
Length Abstraction in Euclidean Geometry

Jeffrey Ketland∗

February 3, 2023

Abstract

I define abstract lengths in Euclidean geometry, by introducing an abstraction
axiom: λ(a, b) = λ(c, d) ↔ ab ≡ cd. By geometric constructions and explicit def-
initions, one may define the Length structure: L = (L,⊕,⪯, •), “instantiated by
Euclidean geometry”, so to speak. I define the notion of a “(continuous) positive ex-
tensive quantity” and prove that L is such a (continuous) positive extensive quantity.
The main results given provide the general characterization of L and its symmetry
group (the multiplicative group of the positive reals); along with the relevant math-
ematical relationships between (abstract) lengths and coordinate lengths (relative to
a coordinate system); and also between lengths, measurement scales and units for
length.

Contents

1 Introduction 1

2 A Simple Theory of (Continuous) Extensive Quantity 7

3 Length Abstraction in Euclidean Geometry 15

4 Main Theorems 36

5 Discussion 38

1 Introduction

Science is built up by assuming certain quantities (functions, usually) exist, and then
a scientific theory is given by a list of sentences asserting that certain general (lawlike
even) relations hold between them. For example, pV = NkBT and ∇ • E = ρ and the
like. It’s an over-arching methodological rule that quantities be measurable:
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POLAND. Email: jeffreyketland@gmail.com. This paper is quite long and for that reason unlikely to
be published. But it might be of some interest to others.
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It is an important principle of physics that no quantity should be introduced
into the theory which cannot, at least in principle, be measured. Newton’s
Laws involve not only the concepts of velocity and acceleration, which can be
measured by measuring distances and times, but also the new concepts of mass
and force. To give the laws a physical meaning, we have, therefore, to show
that these are measurable quantities. (Kibble & Berkshire (1996): §1.3, p. 8)

The outcome of such measurements (experiments) are then called “measurement re-
ports”, like “the period of Halley’s comet, on average, is 76 years”, or “the tempera-
ture of the cosmic microwave background is 2.7 K” or “the rest mass of an electron is
9.1× 10−31 kg” and so on.1

The theory is tested by comparing its concrete predictions with this list of mea-
surement reports. For example, in the late 19th century, atomic spectroscopy revealed
the curious “quantization” or “discreteness” of the emission lines of light from hydrogen
atoms:2

Figure 1: Hydrogen Emission Series

Soon it was guessed, first by Johann Balmer (1885), and generalized by Johannes
Rydberg (1888), that the observed discrete numerical wavelengths can be classified by a
pair of integers, satisfying what is now called the Rydberg formula:3

1

λnm
= RH

(
1

n2
− 1

m2

)
(1)

1A list of measurement reports corresponds to a relational database. For example, the database of
planetary distances and planetary period measurements which Kepler took to corroborate his three laws,
or the database of LHC CERN measurements which verified the existence of the Higgs particle, or the
database for the LIGO experiment which verified the existence of gravitational waves, and so on, are
large relational databases stating that certain quantities take certain values (and usually, along with an
error estimate).

2The observed spectrum is a kind of experimental “photograph” of the underlying electronic orbitals.
3The quantity RH = µe4

8(ϵ0)2h3c
≈ 1.09678 × 107 m−1 is called Rydberg’s constant (for hydrogen),

where µ is the “reduced mass” of the electron relative to the proton. The quantity R∞ = mee
4

8(ϵ0)2h3c
is the

limiting case where we pretend the nucleus is very massive compared to the electron mass me.
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We now have a general law. One can then compare the predicted wavelengths from the
law with the observed wavelengths of spectral lines, corresponding to the Lyman series
(n = 1), Balmer series (n = 2), etc. The currently most accurate data for hydrogen
emission lines is the following:4

Table 1: Observed wavelengths (nm) of Hydrogen emission lines
Series name n m = n+1 m = n+2 m = n+3 m = n+4 m = n+5 Converges to
Lyman 1 121.57 102.57 97.254 94.974 93.780 91.175
Balmer 2 656.3 486.1 434.0 410.2 397.0 364.6
Paschen 3 1875 1282 1094 1005 954.6 820.4
Brackett 4 4051 2625 2166 1944 1817 1458
Pfund 5 7460 4654 3741 3297 3039 2279
Humphreys 6 12370 7503 5908 5129 4673 3282

This is a relational database, of the kind that computers and programming languages
are very happy to deal with. In Python or R, called a data.frame. It is a finite syntactical
object, consisting in a finite number of measurement reports, the numerals appearing
being fixed point decimals, standing for their usual real number referents.

We can then plug in the relevant n,m parameters and the value of RH to obtain the
predicted wavelengths:

Table 2: Predicted wavelengths (nm) of Hydrogen emission lines
Series name n m = n+1 m = n+2 m = n+3 m = n+4 m = n+5

Lyman 1 121.57 102.57 97.255 94.975 93.781
Balmer 2 656.5 486.3 434.2 410.3 397.1
Paschen 3 1876 1282 1094 1005 954.9
Brackett 4 4052 2626 2166 1945 1818
Pfund 5 7460 4654 3741 3297 3039
Humphreys 6 12372 7503 5908 5129 4673

As the reader can see, the agreement between the experimental data and prediction
is extremely close.

