arises for the subjective Bayesian in light of work by Kel-
ley (forthcoming), which shows that the equivalence between coherence and
avoiding accuracy dominance breaks down when an agent has infinitely many
credences.4 On certain infinite opinion sets, coherent credence functions can be
accuracy dominated. Here is an example from Kelley forthcoming:

(Example 1) Let F = {{n ≤ N : n ∈ N} : N ∈ N} be an opinion set
over N (including zero), and let c({n ≤ N}) = 0 for each N ∈ N.

2More precisely, we measure inaccuracy with a function I : C×W → [0,∞], where C is the
set of credence functions on an opinion set F ⊆ P(W ). We say that c strongly dominates d if
I (d,w) > I (c, w) for all w ∈W . We say that c weakly dominates d if I (d,w) ≥ I (c, w) for
all w ∈W and I (d,w) > I (c, w) for some w ∈W . Throughout, we will not specify whether
we are speaking of weak or strong dominance unless the distinction matters.

3As Joyce (1998, pp. 580-4) points out, de Finetti, one of the major proponents of subjec-
tive Bayesianism, laid the groundwork for accuracy dominance arguments for coherence and
so would presumably be committed to this principle.

4While we draw on Kelley’s formal results at various points in our argument, we part from
her work in exploring what the failure of the equivalence between avoiding accuracy dominance
and coherence entails for subjective Bayesians. She, on the other hand, focuses on offering
as general of an accuracy dominance argument as possible for Probabilism, the principle that
one ought to have (at least) coherent credences.
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Intuitively, this credence function might model one’s prior credences about a
countably infinite fair lottery. You think that a positive integer will be drawn
at random; since the draw is random and from an infinite set, you think that
the probability that any particular positive integer will be drawn is zero; by
finite additivity, you also think that the probability that the drawn number is
less than or equal to any particular positive integer is zero.

Now, note that c is coherent, and so according to Subjective Credence
and Subjective Opinion Set, c is rationally permissible. However, c has
infinite inaccuracy in all possible worlds and is therefore accuracy dominated.
To define accuracy, we start by assuming a popular accuracy measure called
the Brier score (Brier 1950) but relax this assumption in Section 3. Where
the omniscient credence function vw at a possible world w ∈W is the coherent
credence function which assigns 1 to p if p contains w and 0 otherwise, the
Brier score of credence function c at w is the ‘distance’, in some sense, between
c and vw. More precisely, the Brier score of c at w is

∑
p∈F (vw(p) − c(p))2.

Since, in the example, the Brier score of c at any world is an infinite sum of
1s and an omniscient credence function has finite inaccuracy at every world,
c is accuracy dominated by an omniscient credence function. So according
to Avoid Accuracy Dominance, c is not rationally permissible. This shows
that Subjective Credence, Subjective Opinion Set, andAvoid Accuracy
Dominance are inconsistent. Therefore, the subjective Bayesian must either
reject Subjective Opinion Set or rejectAvoid Accuracy Dominance. This
is our dilemma.

In response to the example above, one might say that when considering
credences over countably infinite opinion sets, countable additivity—and not
just finite additivity—should be imposed.5 This would rule out the credence
function above, because it is not countably additive. Countable additivity is
controversial, with many subjective Bayesians rejecting it as a requirement of
rationality—in particular de Finetti and Savage (Lyon 2016; Liu 2020). But
if countable additivity were to secure the avoidance of accuracy dominance in
the infinite setting, this would perhaps show that subjective Bayesians should
accept countable additivity after all.

However, Kelley presents another example which shows that countable ad-
ditivity is not enough to avoid accuracy dominance:

5A credence function c : F → [0, 1] is countably additive if c(A) =
∑∞

i=1 c(Ai) for
{Ai}∞i=1 ⊆ F with Ai ∩Aj = ∅ for i 6= j.
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(Example 2) Let F = {{n ≥ N : n ∈ N} : N ∈ N} be an opinion
set over N (including zero), and let c({n ≥ N}) = 1√

N+1
for each

N ∈ N.

Intuitively, this credence function might model one’s prior credences about some
physical process. The collision of two quantum particles will emit some random
amount of energy n, and you have credences about how much energy will be
emitted. We may even suppose that these credences match our best physical
theory.

