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Abstract

A commonly held background assumption about the sciences is that they connect along

borders characterized by ontological or explanatory relationships, usually given in the or-

der of mathematics, physics, chemistry, biology, psychology, and the social sciences. In-

terdisciplinary work, in this picture, arises in the connecting regions of adjacent disciplines.

Philosophical research into interdisciplinary model transfer has increasingly complicated this

picture by highlighting additional connections orthogonal to it. But most of these works have

been done through case studies, which due to their strong focus struggle to provide foun-

dations for claims about large-scale relations between multiple scientific disciplines. As a

supplement, in this contribution, we propose to philosophers of science the use of modern

science mapping techniques to trace connections between modeling techniques in large liter-

ature samples. We explain in detail how these techniques work, and apply them to a large,

contemporary, and multidisciplinary data set (n=383.961 articles). Through the comparison

of textual to mathematical representations, we suggest formulaic structures that are partic-

ularly common among different disciplines and produce first results indicating the general

strength and commonality of such relationships.

1 Introduction

How are the sciences organized? Given that individual disciplines do not just stand next to each

other in an unrelated fashion, but have overlapping objects of inquiry, and often borrow methods

from their neighbors, it seems sensible to ask what organization arises among them. One view

that has been historically prominent, is that the sciences are organized in a somewhat hierarchical

order, which leads from physics over chemistry to biology, and from biology and neurology on to

psychology and the social sciences.1 The organization principle along this gradient is frequently

characterized by growing complexity, by ontological relationships (e.g. of composition), or by

explanatory relationships. Interdisciplinary work, under this view, tends to occur at the borders

of connected areas, whose objects of study blend into each other. Other common views might

highlight a contrast between more theoretical and practical fields2, in which more applied fields

connect to mathematics, and the more theoretical areas of computer science and physics.

Philosophers of science have further complicated this picture, by highlighting connections between

scientific disciplines orthogonal to these arrangements.3 In particular, the recognition of inter-

disciplinary similarities of models, which can arise through model migration or the convergent

evolution of modeling practices, has shifted our image of what factors enable disciplinary contacts.

Philosophers have analyzed these connections through notions such as computational templates4,

model templates5 and theoretical templates6, citing the Lotka-Volterra-, the Kuramoto-, and the

Ising-model, various commonly used statistical distributions, and generative network models as

primary examples. Examples that, both in the scientific literature, as well as in the philosophical

literature referencing it, are commonly introduced by one central mathematical formula.

The analyses of these examples have greatly contributed to our understanding of interdisciplinarity

and model transfer. But due to their focus on specific cases, there are certain limits placed on

1Auguste Comte (Comte and Martineau (2009)) is commonly identified as the ideas modern originator, c.f.
Bourdeau (2022); Cole (1983). See also Arsenault, Smith, and Beauchamp (2006); Fanelli (2010); Fanelli and
Glänzel (2013) for empirical evidence for the hierarchies reality.

2Peirce, for example, varies Comte’s classification by separating science of discovery, of review, and practical
science. See Midtgarden (2020) for an overview.

3See Humphreys (2002), p. 5, from whom the present investigation takes its starting point.
4Humphreys (2002, 2004)
5Knuuttila and Loettgers (2014, 2016); Knuuttila, Rusanen, and Honkela (2007)
6Humphreys (2019)
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how much they can tell us about the extent to which the underlying mechanisms play a role in the

sciences seen as a whole. The investigated cases might for example turn out to be rare episodes

uncharacteristic of the common conduct of scientists in a domain, or they might attach themselves

to views or personalities that turn out to be at the very fringes of their disciplines. Demonstrating

that one template is in use in very different places, even though it might appear there under very

different names, and with little attribution to earlier occurrences in other disciplines, is challenging

on its own.7 It seems even harder to show that this is a phenomenon that is substantial enough

to be considered a structuring principle of the sciences.

Large-scale questions like this, asked about an ever-growing scientific landscape8, as well as new

technological possibilities and the increasing availability of data-sets, have recently led some

philosophers to embrace the use of digital methods.9 These have become attractive to researchers,

as they allow engagement with vast amounts of material that due to their scale are inaccessible

to traditional methods.

In this contribution we will make use of such novel computational techniques, drawing on the

science mapping literature, to provide a first bird’s eye view of what the answer to this ques-

tion might look like. After a brief overview of how techniques of science mapping have become

adopted, we will describe a technique that allows us to find connections between the mathemati-

cal apparatus of articles, by calculating the similarities of formulas. We will apply this technique

to a sample of 383961 preprints drawn from various disciplines, and through the comparison of

textual to mathematical maps suggest formulaic structures that link disciplines, as well as those

that are particular to specific disciplines.

2 Science Mapping

Categorizations of science and of the knowledge it produces, have a long history in philosophy.