In this article, though, I am only interested in length. Very simple examples of
measurement reports, involving length, would be:

(1) The length (height) of Nelson’s Column = 5159 cm.
(2) The length (height) of Nelson’s Column = 2031 inch.

4See Wiese & Fuhr (2009); Kramida et al. (2010).
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Figure 2: Nelson’s Column

As one can see from the photo, the column looks about 20 or 25 times as high as a
person. Assuming people are around 2 m height, Nelson’s Column must be something
like 40 m to 50 m in height. In fact, it’s about 52 m.

Since my undergraduate and graduate physics days, it has always been somewhat
puzzling to me what expressions like “1 cm” and “1 inch” and “52 m” refer to. Not num-
bers, to be sure. But not physical objects, either. It also seems clear that the linguistic
expression “5159 cm” must refer to the real number 5159 “multiplied” by whatever the
expression “1 cm” refers to—but what is this “multiplication”, exactly?5

I wish to explain what these mean. More generally, I wish to explain what “the
length of ...” means, by working up from geometry as our background and introducing
lengths as abstract entities, introduced by an abstraction principle over the geometrical
equivalence relation of congruence (”having the same length as”). Thereby, in the process,
we may explain how the above measurement reports are to be analysed.

Towards this end, in this paper, I intend to establish six main results, described in a
moment, which I hope clarify these questions.

We shall adopt the following basic assumptions.
5As it turns out, it is a form of scalar multiplication by a real, just as one has, e.g., 3v + 7w in a

vector space.
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(1) We assume as primitives unary predicates point(p) and length(l), with the
set P defined as {p | point(p)} and the set L defined as {l | length(l)}.

(2) We assume as geometrical primitives a 3-place predicate Bet, where Bet(a, b, c)
means: “the point b lies on a straight line (inclusively) between the points a
and c”, and a 4-place predicate ≡, where ab ≡ cd means: “the segment ab is
as long as the segment cd is” (or, equivalently, “the segments ab and cd are
congruent”)

(3) We assume that the system (P, B,≡) of points, equipped with the geometrical
betweenness relation B and the geometrical congruence relation ≡, satisfies the
axioms of two-dimensional (synthetic) Euclidean geometry, which we denote
EG(2) below (The axioms are given in §3.1. Here B is the physical extension
of Bet. And ≡ is the physical extension of ≡.) So, we assume (P, B,≡) is a
(full) model of EG(2).

(4) We assume that, on the points, is defined a binary function λ, mapping a pair
(a, b) of points (i.e., a segment) to a length:

λ : P2 → L (2)

The figure below indicates our informal picture of the length function λ:

Figure 3: Lengths of Segments

L: the set of lengths

•
0

• p

• q

• r

• s

•a
• b

•c

•

•

λ(p, q) = λ(r, s)

λ(a, b)

λ(c, c)

pq ≡ rs

ab ≺ pq

λ

λ

λ

λ

Euclidean two-dimensional space: (P, B,≡)

Each segment (which can be identified with the ordered pair of its endpoints) is
mapped by λ to a length in L. We assume that this function λ satisfies the “length
abstraction axioms”:
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(L1) (∀a, b, c, d ∈ P) (λ(a, b) = λ(c, d) ↔ ab ≡ cd) (3)
(L2) (∀l ∈ L) (∃a, b ∈ P) (l = λ(a, b)) (4)

We do not assume that a length is a number. Rather, a length λ(a, b) is a sui generis
abstract object associated with a segment ab between two points a and b. Indeed, for a
null segment cc, we have: λ(c, c) = 0, a zero length, which is not a number. Given that
λ(a, b) is not a number, we need to figure out how λ(a, b) is connected to, or represented
by, a number. To this end, we aim to understand how to connect these abstract lengths,
and coordinate lengths (i.e., real numbers)—which are the objects that physicists and
engineers and architects measure and write down in measurement databases.

Given a Cartesian coordinate system Φ : P → R2, one may define the coordinate length
∆Φ(a, b) of the segment ab. One may also define a “connecting function” hΦ : L → R+

such that, for all points a, b ∈ P:6

hΦ(

length︷ ︸︸ ︷
λ(a, b)) =

coordinate length︷ ︸︸ ︷
∆Φ(a, b) (5)

This function thus relates the (abstract) lengths and coordinate lengths, according to
Φ. For example, such a function will relate the length (i.e., height) of Nelson’s Column
to the number 51.59.

We next define, using geometrical methods in Euclidean geometry, a length addition
operation (⊕), a linear order (⪯), and a scalar multiplication by non-negative reals (•).
Assembled together, we obtain a certain structure, the Length quantity :7

L := (L,⊕,⪯, •). (6)

(Here, I follow the usual mathematical practice of conflating the name of a structure
with the name of its underlying carrier set.)