Note that c is coherent and extendable to a countably additive probability
function. However, c has infinite inaccuracy in all possible worlds and is there-
fore accuracy dominated.6 So strengthening the notion of coherence underlying
Subjective Credence does not mitigate our dilemma.

Another initial thought is to weakenAvoid Accuracy Dominance: as Pet-
tigrew (2016a) has argued, perhaps what is rationally impermissible is to have
a credence function which is dominated by an undominated credence function.
However, this response also will not help since in both examples presented, c is
dominated by an undominated credence function. In both cases, c is dominated
by an omniscient credence function, and omniscient credence functions are never
accuracy dominated.

In the next section, we consider more promising responses to our dilemma.

3 Responses

In response to our dilemma, the subjective Bayesian might reject Subjective
Opinion Set. Kelley (forthcoming) introduces a number of constraints on an
infinite opinion set that restore the equivalence between coherence and avoid-
ing accuracy dominance. For example, if one has credences on a countably
infinite partition, then coherence is equivalent to avoiding accuracy dominance
(Theorem 4.26).

However, we think that requiring rational agents to have credences over
particular kinds of opinion sets is hard to square with the motivations behind
subjective Bayesianism. At the heart of subjective Bayesianism is a commitment
to significant freedom in adopting priors. We can think of priors as encoding

6The Brier score of c at world N ∈ N is bounded below by
∑

n>N
1

n+1
which is infi-

nite (since the harmonic series is divergent), so any omniscient credence function (strongly)
dominates c, as an omniscient credence function is finitely inaccurate at each world.
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the evidence-independent epistemic tendencies that determine how an agent
responds to evidence—what one might call an agent’s epistemic standards.7

These include one’s sensitivity to epistemic risk, whether one tends to prioritize
avoiding falsities or seeking truths, how extreme one is in one’s opinions, and
one’s degree of skepticism. We can capture different responses to the same body
of total evidence by reference to differences in these epistemic standards.

Now, the subjective Bayesian thinks that vastly different responses to the
same body of total evidence can be rationally permissible: so long as these
epistemic standards can be encoded into a probability distribution, they are
rationally permitted. But notice that an agent’s epistemic standards will also
affect the contents of their opinion set. For example, a more risk averse epis-
temic agent might be more hesitant to have any credence at all in a particular
proposition. One’s opinion set also reflects what one takes to be a genuine possi-
bility for the purpose of reasoning and decision-making, which depends on one’s
epistemic standards. For example, when I assign credences to a coin landing
heads and tails but don’t include the possibility that the coin lands on its edge,
this might be because, in light of my less open-minded epistemic standards, I
don’t take this possibility seriously. Thus, given that subjective Bayesians are
permissive regarding epistemic standards and epistemic standards also influence
the propositions one bothers to form credences about, subjective Bayesians have
reason to be permissive regarding rational opinion sets. Of course, there is no
logical incoherence in accepting subjective Bayesianism and rejecting Subjec-
tive Opinion Set. But, given what we have said, it seems unlikely that this
position could be motivated. Permissivism about rational credences naturally
leads to permissivism about rational opinion sets.8

One might insist that some minimal constraint on the structure of the opin-
ion set would be in the spirit of subjective Bayesianism, for such a minimal
constraint would be the analogue to the subjective Bayesian’s insistence that
prior credences be at least coherent. However, given that this constraint on
the opinion set would need to be minimal to preserve the spirit of subjective

7For discussion of this interpretation of prior credences, see Schoenfield 2014, Meacham
2016, and Titelbaum 2022, Sec. 4.3.2.