Some philosophers, like Hobbes10 or the Encyclopédistes11 also chose to visualize their classifi-

cation schemes in tree-like structures, a visual history which Weingart (2013b) traces back to

Porphyrian trees, and expands in a modern shift towards web-like models of science.12

With the introduction of digital databases of scientific output and the development of the powerful

computational resources needed to process them, new approaches to the structural mapping13 of

the sciences have become possible. Their attraction lies in their ’data-drivenness’, which means

that the structures they reveal are thought to be determined only by the available material and

the method of processing. And as the method of processing is usually not domain-specific, so

the thought goes, they allow the connections to show themselves relatively removed from the

structures imposed on them by institutions and classification systems.

There are several data types commonly used in the production of science maps. Most commonly,

we see mappings that make use of some type of citation data, either establishing links between

articles if one article cites another, if two articles are cited by the same text (co-citation networks),

7For a general account of how it can be challenging to derive theoretical conclusions from case studies in
philosophy of science, see Kinzel (2016).

8See Barnett and Doubleday (2020); Bornmann and Mutz (2015); Fortunato et al. (2018); Larsen and von Ins
(2010) for estimates of the growth rates of modern science.

9See Pence and Ramsey (2018) for a detailed version of this argument, and Mizrahi (2020) for an assessment of
the case-study method in this respect. See Lean, Rivelli, and Pence (2021) for an account of how to bridge the gap
between digital methods and practice-based philosophy of science. See, also, among others Böhm, Reiners-Selbach,
Stefan, Baedke, Fábregas Tejeda, and Nicholson (2022); Herfeld and Doehne (2019); Malaterre and Chartier
(2021); Malaterre, Pulizzotto, and Lareau (2020); Noichl (2021) for applications of computational methods in the
philosophy of science. See also Sørensen and Johansen (2020) for a philosophical study of mathematical diagrams
using machine-learning methods, whose outlook is particularly close to our present one.

10Hobbes (1651), p. 55, see also Adams (2019).
11d’Alambert (1821), p. 115
12Weingart (2013a) also provides a nice illustrative collection of these diagrams. For another great collection of

science maps, see Börner (2010).
13See Petrovich (2020) for a very good overview.
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or if they cite the same text (bibliographic coupling).14 The other common data source for

mappings of science are texts themselves, which can be arranged by their semantic content.

attack, adversarial, network, security, defense, 
against, model, robustness, attacker, detection, 

learning, based

model, data, method, distribution, estimator, ap-
proach, based, algorithm, estimation, proposed, 

regression, parameter

algorithm, problem, matrix, optimization, method, conver-
gence, convex, function, bound, optimal, time, gradient

cell, protein, gene, expression, here, these, cancer, 
binding, human, were, mechanism, mouse

brain, were, neuron, activity, cortex, response, 
stimulus, during, these, neural, study, between

network, neural, deep, training, learning, archi-
tecture, model, layer, method, accuracy, perfor-

mance, weight

agent, control, learning, system, policy, robot, problem, 
model, reinforcement, algorithm, optimal, environment

channel, user, proposed, signal, communication, code, 
scheme, performance, rate, multiple, mimo, system

user, data, system, paper, based, research, net-
work, model, their, learning, have, application

language, model, task, word, text, 
speech, training, sentence, perfor-
mance, neural, corpus, based

covid, pandemic, infection, dis-
ease, epidemic, spread, infect-
ed, virus, model, country, popu-

specie, gene, genome, were, 
genetic, population, study, trait, 
these, sequencing, have, between

mass, decay, neutrino, energy, quark, model, 
dark, matter, particle, collision, proton, production
 

quantum, theory, field, state, classical, system, 
gauge, model, scalar, gravity, time, energy

spin, magnetic, temperature, phase, state, tran-
sition, field, material, electron, quantum, energy, 
topological

optical, quantum, photon, laser, mode, frequency, 
light, beam, field, high, system, wave

flow, particle, fluid, random, distribution, process, 
time, model, velocity, dynamic, simulation, num-
ber

equation, solution, problem, method, numerical, bound-
ary, time, system, order, condition, nonlinear, differential

star, galaxy, mass, stellar, observation, emission, 
find, formation, model, observed, spectrum, line

black, hole, horizon, gravity, spacetime, solution, 
scalar, field, schwarzschild, kerr, theory, hawking

space, prove, algebra, function, result, theorem, 
give, show, paper, operator

group, subgroup, finite, algebra, prove, action, 
abelian, representation, space, class, give

graph, vertex, edge, network, node, algorithm, 
problem, number, model, show, such, result

image, method, learning, network, model, fea-
ture, data, training, task, deep, proposed, based
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Figure 1: A science map, based on all preprints archived in the arXiv and the bioRχiv, in the years
2019 and 2020. The mapping suggests a gradient from physics, via mathematics and computer
science to the life sciences. We also observe, on the lower right, a relatively clear separation
between the arXiv and the bioRχiv. We consciously avoid reifying clusters by assigning labels
to them. Instead, we indicate the keywords that achieve the highest summed-up tf-idf scores for
each cluster, indicating the words that are most specific to each cluster, as opposed to the rest of
the sample. This and all following plots were produced in matplotlib, and typeset using Adobe
InDesign.