Separately, we shall define the notion of a (continuous) “extensive quantity” and a
“positive extensive quantity”. In particular, a measurement scale is defined simply be
an isomorphism from such a quantity to the positive cone of the linearly ordered vector
space (R,+,≤, •).

Our first result is that, for any Cartesian coordinate system Φ,
6In this paper, R+ = {x ∈ R | 0 ≤ x} and so includes 0. If I wish to remove 0, I write: R+ − {0}.
7There is a minor conflation, in all measurement theory literature between the notion of Length—as

a quantity or quantitative property—and the notion of specific or individual lengths, like 3 cm and 25
m. I shall simply acquiesce in this, but sometimes capitalize, using “Length” to mean the quantitative
property as a whole, and “length” to mean a specific element of Length. Some authors, and this is
standard in physics, instead say that Length is a “quantitative property” (e.g., Eddon (2013)) or say that
Length is a “physical attribute”. On our view, Length is (the positive cone of) a linearly ordered vector
space, and specific lengths are “vectors” in that space, and units are basis vectors.

6



(Theorem 1) hΦ is a measurement scale for L.

And then, from Theorem 1, it follows that:

(Theorem 2) L is a positive extensive quantity.

Third, we establish, using the theory of extensive quantities, that, given any length
unit u ∈ L (i.e., a positive length u not equal to 0), for all any a, b ∈ P:

(Theorem 3) λ(a, b) = ∥λ(a, b)∥u • u

Next, we establish the following connections between coordinate lengths and lengths:

(Theorem 4) ∆Φ(a, b) = ∥λ(a, b)∥uΦ

(Theorem 5) λ(a, b) = ∆Φ(a, b) • uΦ

Finally, we obtain a description of the automorphism group of theLengthquantity:

(Theorem 6) Aut(L) ∼= (R+ − {0},×).

So, Aut(L) is the multiplicative group of positive reals.
These six theorems will appear bundled together in §4.

2 A Simple Theory of (Continuous) Extensive Quantity

The theory (more exactly, a few definitions, followed by lemmas) given in this section
pertains to continuous extensive quantities. Indeed, Nature seems to provide us withMass
(M), Length (L) and Time (T), and these seem to be precisely such continuous extensive
quantities. This is, of course, an empirical claim, and is subject to revision.8

Our first empirical, or scientific, assumption is that Euclidean geometry EG holds on
the system of points with respect to primitive betweenness and congruence relations.9

And our second assumption is that lengths are “implicitly defined” by the length abstrac-
tion principle. We can define an addition operation on the lengths, an ordering of the
lengths, and a scalar multiplication of the lengths by non-negative reals, and prove that
the length structure obtained is indeed a (continuous, positive) extensive quantity. But
I shall generally drop the qualifier “continuous” below.

8However, one notes that Nature also provides us with electrical charge, which is discrete, and seems
to be also extensive in a certain sense (charges, in some sense, can be “added”; there is a zero charge;
it is ordered; and one has a scalar multiplication by integers). This structure, to speak abstractly, is
therefore related to the ordered group of integers (Z,+,≤, •), equipped with a scalar multiplication •

by integers. Note that the group (Z,+) has only two automorphisms (i.e., z 7→ z and z 7→ −z), and
the ordered group (Z,+,≤) is rigid, and hence its symmetry group is trivial. On the other hand, the
symmetry group for Length (L), as we shall see, turns out to be (R+ −{0},×), the multiplicative group
of positive reals. As I understand it, in the recent monograph Wolff (2020), Joanna Wolff suggests that
quantities are structures whose symmetry groups are Archimedean groups. I’m unsure how this applies
to charge, since its symmetry group is trivial (it has one element: the identity map). But I am possibly
not understanding the proposal.

9The relevant axioms for EG are given below, in §3.1.
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Definition 1 (Extensive quantity). A (continuous) extensive quantity

E = (E,⊕,⪯, •) (7)

is defined to be a one-dimensional linearly ordered vector space over R. Any element
of E is also called a specific, or individual, quantity (in E).

As mentioned above, we drop the qualifier “continuous”.10

Lemma 1. If E is an extensive quantity, then 0 is the unique q ∈ E such that, for all
quantities q′ ∈ E, q′ + 0 = q′. (I.e., the quantity 0 is the “zero vector” in E .)

Definition 2 (Standard coordinate extensive quantity). We define the linearly ordered
one-dimensional vector space:11

E0 := (R,+,≤, •). (8)

We call E0 “the standard coordinate extensive quantity”.

Lemma 2. All extensive quantities are isomorphic to E0.

Proof. Suppose V and V ′ are vector spaces over R of dimension n, with n a positive
integer. It is a theorem of linear algebra that V is isomorphic to V ′.12 Consequently (we
ignore the ordering for a moment), if E and E ′ are vector spaces of dimension 1, then
they are isomorphic (as vector spaces), and in this case, isomorphic to R.