8This discussion raises the more general questions of whether there are any rationality con-
straints on an agent’s opinion set or the underlying space of possibilities, what such rationality
constraints would look like, and how they relate to more standard rationality constraints on
credence functions such as, e.g., the Principle of Indifference. In particular, can objective
Bayesians motivate rationality constraints on the opinion set and the underlying space of pos-
sibilities? Steele and Stefánsson (2021) discuss the related issue of how to model unawareness
and conceptual change in a Bayesian framework. For more related discussion, see Carr 2015;
Talbot 2019; Hewson 2021.
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Bayesianism, we conjecture that the dilemma would remain. For example, the
most natural constraint to impose would be that the opinion set form an alge-
bra,9 but there are coherent credence functions on algebras that are accuracy
dominated. Indeed, when extended to algebras, the credence functions from
Examples 1 and 2 are (weakly) dominated by omniscient credence functions. In
fact, on the algebra generated by F in both examples, the only coherent cre-
dence functions not (weakly) dominated are the omniscient credence functions
(see the Appendix for proof). By this result, it also will not help if one assumes
that a credence function is both defined on an algebra and countably additive.
We will return to this result soon, but for now note that it shows that requiring
one’s opinion set to be an algebra is not going to resolve our dilemma.

Another way to reject Subjective Opinion Set would be to require that
an agent have credences in only finitely many propositions. However, this not
only clashes with the permissive spirit of subjective Bayesianism but is also
in tension with two important components of subjective Bayesianism: long-run
convergence theorems, which show that under certain conditions, different priors
‘wash out’ when updated on the same evidence, and representation theorems,
which derive subjective probabilities from preferences. Subjective Bayesians fre-
quently appeal to long-run convergence theorems to argue that, despite having
different priors, rational agents will agree in the long run (Earman 1992, Ch.
6). These convergence theorems usually require credences over infinitely many
propositions. Representation theorems, on the other hand, derive subjective
probabilities from preferences and are often seen as providing a foundation for
the notion of subjective probability. Many representation theorems, in particu-
lar the representation theorem of Savage (1972), require credences over infinitely
many propositions. So in light of the way these two important components of
subjective Bayesianism rely on infinite opinion sets, insistence on finitely many
credences does not look open to the subjective Bayesian.

A third way to reject Subjective Opinion Set is to require that the opinion
set be a partition. As noted, Kelley establishes that if the opinion set is a
countably infinite partition, the equivalence between coherence and avoiding
accuracy dominance is restored in the countably infinite setting. However, we
do not see any reason to think that it would be impermissible for one’s opinion
set to be an algebra, which is what one is committed to when choosing this path

9Although Lyon (2016), drawing on Fine 1973, discusses reasons to be skeptical that one’s
opinion set must always be an algebra.

7



to reject Subjective Opinion Set.10

Turn now to the second horn of the dilemma: rejecting Avoid Accuracy
Dominance. There are different ways of doing so. First, one might think
that it is sometimes okay to adopt accuracy dominated credences according
to an acceptable notion of accuracy dominance. We think that this is very
implausible. If a credence function d is less accurate than a credence function c
in all possible worlds relative to an acceptable measure of inaccuracy, this is a
conclusive reason to think that d is not permissible, especially if c is not itself
dominated.11

Second, one might restrict Avoid Accuracy Dominance to the finite set-
ting, perhaps because there is no acceptable notion of accuracy dominance in
the infinite setting. This would be a way of escaping our dilemma without
permitting accuracy dominated credences. However, we think that it would be
bad news for subjective Bayesians if there was simply no accuracy dominance
argument in the infinite setting. Indeed, one of the central motivations for sub-
jective Bayesianism is that on any (finite) opinion set, one does as well as one
can do in terms of avoiding accuracy dominance just in case one is coherent.
If this fact is restricted to finite opinion sets, then this central motivation is
not fully general: the subjective Bayesian cannot point to accuracy as a reason
why prior credences on infinite opinion sets should be coherent and why mere
coherence suffices. The subjective Bayesian might, of course, appeal to some
other justification, for example pragmatic dutch book arguments, which apply
to infinite opinion sets (for a detailed discussion, see Nielsen 2020). Still, the
fact remains that considerations of accuracy—a core epistemic virtue—would
not provide a fully general vindication of subjective Bayesianism. Moreover,
as discussed before, credence functions on infinite opinion sets are crucial to a
number of important ideas in subjective Bayesianism and so cannot be ignored.