We present such a map in Figure 1. We will go into much more detail about how it was made,

and how we should interpret it, in the next section. For the moment it suffices to say that it

consists of 383.961 recent preprints, drawn from physics, mathematics, computer science, and

the life sciences, and arranged by an algorithm that was unaware of their origin. Clusters in

the mapping are labeled by their most distinct keywords. It is not hard to read the involved

disciplines from them. Towards the top of the graphic, we note various sub-disciplines of physics

(dark violet, red), moving down into mathematics (orange), computer science (light green), and

finally at the bottom, the life sciences (blue).15

Because of the peculiarity of the data source (it lacks chemistry, and therefore fails to establish

links between physics and biology, it also lacks most social sciences), we shouldn’t make any

too involved claims about the global structure of science as a whole from this map, although it

would seem to fit reasonably well into the consensus reported in the literature.16 But we can

14See Boyack, Klavans, and Börner (2005); Klavans and Boyack (2017). See also van Eck and Waltman (2010)
for an interactive interface for the construction and exploration of citation networks.

15We should note here that the actual orientation of the mapping is an artifact of the algorithm, and has no
meaning. Rotated, or mirrored mappings would be equivalent to the original while stretching or distorting the
maps would not be permissible.

16Compare Klavans and Boyack (2009).
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point out that locally, the arrangement and connectivity of the clusters make a lot of sense. The

cluster of neurology at the bottom left for example fades upwards into the computer science

cluster associated with the training of neural networks. The, at the time of sampling, just

emerging cluster of Covid-19-literature, takes up space between the life sciences and computer

science as well, owing to the computerized nature of modeling and prediction during the early

pandemic. Towards the middle left we see an elongated cluster of distinct network science traveling

down in parallel, with several connections to areas in mathematics and computer science. All

in all, the picture seems to correspond relatively well to a view of the sciences as thematically

separated units, which are partially linked by interdisciplinary endeavors. We further note a

kind of theoretical ’backbone’ leading from theoretical physics, over some areas of mathematics,

to parts of computer science, suggesting a connection of theoretical fields, from which more

application-centered ones radiate.

The thematic map, therefore, seems to encapsulate many of the common-sense assumptions about

the structure of science, which we had identified above. We can now ask how it compares to a

picture that brings the connectivity introduced by mathematical methods to the forefront. But

first, we need to get into some technical details about how these maps are produced, and what

we need to keep in mind when reading them.

3 Sample Description

In the present contribution, we draw our sample from two large preprint-repositories, the well-

established arXiv, which mainly contains material from physics, informatics, mathematics, and

the younger bioRχiv, which is focused on the life sciences. Preprints are by now a very common

form of scholarly communication in many (although not all) scientific disciplines, both to scientific

peers and the general public17, which would make them of interest to philosophers of science, even

if it weren’t true that a sizeable share of them later do become regular journal articles.18 While

preprints certainly do not form a perfect mirror image of the scientific literature in their respective

domains, they can still be considered a reasonably close proxy. In our case, we focus on preprints,

because they are commonly archived in large databases of relatively uniform format, which is not

the case for published material. We are in particular need of a uniform format because, without it,

the reliable parsing of formulas becomes an exceedingly difficult problem. This is also the reason

why, in this contribution, chemistry and the social sciences have been left out. While chemists

have recently begun to establish a central, uniformly formatted preprint-archive, ChemRxiv, it

has not been as well adopted at the time of writing, as the ones included in our sample, and can’t

be considered as representative. And while some social sciences have strong preprint cultures,

they tend to archive their preprints solely in pdf format, with source files remaining inaccessible.

Because we are nonetheless interested in interdisciplinary relationships and attempt to construct

a large, contemporary, yet consolidated multidisciplinary sample, we settled on all preprints

archived in the arXiv and the bioRχiv in the years 2019 and 2020, which makes for a total

of 383.961 articles, 49.769 of which stem from the bioRχiv, and 334.192 from the arXiv. Full

preprints and associated data were downloaded using the available AWS-services19 maintained

by the respective providers. Metadata for the BioRχiv was downloaded using the provided API,

metadata for the arXiv was downloaded from the Google-Bucket provided by Cornell University

(2020) and kaggle.20

17See the results of Carlson and Harris (2020).
18See Abdill and Blekhman (2019); Xie, Shen, and Wang (2021).
19We thank Herold (2022) for their code and advice.
20See Clement, Bierbaum, O’Keeffe, and Alemi (2019) for the introduction of the collection-mechanism.
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4 Processing

Figure 2: The vectorization process, illustrated. For each text we count how often each word
present in the vocabulary appears, building a huge word-frequency table. We then adjust these
counts using a tf-idf-scheme, which increases the impact of less common words.