Next, it is also a theorem of linear algebra that there exists exactly one linear ordering
on the vector space R. Let (V,⪯) and (V,⪯′) be linearly ordered one-dimensional vector
space over R. Let u be a basis for V . Define relations R,R′ on R by the following: for
any reals, x, y, xRy := x • u ⪯ y • u and xR′y := x • u ⪯′ y • u. Then (R, R) and (R, R′)
are ordered fields. Hence, R = R′. By cancellation, ⪯=⪯′. Consequently, if E and E ′

are ordered vector spaces of dimension 1, then they are mutually isomorphic as ordered
vector spaces. E0 is a linearly ordered vector space of dimension one. Hence, all extensive
quantities are isomorphic to E0.

Definition 3 (Unit). Let E = (E,⊕,⪯, •) an extensive quantity. Then any element
u ∈ E with 0 ≺ u is called a “unit”.

10The reason it may be called “continuous” is that the ordering reduct (E,⪯) of an extensive quantity,
as defined, is isomorphic to the standard continuous ordering (R,≤) of the real numbers. In other words,
(E,⪯) is a separable, order-complete DLOWE (dense linear order without endpoints). It is a classic
result of order theory (Cantor’s Isomorphism Theorem) that any countable DLOWE is isomorphic to
(Q,≤). And it is a classic result of order theory that, up to isomorphism, there is exactly one such
separable, order-complete DLOWE: it is isomorphic to (R,≤).

11+ here is the vector addition, ≤ is the linear order, and • is the scalar multiplication.
12This is quite a simple result, and holds for any base field F : if V is a vector space over F of dimension

n, then V ∼= Fn. See, e.g., Dummit & Foote (2004): 411 (Theorem 6).
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Any unit is nothing more than a positive basis vector in the ordered vector space.

Definition 4 (Measurement scale). A measurement scale for an extensive quantity E =
(E,⊕,⪯, •) is an isomorphism

h : E → E0 (9)

In particular, if h : E → E0 is an isomorphism, the following isomorphism conditions
hold:13

(1) h : E → R is a bijection.
(2) For any q1, q2 ∈ E: h(q1 ⊕ q2) = h(q1) + h(q2).
(3) For any q1, q2 ∈ E: q1 ⪯ q2 ↔ h(q1) ≤ h(q2).
(4) For any q ∈ E, any x ∈ R: h(x • q) = x · h(q).

Definition 5. Meas.Scale(E) is the class of measurement scales on a fixed extensive
quantity E .

Lemma 3 (Closure). Let h : E → E0 be a measurement scale. Let c > 0 be a real.
Define h′ : E → E0 by: for all q ∈ E, h′(q) = c · h(q). Then h′ : E → E0 is a measurement
scale.

Proof. Multiplication of reals by a fixed non-zero real yields a bijection, which implies
that h′ : E → R is a bijection. Then what I like to call an “equation stream” as follows
verifies the isomorphism condition for h′ wrt ⊕:

h′(q1 ⊕ q2) = c · h(q1 ⊕ q2)) (10)
= h(c • (q1 ⊕ q2)) (11)
= h(c • q1 ⊕ c • q2) (12)
= h(c • q1) + h(c • q2) (13)
= c · h(q1) + c · h(q2) (14)
= h′(q1) + h′(q2) (15)

A similar equation stream verifies the isomorphism conditions for h′ wrt ⪯ and •.

So, the class Meas.Scale(E) of measurement scales on a fixed extensive quantity E is
closed under multiplication by a positive real.

Lemma 4 (Uniqueness Theorem for Scales). Let E be a given extensive quantity. Let
h, h′ ∈ Meas.Scale(E). I.e.,

13The smaller dot symbol “·” here, in the term “x · h(q)” below, is simply the multiplication of real
numbers, inside the underlying field, R. I use it because the term “xh(q)” might be a bit confusing.
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h, h′ : E → E0 (16)

are measurement scales for E . Then there exists a constant c ∈ R with c > 0 such
that, for all quantities q ∈ E,

h′(q) = c · h(q) (17)

Proof. Let h, h′ : E → E0 be our given isomorphisms. We define f := h′ ◦ h−1. Then

f : E0 → E0 (18)

is an automorphism of E0 = (R,+,≤, •). So, f is a bijection R → R such that, for all
x, y ∈ R, we have:

f(x) ≤ f(y) ↔ x ≤ y (19)
f(x+ y) = f(x) + f(y) (20)

The first equation implies that f is monotonic. The second equation is Cauchy’s
Additive Functional Equation. It is a famous theorem of analysis that if f : R → R is
monotonic and f satisfies Cauchy’s Additive Functional Equation, then f(x) = c · x, for
some c > 0 (i.e., c = f(1)).

Hence, there is a c > 0 such that, for all x ∈ R, we have:

f(x) = c · x (21)

Thus,

(h′ ◦ h−1)(x) = h′(h−1(x)) = c · y (22)

So, letting q = h−1(x), we have:

h′(q) = c · h(q) (23)

as claimed.