10We think that our dilemma also poses problems for objective Bayesians because it seems
that the credence function in Example 2 is rationally permissible—after all, we can suppose
that these credences match our best physical theory. However, there are more responses
available to the objective Bayesian than to the subjective Bayesian. For example, objective
Bayesians might respond to our dilemma by rejecting Subjective Opinion Set and appealing
to constraints on one’s opinion set, for example, demanding that opinion sets be finite or form
a partition. Objective Bayesians might also argue that the coherent credence functions in
Examples 1 and 2 are not rationally permissible by defending constraints on rational prior
credences. We think that such constraints will be hard to defend, because in many cases, the
only credence functions which avoid accuracy dominance are omniscient credence functions
(see Appendix); and it is implausible to think that rationality demands that we adopt an
omniscient credence function.

11Pettigrew (2016a), Chapter 2 provides a thorough discussion of dominance reasoning in
the accuracy-first setting.
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Thus, we think that, rather than permitting accuracy dominated credences
or restricting Avoid Accuracy Dominance to the finite setting, subjective
Bayesians have very good reason to look for a way of spelling out Avoid Ac-
curacy Dominance that is i) consistent with Subjective Opinion Set and
ii) rules out incoherent credence functions without ruling out coherent credence
functions in the infinite setting. So the subjective Bayesian should suggest a
reformulation of the notion of accuracy dominance assumed thus far. As we
will discuss now, there are formidable challenges in doing so. To see this, let us
consider three implicit assumptions underlying Avoid Accuracy Dominance,
as we understand it, that the subjective Bayesian might reject.

First, we have been assuming that the inaccuracy of a credence function on a
countably infinite opinion set is measured with a natural extension of the Brier
score. Many have argued that the Brier score is a legitimate method of scoring
inaccuracy (Horwich 1982, Maher 2002, Joyce 2009, Pettigrew 2016a); some
have even argued that it is the unique legitimate method of scoring inaccuracy
(Leitgeb and Pettigrew 2010). Still, one might deny that we should measure
inaccuracy using the Brier score, in general or just in the infinite setting.

Pruss (forthcoming) proves a number of relevant impossibility results when
the opinion set is uncountable. Here we show that there are problems for this
strategy even in the countably infinite setting. Indeed, there are two kinds of
measures that we are aware of relative to which avoiding accuracy dominance is
equivalent to coherence in the countably infinite setting: the inaccuracy measure
suggested byWalsh (ms) and the ‘admissible’ inaccuracy measures considered by
Nielsen (forthcoming). Both give up on additivity, where an inaccuracy measure
is additive if, roughly, the inaccuracies of the individual credences contribute
equally to the inaccuracy of the full credence function.12 Many accuracy domi-
nance arguments that the subjective Bayesian might appeal to in the finite case
assume additivity (e.g., Predd et al. 2009, Leitgeb and Pettigrew 2010, Petti-
grew 2016b).13 Walsh’s inaccuracy measure weights the contributions of each
individual credence to the overall inaccuracy of the credence function such that
the weights can be ordered and tend to zero. Nielsen assumes that admissible

12See the definition of quasi-additivity in the Appendix. Quasi-additivity covers a wide
variety of inaccuracy measures besides the Brier score, including all the measures considered
by Predd et al. (2009). For example, the log score, an inaccuracy measure defended by
McCutcheon 2019 among others, is quasi-additive. The log score of a credence function c at
a world w is given by

∑
p∈F −ln|1− vw(p)− c(p)|.

13Though see Pettigrew 2022 (see also Nielsen 2022). As our discussion shows, this work
of Pettigrew’s may prove very important to the subjective Bayesian in responding to our
dilemma.
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inaccuracy measures have a number of features, but additivity—or something
even approximating additivity—is not among them.

In fact, we can say something more general here: any inaccuracy measure
according to which coherence is equivalent to avoiding accuracy dominance in
the countably infinite setting must give up on additivity (see the Appendix for
a formal result). Thus, Nielsen’s admissible inaccuracy measures cannot be ad-
ditive or even approximately additive. More precisely, we show that on a wide
class of countably infinite opinion sets, including many algebras, if accuracy
dominance is defined according to an (approximately) additive inaccuracy mea-
sure, then a coherent credence function will avoid accuracy dominance if and
only if it is omniscient.14