4.1 Constructing the thematic mapping

To construct the thematic mapping, we proceed in a mode of computational text analysis that

has become fairly common in recent years.21

The first step of the process is illustrated in Figure 2. We first clean the texts by removing words

with less or equal to three letters,22 non-word characters, and superfluous white space. We then

lemmatize words23, which means that inflected words are moved into a uniform base form, so

that e. g. ‘animals’ becomes ‘animal’ and ‘playing’ becomes ‘play.’ We then transform the texts

into so-called bag-of-words-vectors. This means that we construct a very large table (383961 rows

* 30835 columns, implemented as a scipy-sparse matrix24 in which each row represents one of the

articles in our sample, and each column represents a word.25 Each cell in the table contains how

often each word occurs in the respective article. This approach is called bag-of-words, because it

neglects all internal structures of the texts, and reduces them to distributions of word frequencies.

21The whole code of this analysis is made available in a GitHub repository under https://github.com/MNoichl/
comp templates. Similar analyses of textual data can found in Javier et al. (2022); Low et al. (2020); Ordun,
Purushotham, and Raff (2020).

22This makes sense for our task, as we are interested in thematic structures. If we were trying to measure
stylistic differences between articles, we shouldn’t be as drastic here.

23Using nltk’s (Bird, Klein, and Loper (2009)) implementation of the word-net-lemmatizer.
24Virtanen et al. (2020)
25This part of the analysis, including the application of SVD, is conducted in the framework provided by scikit-

learn, Pedregosa et al. (2011).
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We choose this simple, yet remarkably effective approach, because it makes our later analyses

straightforwardly interpretable, as well as easier to troubleshoot.

Most cells contain the number zero, as most words do not occur in most articles. We assume

that very common, general words, like ‘model’, tell us rather little about the thematic structure

that we are interested in. But because they are so common, they might exert a strong influence

on our results. For this reason, we first remove common stopwords, like ‘they’, ‘them’ or ‘and’26

and then re-scale the counts in a way that increases the weight of very uncommon words, while

decreasing that of common words, using what is called a tf-idf-weighting-scheme. To conduct

tf-idf (Term frequency - inverse document frequency), we first calculate a weight for each word.

To do this we divide the number of documents by the number of documents in which the word

of interest appears, resulting in a number that will be far larger for rare words than for frequent

ones. We then take the logarithm of this number, to moderate its effect, before we multiply it

with every word count in the column that is associated with the word. This increases the influence

of infrequent words, which are more useful for differentiating between texts while decreasing that

of very frequent ones.

The resulting table of tf-idf-scores then gets passed to a technique called Singular Value Decom-

position. SVD is a general method that decomposes one matrix into three new ones, which, when

multiplied with each other, result in the initial one. These matrices can be interpreted as the

Eigenvectors of the covariance matrices of the rows and columns, and their Eigenvalues. This

means that they encode how much individual data points co-vary with the dominant axes of co-

variance, or in other words, how much they agree with the most dominant trends in our dataset.

A more detailed explanation of this technique is given in Figure 3.

By multiplying together only the parts of these matrices, which are responsible for the 150 most

dominant features, we can achieve an approximation of the initial matrix, which keeps intact its

most important features, while resulting in a much smaller dataset. The reason for conducting

this intermediate step is twofold: on the one hand, it decreases computation times downstream by

making the dataset smaller. On the other hand, it reduces noise in the dataset, as the resulting

matrix keeps the largest axes of variance in the dataset intact, but clears out smaller ones.

In the final step towards our mapping, we conduct Uniform Manifold Approximation and Pro-

jection (McInnes, Healy, and Melville (2018)) on the SVD-vectors. UMAP is a relatively young

dimensionality-reduction and visualization technique, which has quickly risen to popularity in a

wide range of analysis tasks.27 While it can play a variety of roles in processing pipelines, its

current main application is to give a two-dimensional representation on a very high-dimensional

dataset.

It should at this point be clearly stated, that it is impossible to perfectly fulfill this task in the case

of most natural datasets – 150 dimensions just do not fit into two.28 But in many cases of natural

datasets, the sub-processes in the generation of the dataset in which we are most interested, take

place in a space of a dimensionality that is lower than that of the raw dataset.

We can understand this by using our textual dataset as an example. As we recall, it springs

from two largely non-overlapping sources: Texts drawn from the life sciences, and texts drawn

mainly from physics and informatics. So while there is of course much room for overlap, we expect

this split to be reflected in our dataset in some major way. This is one important aspect of the

26We use the list implemented in nltk, Bird et al. (2009). For an overview of commonly used lists of stopwords,
c. f. Nothman, Qin, and Yurchak (2018).

27We must note here that UMAP is by no means the only available technique for this purpose. Further work
might also consider the use of t-SNE, which, as González-Márquez, Berens, and Kobak (2022) has recently argued,
is well suited for the representation of text-corpora.

28These problems have recently led to sharp critiques of the usage of these and similar techniques in the field
of single cell-genomics (Chari, Banerjee, and Pachter (2021)), where they had become very established. As we do
not use the coordinates acquired through UMAP for further numeric analysis and remain firmly on the side of
explorative data analysis, we believe to avoid the issues that linger here for the most part.