Lemma 5. Let h : E → E0 be a measurement scale for an extensive quantity E . There
is a unique q ∈ E such that h(q) = 1. Moreover, 0 ≺ q.
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Proof. Since h is an isomorphism, we have a bijection h : E → R. Since h is a surjection,
we have h(q) = 1, for some q ∈ E; and since h is an injection, this q is unique. Obviously
0 < 1. Since h is an isomorphism, it follows that h−1(0) ≺ h−1(1). Hence, 0 ≺ q.

Lemma 6. Let E be an extensive quantity. Let u be any unit. Let q ∈ E. Then there
is unique x ∈ R such that:

q = x • u (24)

Proof. Since E is an extensive quantity, we have an isomorphism E
h∼= (R,+,≤, •). Let u

be any unit. Let q ∈ E.
Given h, let w = h(u) and let y = h(q). Since u is a unit, 0 ≺ u, and hence, by the

isomorphism, 0 < h(u). So, 0 < w and we can divide by w. Let

x :=
y

w

(
=

h(q)

h(u)

)
(25)

So, wx = y. I.e., xh(u) = h(q). Since h is an isomorphism, it preserves scalar
multiplication •. So, h(x •u) = h(q). And therefore, by injectivity of h, we have: x •u = q,
as claimed.

Definition 6. Let E be an extensive quantity. Let u be a unit. Let q ∈ E. Then ∥q∥u
is defined to be the unique x ∈ R such that q = x • u.

Definition 7 (Magnitude of a quantity). Let E be an extensive quantity. Let u be a
unit. The real number ∥q∥u is called “the magnitude of the quantity q, with respect to u”.

Lemma 7 (Magnitude lemma). Let E be an extensive quantity. Let u be a unit. Let
q ∈ E. Then

q = ∥q∥u • u. (26)

Lemma 8 (Invariance under change of unit). Let E be an extensive quantity. Let u, u′

be units for E . Let q ∈ E. Then

∥q∥u • u = ∥q∥u′ • u′ (27)

Proof. This is immediate from The Magnitude Lemma.

Lemma 9 (Division). Let E be an extensive quantity. Let q1, q2 ∈ E be quantities where
q2 ̸= 0. Let u,u′ be units. Then:

∥q1∥u

∥q2∥u
=

∥q1∥u′

∥q2∥u′
(28)
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Proof. Since u, u′ are both units, there is unique x > 0 such that:

u′ = x • u (29)

Taking the component magnitudes relative to the units, we have:

∥q1∥u • u = ∥q1∥u′ • u′ = x∥q1∥u′ • u (30)
∥q2∥u • u = ∥q2∥u′ • u′ = x∥q2∥u′ • u (31)

And thus (recall that E is a vector space, and u is a basis vector)

∥q1∥u = x∥q1∥u′ (32)
∥q2∥u = x∥q2∥u′ (33)

The magnitudes ∥q2∥u and ∥q2∥u′ are non-zero, by hypothesis. Dividing, we have:

∥q1∥u

∥q2∥u
=

∥q1∥u′

∥q2∥u′
(34)

Definition 8 (Division). Let E be an extensive quantity. Let q1, q2 ∈ E be quantities
where q2 ̸= 0. We define:

q1
q2

:=
∥q1∥u

∥q2∥u
(35)

where u is any unit.

This definition yields a unique result (i.e., is independent of the unit chosen) by the
previous lemma.

Definition 9 (Unit of a scale). Let h : E → E0 be a measurement scale for an extensive
quantity E . The unique q ∈ E such that h(q) = 1 is called “the unit of the measurement
scale h”. This unit is denoted 1h.

Lemma 10. q = 1h if and only if h(q) = 1.

Proof. Let q = 1h. Then h(q) = h(1h) = 1 by the above definition. Conversely, suppose
h(q) = 1. Let 1h be the unit of h. Thus, h(1h) = 1. This implies: h(q) = h(1h). Then,
by injectivity of h, we have: q = 1h.

Lemma 11. Let E be an extensive quantity. Let u be a unit. Let measurement scales
h, h′ be such that h(u) = 1 and h′(u) = 1. Then h = h′.
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Proof. Let q ∈ E. We have unique x such that q = x • u. So, we infer

h(q) = h(x • u) = xh(u) = x and h′(q) = h′(x • u) = xh′(u) = x (36)

So, for all q ∈ E, h(q) = h′(q). Thus, h = h′.

Lemma 12. Let E be an extensive quantity. Let u be a unit. Then there is a unique
measurement scale h such that h(u) = 1.

Proof. Suppose E is an extensive quantity and u a unit. Since E is an extensive quantity,

we have an isomorphism E
h′
∼= (R,+,≤, •). Let 1h′ be its unit. So, h′(1h′) = 1. Let

x = ∥u∥1h′ . So,

u = x • 1h′ (37)

We define h as follows:

h(q) =
1

x
h′(q) (38)

Now h is a measurement scale, since x ̸= 0.

h(u) = h(x • 1h′) = xh(1h′) = x
1

x
h′(1h′) = h′(1h′) = 1 (39)

This measurement scale is unique by the previous lemma.