Moreover, for a large range of opinion sets, additive inaccuracy measures will
fail to be what Nielsen calls quasi-strictly proper. Many accuracy dominance ar-
guments that the subjective Bayesian might appeal to in the finite case assume
the stronger condition of strict propriety. The idea behind propriety conditions
is that from the perspective of a coherent credence function, no other credence
function should be more accurate on expectation. In the finite setting, addi-
tivity and (quasi-)strict propriety are perfectly consistent, but this is not true
in the infinite setting. As our and Nielsen’s results together show, keeping the
weaker quasi-strict propriety (as well as making a number of other assumptions)
but dropping additivity leads to a fully general accuracy dominance argument
for subjective Bayesianism, while keeping additivity but giving up quasi-strict
propriety entails that there is no fully general accuracy dominance argument for
subjective Bayesianism. We conclude that it is not easy to formulate a version
of Avoid Accuracy Dominance that will motivate subjective Bayesianism
in the infinite setting by merely changing the measure of inaccuracy—rather,
doing so requires returning to the difficult and unresolved question of which
conditions must be met by a plausible measure of inaccuracy.

A second assumption underlying Avoid Accuracy Dominance is that an
agent’s entire credence function is used for the purpose of assigning inaccuracy
scores. However, one might instead assign inaccuracy scores to a credence func-
tion at a world by scoring only a representative part or transformation of the

14This result assumes dominance is understood as weak dominance. As we prove in the
Appendix, no coherent credence function is strongly dominated on the class of countably
infinite opinion sets we consider, but no incoherent credence function is strongly dominated
either. Thus, moving to a version of Avoid Accuracy Dominance in terms of strong
dominance while keeping additivity is not going to help the subjective Bayesian motivate their
view in the infinite setting, since any such principle will not differentiate between coherence
and incoherence on a wide class of countably infinite opinion sets, including many algebras.
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credence function at that world. Let us call such a way of scoring inaccuracy
representative scoring.15 To see the potential problem with using representative
scoring to offer an accuracy dominance argument for subjective Bayesianism,
let’s work with a particular instance of the method.

Assume that credence function c is defined on an opinion set over a countably
infinite set of worlds which contains all the singletons, and let c|W be c restricted
to the singleton sets. For example, extending c from Example 2 in the natural
way to be defined on the singletons, we have:

c|W ({N}) = c({n ≥ N})− c({n ≥ N + 1}) = 1√
N + 1

− 1√
N + 2

for each N ∈ N. One might argue that an agent’s epistemic state can be entirely
captured, for the purposes of determining inaccuracy, by its credences that each
world is the actual world. One could then define the inaccuracy of c at w to be,
for example, the Brier score of c|W at w. As noted above, Kelley proves that on
countably infinite partitions, a credence function is dominated (using the Brier
score) if and only if it is incoherent. So it follows that if c is coherent, then c|W
is coherent and so undominated.

However, if c is incoherent, it does not follow that c|W is incoherent, for the
agent’s incoherence might arise with respect to more complex propositions, for
example the disjunctive proposition represented by {w1, w2}. Therefore, on this
instance of representative scoring, the incoherence of c does not imply that c is
accuracy dominated. Thus, the subjective Bayesian loses the ability to offer an
accuracy dominance argument for having (at least) coherent credences.

More generally, the problem with representative scoring is that there is no
guarantee that if a credence function is incoherent, then so is its representative
for the purpose of scoring inaccuracy. Put another way, it is possible that an
incoherent and a coherent credence function are assigned the same inaccuracy
scores using representative scoring, which makes it impossible to offer an ac-
curacy argument for Subjective Credence. Of course, there may be some
other way of taking this route that avoids this problem, but the (arguably)
most natural version—scoring a credence function by scoring its restriction to
the singletons—will not work. Thus, we leave it as a challenge to the subjec-
tive Bayesian to offer a representative scoring method that enables an accuracy
dominance argument for Subjective Credence.

A third implicit assumption of Avoid Accuracy Dominance as we have
15Thanks to an anonymous referee for suggesting this objection.
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stated it is that global accuracy dominance should be avoided, not just what
we might call local accuracy dominance. More precisely, Avoid Accuracy
Dominance assumes that dominance relations between credence functions are
established by comparing the inaccuracies assigned to each credence function at
each world. This is how accuracy dominance is usually understood in the finite
setting.16

However, one might instead suggest that such global dominance relations do
not matter; what matters is whether the finite parts of the credence function are
accuracy dominated. Say that a credence function is locally accuracy dominated
if the restriction of the credence function to some finite subset of the full opinion
set is accuracy dominated.17 A result of Schervish et al. (2009) shows that a
credence function on an opinion set of any size is coherent if and only if it
is not locally accuracy dominated. This result, along with Examples 1 and
2, show that coherent credence functions can be globally accuracy dominated
without being locally accuracy dominated. The subjective Bayesian could then
argue that it is local accuracy dominance which ought to be avoided, not global
accuracy dominance.