6



Figure 3: In SVD, the initial data-matrix Xtfidf gets decomposed into three constituents – U
which contains the Eigenvectors of the row-wise covariance-matrix, V T which contains those of
the column-wise covariance-matrix, and Σ which contains the Eigenvalues. When multiplicated
together, these matrices result in Xtfidf . (We can’t go into the exact details of how this decom-
position is accomplished computationally.) If we truncate them though, so that e. g. only the
first 200 columns of U , the first 200 rows of V T , and the upper 200 * 200 corner of Σ remain

and multiply the resulting matrices Û , V̂ T , Σ̂, we get as a result an approximation of the original
matrix. Indeed we notice that X̂tfidf in the lower-left exhibits nearly the same patterns as Xtfidf ,
having its values only slightly jittered. As we are only interested in recovering the row-wise cor-
relations with the major axes in the dataset, we can directly go on to conduct our calculations
with the small matrices Û · Σ̂. For further introduction to the process, see Shlens (2014).

data-generation-process, that has no trouble fitting into two dimensions, even though the actual

dataset if prepared through the bag-of-words method, will be of far higher dimensionality. And

indeed, if we look at our textual map in Figure 1, colored by the source of the articles, we find

a relatively clear arrangement along the y-axis. So while remaining necessarily unsatisfactory

to some degree, we can expect to find global structures represented in our mappings, which, if

interpreted with adequate care, can yield deep insights into our dataset.

With these cautionary remarks out of the way, we can now proceed to give a rough explanation

of how the algorithm works. The process is also visualized in Figure 4. It begins by constructing

a nearest neighbor graph from our dataset, in which each data point is linked to a predefined

number of closest neighbors. The ‘nearness’ of data points is determined by calculating the

cosine-similarity between the rows in the dataset, a measure that is usually recommended for

textual data because it weights the individual features similarly. If we interpret the rows of our

working dataset as vectors that determine positions in a vector space, we can understand cosine

similarity as the angle between these vectors in the origin. The weight of the edges in this graph

is determined by the similarities, and it is what will later co-determine how near or far from each

other points are placed in our mapping.

The issue we now run in, which is commonly known as one instance of the ‘curse of dimension-

ality’, is that in this high-dimensional space, most distances appear to be nearly identical, which

means that the weights are not very informative as they are. For this reason, UMAP employs

7



Figure 4: A graphical explanation of UMAP. We begin by constructing a graph that links each
data point to n of its nearest neighbors. We then reweigh the edges of the graph and lay them
out in the low-dimensional space using a force-directed algorithm. Graphic inspired by Lee et al.
(2021).

a reweighing scheme that adjusts weights based on local distance measures at each node of our

graph.

Having conducted this reweighing step, we now have to find a satisfying layout for the graph.

UMAP generally starts by conducting a quick spectral embedding (a rough first layout) of the

graph and assigning the resulting coordinates as initial positions to the data points. From there it

follows the common idea of many network-layout algorithms, which is to have a general repulsive

force, which pushes all nodes of the network constantly away from each other while using the

weights as links that pull them together at the same time. As shown in Figure 4, simulating the

interplay of these two forces on the nodes moved by them, yields after a few hundred simulation

steps an approximation of the initial configuration of similarities of points in our low-dimensional,

perceivable data space.

We should remind the reader at this point again about the noted imperfections of the resulting

mappings. To give an example of one common issue that can arise due to the construction

of the nearest neighbor graph: If a data point were to be completely disconnected because it

was just so far away from all the other points that it couldn’t be included in any other points’

nearest neighbors, the algorithm would have no idea where to place it, and it would fluctuate just

randomly around (and away from the other points) during the layout process. This, and similar

problems, don’t necessarily endanger our purpose. But it is good to keep in mind, that not all

distances, especially between individual points instead of larger groupings, can be expected to be

interpretable. Instead, it makes more sense to visualize a whole range of possible embeddings,

as we do in Figure 5, to see which features of our embedding remain consistent over changing

hyper-parameters and the uncertainties of the stochastic layout processes.

An additional sanity check here is to conduct clustering using a graph clustering algorithm29 on

the nearest neighbor graph underlying the embedding. As the clustering solution is independent

29We here use the implementation of the Louvain-algorithm by Hollocou (2020).
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Figure 5: Results of different runs of the UMAP algorithm, demonstrating a range of possible
outcomes under different hyper-parameter settings. We note how some features of the embedding,
e.g. the left-right orientation are contingent, while the global structure stays relatively robust,
except under very small values of the n-nearest neighbors parameter.

of the layout process, it can flag mismatches for us, and provide insights into the nature of the

structures that arise in the UMAP mapping.

We now turn to the analogous construction of the map of mathematical content.