Definition 10. Let E be an extensive quantity. Let u be a unit. The unique measurement
scale h such that h(u) = 1 is denoted: hu. This is called “the measurement scale for the
unit u”.

Lemma 13 (Scale invariance). Let E be an extensive quantity and let h, h′ : E → E0 be
measurement scales for E . Then:

∥q∥1h′
• 1h′ = ∥q∥1h

• 1h. (40)

Proof. This is immediate from The Magnitude Lemma.

Lemma 14. Let E be an extensive quantity. Let π : E → E be an automophism of E .
Then there is a unique c > 0, such that, for all q ∈ E,

π(q) = c • q. (41)

13



Proof. Let π : E be an automophism of E . Because E is isomorphic to E0, it follows that
any automorphism π : E can be factored as:

π = (h′)−1 ◦ h. (42)

But, we know that there exists c > 0 such that, for all q ∈ E, ((h′)−1 ◦ h)(q) = c • q,
with c > 0. Hence, for any automorphism π, there is a unique c > 0, such that, for all
q ∈ E, π(q) = c • q.

Lemma 15 (Automorphism group). Let E be an extensive quantity. Then:

Aut(E) ∼= (R+ − {0},×). (43)

Proof. Let π : E be an automophism of E . By Lemma 14, there is a bijection c 7→ πc,
between the automorphisms Aut(E) and the positive reals R+ − {0}. Let πc be the
automorphism corresponding to c > 0.

By defining composition ◦ of automorphisms in the obvious way, it follows that, for
any c1, c2 ∈ R+ − {0},

πc1 ◦ πc2 = πc1×c2 . (44)

Hence, Aut(E) ∼= (R+ − {0},×).

Next, we introduce the derivative notion of a positive extensive quantity. This requires
the mathematical notions of a cone, and positive cone in an ordered vector space.

Definition 11 (Cone). Let V = (V,⊕, •) be a vector space over R. A subset C ⊆ V
is called a cone if it is closed under multiplication by a positive real: i.e., for all x > 0,
x • C ⊆ C. A cone is called pointed if it contains the origin. A cone C is called convex
if it is closed under vector addition: C ⊕ C ⊆ C. Let (V,⪯) be an ordered vector space.
The subset V + = {v ∈ V | 0 ⪯ v} is a pointed convex cone with vertex 0. V + is called
the positive cone of V . It is denoted by PosCone(V ).

Fortunately, we are dealing with a very simple one-dimensional vector space over R,
unique up to isomorphism. I.e., E0. In this case, we do not have to deal with all the
complexities of the theory of cones and positive cones, aside from this simple case.

Definition 12. Let R+ := {x ∈ R | 0 ≤ x}. Then PosCone(E0) := (R+,+,≤, •).

Definition 13 (Standard coordinate positive extensive quantity). We define E+
0 to be

PosCone(E0). We call E+
0 “the standard coordinate positive extensive quantity”.

Definition 14 (Positive extensive quantity). A (continuous) positive extensive quantity
E+ is a structure isomorphic to E+

0 . Below we shall sometimes call this a CPEQ.
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Definition 15 (Measurement scale). A measurement scale for a (continuous) positive
extensive quantity E+ is an isomorphism

h : E+ → E+
0 (45)

Definition 16 (Unit). A unit for a (continuous) positive extensive quantity E+ is an
element u such that 0 ≺ u.

Then, Lemmas 1–15 also hold for (continuous) positive extensive quantities, with
suitable adjustments.

3 Length Abstraction in Euclidean Geometry

What is the point of all these definitions and lemmas in §2, you ask?
First, it seems to be true that the base quantities, M, L, T, in physics all seem to

be CPEQs: continuous positive extensive quantities. I.e., (isomorphic to) the positive
cone of the linearly ordered vector space over R. This explains why we see the following
relationship between a specific length, its magnitude relative to a unit and the unit itself
(and likewise for a specific temporal duration or a specific mass):

The Magnitude Lemma q = ∥q∥u • u (46)

E.g.,

5 cm = ∥5 cm∥1cm
• 1cm (47)

3 kg = ∥3 kg∥1kg
• 1kg (48)

And relationships between different units, such as:

1cm = 0.01 • 1m (49)
∥1cm∥1m = 0.01 (50)

Which then give, for example:

∥5 cm∥1m = 0.05 (51)
5 cm = ∥5 cm∥1cm

• 1cm = ∥5 cm∥1m
• 1m = 0.05 • 1m (52)

But we have, as yet, not precisely defined how the system of lengths behaves or even
what it is. The idea next developed is that we shall begin with the axioms for Euclidean
geometry, expressed synthetically. We then use abstraction axioms to define the system
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L of abstract lengths, with its operation ⊕, its relation ⪯ and its scalar multiplication •

(by positive reals). And from this, we can prove that the result system is a (continuous)
positive extensive quantity.