This response faces its own challenges. First, it is far from clear why avoiding
local dominance is the only thing that matters. To think that the rationality
of one’s entire epistemic state supervenes on the rationality of its proper parts
seems to be an instance of the fallacy of composition. Presumably an epistemic
state can be irrational while having proper parts which, taken alone, are rational.
Moreover, even if the rationality of one’s epistemic state did supervene on its
proper parts, we see no reason why rationality would supervene on only its finite
proper parts.18 But once we broaden the scope of local accuracy dominance and
take into account some infinite parts as well, the dilemma posed here will likely
kick in: there will be coherent credence functions that are locally accuracy
dominated in this sense. So if the subjective Bayesian were to go this route
in responding to our dilemma, they face the following challenge: they must
come up with a plausible formulation of a local accuracy dominance principle
according to which coherence is equivalent to avoiding accuracy dominance even
in the infinite setting.

16See Kelley forthcoming, Sec. 6.1 for discussion of this point.
17More precisely, let c : F → [0, 1] be locally accuracy dominated if c|X is accuracy domi-

nated relative to the Brier score for some finite subset X ⊆ F .
18Thanks to Snow Zhang for this point.
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4 Conclusion

We have shown that subjective Bayesians face a difficult choice: accept con-
straints on which propositions one can have credences in—constraints which are
at odds with the permissive spirit of their view—or reject the principle that
one should avoid accuracy dominance. We think that the best way out of the
dilemma is to come up with a plausible accuracy dominance principle that can
be used to motivate subjective Bayesianism in both the finite and infinite set-
tings. As we have shown, even this response faces some formidable challenges.

5 Appendix

Definition 5.1. Let an opinion set F on W be rich if F includes all finite
subsets of W .

Definition 5.2. Assume F is countable. Let an inaccuracy measure I be
quasi-additive if it has the form

I (c, w) =
∑
p∈F

λpd(vw(p), c(p)),

where {λp}p∈F ⊆ (0,∞) and d : {0, 1} × [0, 1] → [0,∞] is a function such that
d(x, y) = 0 if and only if x = y.

We take it that a necessary condition on I being at least approximately
additive is that

∑
p∈G λp =∞ for any infinite subset G ⊆ F .

Definition 5.3. For c a coherent credence function on F ⊆ P(W ), let c∗ be
a probabilistic extension of c to P(W ) if c∗ is a finitely additive probability
function on P(W ) with c∗(W ) = 1 and c∗(p) = c(p) for all p ∈ F .19 Let an
inaccuracy measure I be quasi-strictly proper if Ec∗I (c, ·) ≤ Ec∗I (d, ·) for
all coherent credence functions c, probabilistic extensions c∗ of c, and credence
functions d on F , with strict inequality if d is incoherent.20

Theorem 5.4. Let F be a rich, countably infinite opinion set.21 Let I be a
19By the definition of coherence, c is extendable to a finitely additive probability function

c on A(F), the algebra generated by F . By Corollary 3.3.4 from Rao and Rao 1983, c is
extendable to a finitely additive probability function c∗ on P(W ). Note that the proof of
Corollary 3.3.4 uses a result that is equivalent to the Axiom of Choice.

20See Nielsen forthcoming for a relevant discussion of taking expectations with a merely
finitely additive probability function.

21See Pruss (forthcoming) for a related impossibility result in the uncountable case (Propo-
sition 3).
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quasi-additive inaccuracy measure with weights such that
∑

p∈G λp = ∞ for
any infinite subset G ⊆ F . Then:

(1) no credence function on F is strongly dominated relative to I ;

(2) a credence function c on F is not weakly dominated relative to I if and
only if c is an omniscient credence function;

(3) I is not quasi-strictly proper.