4.2 Constructing the mathematical mapping

In constructing our map of the mathematical content, we will try to keep as close to the way

we constructed our thematic map as possible. But calculating the similarities between equations

is not trivial, and is a far less studied problem than that between texts. A simple bag-of-words

approach as outlined above for example must fail because the number of individual symbols used

in mathematics is much smaller than the number of words that can be found in a natural language

corpus.

Even worse, often some mathematical structure might be filled with different symbols or names

for variables, even though the same calculation is conducted, as seems to be often the case with

p, q and ϕ, ρ respectively. But an approach that skips all symbols in favor of pure surface

structures will be insufficient as well, as mathematic content does not determine specific surface

structures: the same calculation can be described through formulas, that on the surface level

seem to be quite different. The straightforward operation of the mean, for example, can look
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Figure 6: The formula-preprocessing process inspired by Tangent (Zanibbi et al. (2016)), using
the implementation from TangentCFT (Mansouri et al. (2019)).

like m1+...+mN

N , as well as 1
N

∑N
i mi. But just counting the co-occurrences of specific symbols

between formulas, in the case of the mean e. g. m, N, ...
... doesn’t suffice either, as the individual

symbols have semantics that in themselves are quite complicated and multifaceted. The letter n,

for example, tends to take on a very specific meaning, denoting the size of a (sub-)group, which

only rarely will be replaced by other letters in that position. Similar things are true for x, y, and

z, which commonly, but not always, are used to indicate spatial coordinates. The letter i might

interact with n as a counting variable, but on its own will more often denote the imaginary unit.

And the letter e can rarely be replaced by the preceding d without a complete change in meaning.

This problem is even more challenging, as the same is not true for all letters and symbols, some

of which have far more free or diffuse semantics.

For these reasons, our similarity score can’t depend on a simple idea of how often a certain letter

or symbol is present in the two formulas whose similarity is to be determined. It has to be aware

of the context in which a certain symbol presents itself. It has to understand that e.g. a Σ and a

‘+’ might in some contexts encode similar ideas, and totally unrelated ones in others.

We find an implementation of an approach that takes this into account in TangentCFT, introduced

by Mansouri et al. (2019), to whom our contribution is very much indebted. Their basic insight is

that it is more promising to encode formulas not through individual symbols or pure structures,

but through a combination of those ideas: A list of structure-encoding symbol-tuples which are

then fed to a language model that is able to learn context-depending representations.

The general process is described in Figure 6. After all formulas have been brought into a uniform30

LATEX-format, they are transformed to Math-ML, which encodes them in a hierarchical structure,

in which each node gets linked to the one directly above. In the term 1
ed
, for example, the symbols

e, d and the superscript relation between them all get linked to the fraction in the denominator

30As the BioRχiv archives formulas as images, we had to employ an online service, mathpix.com for conversion.
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position, while 1 gets linked to the numerator. Each of these linkages along the tree can be

considered as a tuple of a relation and a symbol, which can be used in further modeling.

This representation scheme was initially proposed by Zanibbi et al. (2016) with the idea to build

a search engine for formulas. Their idea was that formulas that shared large parts of these graphs

could sensibly be considered similar, and would then be returned by the search engine. While this

had shown some promise, this approach still struggled with the complexities and indeterminacies

of the mathematical language, which we have outlined above.

For this reason, more recent approaches have turned to embedding the hierarchical formula rep-

resentations. This means that instead of just counting the tuples, we try to learn representations

that encode the similarities between them and make these useful for the representation of whole

formulas. Mansouri et al. (2019) use the FastText-architecture for this purpose. FastText was

initially developed by Facebooks AI research-lab as a technique for word embedding, with the

intention of text-classification.31 In the presented version of the technique, we use tuples, where

in the standard use-case one would use words.

Figure 7: A simplified illustration of the training of the FastText-model. The one-hot encoded
vectors, on the left, which represent one ’word’ in the whole vocabulary, select its representation
in the hidden layer, as well as that of its sub-word parts. The sum of these vectors is then used
to form a positive prediction on the context of the word, and a negative prediction on randomly
selected, unrelated words. The prediction errors are then used to adjust the weights in the hidden
layer. In the end, we use those internal weights to represent our formulas in further processing.

Very roughly explained, FastText ’learns’ the semantic relations between words, from the contexts

in which individual words occur.32 For this, it cuts up all words into chunks of three letters, for

which it will learn representations as well. This way it can later also encode unknown, rare,

or inflected words if they contain already known sub-word parts.33 At the beginning of the

31Bojanowski, Grave, Joulin, and Mikolov (2017); Joulin, Grave, Bojanowski, and Mikolov (2016)
32For a philosophical localization of word-embeddings, see Gastaldi (2021).
33This was an especially important feature of FastText compared to other models of the period, as it im-

proved the quality of representations for languages that tend towards long word-combinations. The German
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training process, all representations are just random strings of numbers, without any informational

content. The algorithm now repeatedly – many hundred-thousand times – takes chunks of text

of a certain size (the window size, which we set in our model to a value of 13), then selects

the word in the middle of the chunk as the target word, while the surrounding words are kept as

context words. It looks up the representations of all the sub-word representations of this word and

sums them together with the word representation itself. It then retrieves all the representations

that we have gotten so far for the context words, as well as some additional randomly chosen