We shall begin with two dimensional synthetic Euclidean geometry EG(2) and suitable
abstraction axioms for lengths:

(L) λ(a, b) = λ(c, d) ↔ ab ≡ cd (53)

Taking (L) as the basic axiom from which one introduces length has been mentioned
several times before. An example, from Paolo Mancosu’s monograph Abstraction and
Infinity :

Consider the notion of equality of segments in Euclid. Starting from the con-
gruence relation between segments, a contemporary mathematician might nat-
urally introduce length using a definition by abstraction such as ‘λ(a) = λ(b)
iff a is congruent to b’ (with the option of explicitly defining length by means of
equivalence classes or other devices or simply accepting lengths as new entities,
as Peano does). But Euclid does not do this and he simply says, in com-
mon notion 4, that two segments are equal if they ‘coincide with one another’
(‘Things which coincide with one another are equal to one another’). Then in
the midst of the proof of proposition I.4 we find the converse being implicitly
used for segments (‘if two segments are equal they coincide with one another’).
Is the notion of equality of segments taken to be primitive or is it introduced
by abstraction (for it is not defined explicitly)? If we exclude the former case
then, if there is a definition by abstraction of equality of segments, it is at best
implicit, for what we are originally given is not a definition introduced by an
‘if and only if’ (and a fortiori not a definition by abstraction). Moreover, there
is no mention of the class of segments that have in common the property of
being congruent (which in amore contemporary setting could be used to define
λ(a), namely the length of a). (Mancosu (2016): 23)

Mancosu also mentions multiple authors from the period roughly 1850 through to
1910 at least saying rather similar things about the use of abstraction, for the case of
length. I emphasize “saying” though. Because what is striking, however, is that, aside
from these many mentions of the relevant abstraction principle (for length), it seems
that nowhere has the resulting theory been worked out explicitly. Mancosu mentions,
“. . . accepting lengths as new entities, as Peano does as Peano does”, but I’m not directly
familiar with the specific work in mind. So, modulo that, this approach has not been
worked out for lengths. Here, the aim is to work out that missing theory.

The method of definition by abstraction—upon discovering an equivalence relation,
∼, considering the equivalence classes: these will, by construction, satisfy [a] = [b] ↔ a ∼
b—is perfectly routine in modern mathematics, although it was novel when versions of it
appeared in the works of Cantor, Dedekind and Frege. In particular, Frege’s analysis of
“natural number” is grounded in the equivalence relation of equinumerosity of finite sets.14

14See Frege (1884). Frege’s overall project did flounder, as Bertrand Russell discovered an inconsistency
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Likewise, Cantor’s analysis of cardinals and ordinals. And the standard construction of
the integers and the rationals, starting with the natural numbers, equally proceeds via
abstraction with respect to an equivalence relation.15

We too will work with an abstraction axiom: (L). Using this, and a separate axiom
(stating that, for each length l, there exist points a, b such that l = λ(a, b)), we may, using
various explicit definitions, define the “Length quantity” (or, equivalently, the “Length
attribute”, or the “Length property”):

L = (L,⊕,⪯, •) (54)

Then we shall prove a main theorem, Theorem 2, that L is a positive extensive
quantity. We can then piggyback on the results in §2 to see how (abstract) lengths,
coordinate systems, numerical coordinate lengths, and units are all inter-related.

In §3.1 and §3.2, I need to make use of a series of established results concerning the
axiomatization of synthetic geometry and representation theorems related to synthetic
geometry. Especially the following three: Lemma 18, Lemma 19 and Lemma 23. Lack of
space prevents providing proofs of these. Instead, I provide guidance to the literature.

3.1 Axioms

Our approach is axiomatic.

In constructing an axiomatic theory T , we usually make use of other axiomatic
theories which are presupposed in the following sense: all the primitive notions
in the presupposed theory are included in the system of primitive notions of
T , and all the axioms of those theories are included in the axiom system of
T . Mathematical theories presuppose as a rule mathematical logic and usually
also set theory (to a larger or smaller extent). In developing geometry in this
book we presuppose mathematical logic, set theory and the arithmetic of the
real numbers (which can either be treated as an independent theory or can
be constructed as a portion of set theory). An axiomatic treatment of these
theories can be found in various special works. (Borsuk & Szmielew (1960):
6–7)

I intend to do precisely the same. But in the times when the idea of a scientific theory
as an axiomatic system has fallen out of fashion, it’s worth including the details of these

in May 1901 and informed Frege about it in 1902. Thereupon Frege gave up, unable to properly locate the
source of the problem. But Frege’s analysis of what natural numbers are was not the real culprit. Rather
it was Frege’s background analysis of “sets, classes and concepts” which contained an inconsistency:
essentially, Basic Law V: ϵ(X) = ϵ(Y ) → X = Y . This is inconsistent. But if we drop this and use a
different abstraction axiom, card(X) = card(Y ) → X ∼= Y , now often called “Hume’s Principle” (HP),
everything works and one can prove the axioms of second-order arithmetic from (HP) using second-
order logic. For detailed presentations of the precise derivation of second-order arithmetic from Frege’s
“logicist” assumptions, see Heck (2011) and Zalta (2021).