Proof. We start by proving that under the assumptions of the theorem, (*) any
credence function is finitely inaccurate at no more than one world. We then
prove (1) and (2) from (*).

Assume a credence function c is finitely inaccurate at some world w ∈ W .
Then fix v 6= w and consider a sequence {rvi }∞i=1 of elements in F with w ∈ rvi
and v /∈ rvi for each i (such a sequence exists by the richness of F). The inac-
curacy of c at w is bounded below by

∑∞
i=1 λrvi d(1, c(r

v
i )). Thus, c(rvi ) → 1 as

i→∞. Indeed, if c(rvi ) did not tend to 1, then one could chose a subsequence
of {c(rvi )}∞i=1 that is bounded away from 1; since I is quasi-additive and we
have assumed that infinite sets of weights have infinite sum, c would then be
infinitely inaccurate at w. Now the inaccuracy of c at v is bounded below by∑∞

i=1 λrvi d(0, c(r
v
i )). Since c(rvi )→ 1, it follows by quasi-additivity and the as-

sumption that infinite sets of weights have infinite sum that
∑∞

i=1 λrvi d(0, c(r
v
i ))

is infinite. So c is infinitely inaccurate at v. Thus, every credence function is
finitely inaccurate at no more than one world.

(1) immediately follows from (*): two credence functions which are both
infinitely inaccurate at some world cannot strongly dominate one another.

As for (2), to see that omniscient credence functions are not weakly domi-
nated, note that if an omniscient credence function vw were weakly dominated
by some credence function c, then I (c, w) = 0 (since I (vw, w) = 0). Since I

is quasi-additive, if I (c, w) = 0, then c = vw; but clearly a credence function
cannot weakly dominate itself. So vw is not weakly dominated relative to I .
For the other direction, if a credence function c 6= vw is infinitely inaccurate at
every world, then it is weakly dominated by an omniscient credence function. If
c is not infinitely inaccurate at every world, then by (*) it is finitely inaccurate
at a single world, say, w. It follows that c is weakly dominated by vw: c is
infinitely inaccurate at all worlds v 6= w; and at w, since vw 6= c, it follows by
quasi-additivity that I (c, w) 6= 0 while I (vw, w) = 0.

14



As for (3), we will show that there are coherent credence functions on F
which are infinitely inaccurate at every world. By the definition of a finitely
additive expectation of an extended-real function (see, e.g., the appendix of
Nielsen forthcoming), Ec∗I (c, ·) = ∞ for any probabilistic extension c∗ of c
when c has infinite inaccuracy at every world; and so Ec∗I (c, ·) is not strictly
less than Ec∗I (d, ·) for an incoherent credence function d. Therefore, I is not
quasi-strictly proper.

As an example of a coherent credence function which is infinitely inaccurate
at every world, consider c = 1

2vw1
+ 1

2vw2
for w1 6= w2. It is easy to check that

c is coherent. To see that it is infinitely inaccurate at every world, consider the
following sequences of elements in F (which can be found by the richness of F):

(a) {rw1
i }∞i=1 such that w1 ∈ rw1

i and w2 /∈ rw1
i for each i;

(b) {rw2
i }∞i=1 such that w2 ∈ rw2

i and w1 /∈ rw2
i for each i;

(c) for each v 6= w1, w2, let {rvi }∞i=1 be such that v ∈ rvi and w1, w2 /∈ rvi for
each i.

The inaccuracy of c at w1 is bounded below by
∑∞

i=1 λrw1
i

d(vw1
(rw1

i ), c(rw1
i )) =∑∞

i=1 λrw1
i

d(1, 12 ), which is infinite by quasi-additivity and the assumption that
infinite collections of weights have infinite sum. Analogous reasoning establishes
that c is infinitely inaccurate at w2. For v 6= w1, w2, note that I (c, v) is bounded
below by

∑∞
i=1 λrvi d(vv(r

v
i ), c(r

v
i )) =

∑∞
i=1 λrvi d(1, 0), which is infinite by quasi-

additivity and the assumption that infinite collections of weights have infinite
sum. Thus, c = 1

2vw1
+ 1

2vw2
is infinitely inaccurate at every world, establishing

that I is not quasi-additive.
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