’contrast’ words (in our case 15 of them). Through a process called stochastic gradient descent,

it then ’jitters’ the representations of the context words in a way that makes them more similar

to that of the target word, while at the same time moving them away from those of the randomly

chosen contrasts. We illustrate this feedback process called backpropagation in Figure 7. In

each step, the representations are changed only a little bit. But over many training steps, the

representations begin to encode the relations between words remarkably well. This process opens

up several applications. Using the finished representations, we can find synonyms in the corpus

by searching for the words most similar to a query word, predict missing words from a text, or,

as we will see now, judge how similar two texts are, based on the representations of the words

they contain.34

At this point though, in our application, we are not interested in words. Instead, we apply the

FastText algorithm to the tuples that we built earlier from the parsing trees of formulas. These

tuples arise from the connections of particles of equations along the order of operations, meaning

that they can encode both structural properties and differences between symbols. In this way,

we find representations of the particles of formulas that encode relationships like the similarity

between 1
n ∗m and 1

n ∗ k, but can encode also the difference between ’i =’ in the formula
∑n

i=1 i

and ’i squared’ in the formula i2 = −1. But what to do now with these encoded tuples? Recall

from earlier, that the representations of the tuples which we have learned through FastText are

simply long columns of numbers. So, to get back to formulas, for each formula we simply select

the representations of all the tuples that are present in it, and take the mean along one axis, so

that the result is a new representation that is influenced by the representations of all the tuples

present in the formula. Formulas that contain the same, or very similar elements, will end up

with more similar aggregated representations, while formulas that have little in common on the

tuple level, will end up with very dissimilar ones.

Concretely, we extract from the collected arXiv preprints all LATEX equation environments and

math modes that are longer than 15 and shorter than 800 letters. The underlying idea is, that

we largely want to avoid formulas that are just tiny particles, or value assignments (expressions

like n = 30), as well as certain misappropriations of the formula environment, e. g. when authors

use it to typeset longer pieces of texts. In the case of the bioRχiv, formulas are presented not

in LATEX originally, but we have to convert them from images to a uniform LATEX-format using

the webservice mathpix.com. In this case, we limit ourselves to images that are smaller than

800 × 100 and larger than 200 × 40 pixels. We also limit in both cases the number of formulas

per article to a maximum of 20 randomly selected ones out of all eligible ones, to avoid very

formula-rich articles overpowering the others with their influence. On the whole, this leaves us

with 1.691.372 formulas, from which 1.656.929 originate from the arXiv, and 34.443 from the

bioRχiv. All of these formulas are used in the training process of the model, but because of

computational limitations, only 500.000 randomly selected formulas are used in the analysis.

‘Aufmerksamkeitsdefizit-Hyperaktivitätsstörung’ (ADHD), might in itself be for example a very rare word, but it
contains the n-grams from its constituting words, ‘Aufmerksamkeit’, ‘Defizit’, etc. from which its meaning can be
(at least roughly) reconstituted.

34The important point here is, that we can do this even for texts that have no specific words in common, as we
have learned semantic representations.
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Table 1: Formulas in our dataset, which our model considers most similar to a common expression

of the normal-distribution: f(x) = 1
σ
√
2π

e−
1
2

x−µ
σ

2

, in decreasing order of similarity. We note that

while the most similar results at the top are virtually identical, less similar ones towards the
bottom switch out individual letters, or modify the formula with additional terms.

Moving forward in our analysis, after producing representations for each of our tuples, we can

use them to build representations of our formulas by taking the representations of each tuple and

taking the mean of them, yielding one single new formula vector. We can check whether this

works as well as in Mansouri et al. (2019), by querying example formulas to the resulting model,

and see, which formulas the model suggests are most similar to them. The result of one such test

is reported in Table 1. And in the same way, in which we laid out the articles by their semantic

similarity using UMAP, we can lay out the formulas, after calculating the similarities between

them, using UMAP. The resulting formula map is reproduced in Figure 8.

We should note here, that the notion of similarity between formulas, which our measure encapsu-

lates is not necessarily one of deeper mathematical connections. The formulas that UMAP groups

together into one cluster, will not necessarily all have a single structure in common. Rather they

will have multiple overlapping similarities. In this application, we switch due to the large sample

size to another clustering algorithm, hDBSCAN35, which is commonly suggested to be paired

with UMAP.

A quick glance at the mapping of formulas shows it to be much more disjoint than the mapping of

articles. To get some insights into what each formula cluster contains, we have selected example

formulas for some of them and arranged them in boxes around the graphic. The example formulas

were selected by calculating the mean of all formula vectors which were assigned to the cluster

in question, and then selecting the formulas closest to the mean, which can thus be considered

the primary examples from their clusters. We can easily make out versions of some very com-

monly used formulas, e.g. Bayes’ theorem, the root mean squared error, and the Sørensen–Dice

coefficient, or formulas reminiscent of the Ising model.

We now have everything in place to return to our initial question: How does the thematic map

of science, which corresponds to the common-sense picture of scientific organization, correspond

to the structure encoded in the distributions of formulas? To analyze this correspondence, we

have to check how thematically similar the articles are, which are held together by each cluster of

formulas. We can do so by going back to the level of nearest neighbor graphs. For each formula in

the embedding, we look up its 5 nearest neighbors, or in other words, the 5 most similar formulas,

which are likely to be close in the UMAP-mapping.36 For each of these formulas we then look

up the SVD-vector corresponding to the paper from which the formula was drawn and calculate

the average thematic similarity of our original paper to the others. The resulting score indicates

35McInnes, Healy, and Astels (2017)
36A process not dissimilar to the one proposed by Ovchinnikova and Anders (2020).
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Figure 8: A mapping of 500.000 formulas by their similarity. A few clusters are annotated for
illustration purposes with example formulas that were selected from the formulas closest to the
cluster centers. We note several well-known patterns, such as, among others, Bayes’ theorem (2),
χ2-statistics (6), and the Root Mean Squared Error (5). We show the thematic composition of
the articles from which the formulas in each cluster originate in color bars, using the same colors
as in Figure 1. In (12) we show the overall distribution of average thematic distances between the
article from which each formula originates, and the articles of origin for the five closest articles,
and compare it to a random selection of articles. This measure suggests that while there clearly
is some thematic structure to the distribution of formulas – as evidenced e. g. in (7, 10, 11) –
the broad distribution of mathematical forms is the rule, not the exception.

for each formula, how thematically similar the papers are, from which the surrounding formulas

are drawn. The map in Figure 8 is colored by these scores.

Now, if the distribution of mathematical methods were very specific to subject areas, the formula

map would exhibit very low distance scores. However, this is not what we observe. While

the thematic distances among formulas in our sample are clearly smaller than among randomly

sampled ones, the difference is not drastic, and high thematic coherence seems to be mostly

restricted to several small islands. The whole graphic generally indicates a relatively high thematic

dissimilarity of formulas that are close to each other. Or in other words: The structure we have

gathered from the formulas does not reconstruct the thematic picture of science.
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5 Conclusion

In closing, we ought to mention some limitations to this preliminary work. The first obvious

limitation is that our sample, while rather large, does not include all areas of science that would

be of interest. Not only are we missing chemistry, but also most parts of the social sciences, and

works in the humanities that make use of formal methods. Another important limitation of this

current approach is that the focus on formulas does miss out on the usage of models that are

not explicitly introduced. This might especially confuse our picture of the parts of science that

are heavily dependent on central software packages, which are already well understood by the

respective scientific communities, and thus need no formal introduction. We see many opportu-

nities for further work in this area that has to our knowledge not yet been adequately explored

by philosophers of science. A final limitation of this contribution is the focus on exploratory

methods. While we think there is good reason to think that the structures gathered through the

proposed science-mapping approaches are informative of actual structures present in the sciences,

they remain visualization methods providing orientation and background knowledge. It is at this

point still an open methodological question how they can be linked to more rigorous statistical

tests of hypotheses – although it might be also unclear whether this would increase their useful-

ness to philosophers of science, instead of moving the nature of the results firmly into the realm of

scientometrics. Nonetheless, we would certainly like to see an uptake of the presented approach

in the scientometric literature. While data with formulas in usable formats is certainly harder to

procure for most areas than citations or full texts, we believe that additional, even larger-scale

work might yield very interesting results here. Importantly, mathematical structures might not

only be useful as a contrast-case to texts (or citations) but might be used in conjunction to build

richer representations that do justice to complex phenomena of scientific transfer, such as model

templates.

In our initial motivation for the use of computational techniques in philosophy of science, we

suggested that the massive scale of contemporary science complicates case study approaches

to philosophy of science. In view of our present investigation, we would thus suggest that it

can be helpful for case studies, which clearly are necessary for any deeper understanding of

interdisciplinary exchange, to be embedded into larger-scale computational analyses, which help

to evaluate the likelihood that their results generalize. We imagine the relationship here as one

of methodological triangulation, in which a mismatch between the results of the two approaches

can serve as an invitation to reevaluate each one of them.

To summarize: We have asked how the common sense picture of scientific organization, corre-

sponds to a picture drawn from similarities in the application of mathematics. To answer this

question, we have introduced a new form of science mapping, and have presented its results

when applied to a large, contemporary sample of scientific preprints. We have observed that

even when taking a rather global view, the structure of the usage of mathematics in science is

largely dissolved from its thematic structure. This suggests that the interdisciplinary similarities

of models that have been observed by philosophers are by no means a niche phenomenon, or a

mere curiosity, but represent a central organizational feature of contemporary science.
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