15Such matters relating to cardinals, ordinals and the construction of the number systems, are generally
explained, in some detail, in a standard set theory textbook, such as Halmos (1974) or Drake & Singh
(1996).
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presuppositions. It’s not in fact difficult to in fact state what the presupposed set theory
is, as follows:16

Definition 17 (Ambient set theory). We adopt an ambient set theory, with urele-
ments (or atoms), which we’ll call AM (“applied mathematics”). It is three-sorted,
{atom, class, global}, where the sorts atom and class are assumed disjoint and ex-
haustive, and both of these are treated as subsorts of global. In the strictest syntactic
sense, the sort atom has variables ai; the sort class has variables Xi; and the sort
global has variables xi. But we shall violate this stricture almost immediately (e.g.,
using p, q, r, s, a, b, c, d as variables for points (atoms), using l, l1, l2, . . . are variables for
lengths (also atoms), and various other dedicated variables, such as, e.g., “Φ”, and “Φ′”
for coordinate systems). The single primitive is the binary membership predicate ∈. We
assume that all standard pure mathematical notions have been defined inside AM, via
some standard implementation.17

A suitable axiom system AM is:18

Partition atom(x) ↔ ¬class(x)
Atoms atom(x) → (empty(x) ∧ El(x))
Extensionality ∀x (x ∈ X ↔ x ∈ Y ) → X = Y
Class Comprehension ∃X ∀x (x ∈ X ↔ (El(x) ∧ φ(x)))

Pairing x, y ∈ U → {x, y} ∈ U
Union x ∈ U →

⋃
x ∈ U

Power x ∈ U → P(x) ∈ U
Infinity (∃x ∈ U) (∅ ∈ x ∧ (∀w ∈ x) (w+ ∈ x))
Replacement (Fun(F ) ∧ Dom(F ) ∈ U) → Ran(F ) ∈ U
Choice (∀y ∈ X) (set(y) ∧ y ̸= ∅) → (∃F : X →

⋃
X) (∀y ∈ X) (F (y) ∈ y)

where we have adopted the following definitions:

atom(x) := ∃a (a = X) “x is an atom”.
class(x) := ∃X (x = X) “x is a class”.
El(x) := ∃X (x ∈ X) “x is an element”.
set(x) := class(x) ∧ El(x) “x is a set”.
empty(x) := ¬∃y (y ∈ x) “x is empty”.
U := {x | x = x} “the universal class”

Definition 18 (Signature and definitions). The signature σ (i.e., for applied mathemat-
ics) we assume is given by the following primitives:

16For the curious reader not so closely familiar with how these definitions and reductions work, I would
very very strongly recommend Suppes (1960), Halmos (1974), Drake & Singh (1996) or Machover (1996)
(and for the approach we sketch, Rubin (1967), which unfortunately, is out of print). There are more
advanced set theory textbooks, like Jech (2002) or Kunen (1980). But these are not the place to start,
as they are too advanced.

17E.g., singleton {x}, subset A ⊆ B, union A ∪B, intersection A ∩B, pair {x, y}, ordered pair ⟨x, y⟩,
Cartesian product A×B, power set P(A), being a relation or a function Rel(R) or Fun(R), the domain
Dom(R) and range Ran(R) of a relation and a function, the usual number systems, N, Z, Q, R, C, sequences
(ai)i∈I , and so on.

18With a small adjustment, this is the version of Morse-Kelley class theory with urelements given in
Rubin (1967).
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σ = {
geometrical︷ ︸︸ ︷

point, Bet,≡, length,

length function︷︸︸︷
λ ,∈} (55)

The sorts of these primitive symbols are declared as follows:19

point :: atom ⇒ bool
length :: atom ⇒ bool
Bet :: atom ⇒ atom ⇒ atom ⇒ bool
≡ :: atom ⇒ atom ⇒ atom ⇒ atom ⇒ bool
λ :: atom ⇒ atom ⇒ atom
∈ :: global ⇒ global ⇒ bool

We introduce the following explicit definitions:20

co1(a, b, c) := Bet(a, b, c) ∨ Bet(b, c, a) ∨ Bet(c, a, b) a, b, c are collinear
co2(a, b, c, d) := ∃p [(co1(p, a, b) ∧ co1(p, c, d)) ∨ (co1(p, a, c) ∧ co1(p, b, d)) ∨

(co1(p, a, d) ∧ co1(p, b, c))]
a, b, c, d lie in the same plane

cnfg(a, b, c) := a ̸= b ∧ co1(a, b, c) a, b, c is a configuration
P := {p | point(p)} the set of points
ℓ(a, b) := {c ∈ P | co1(a, b, c)} set of points collinear with a, b
L := {l | length(l)} the set of lengths

Definition 19. L(σ) is the formalized language built up over the signature (and sorts).
It is a three-sorted first-order language.

Definition 20. The axioms of synthetic two-dimensional Euclidean geometry EG(2) in
L(σ) are the following eleven (the variables “p”, “q” are so on are ranging over points):

E1. Bet-Identity Bet(p, q, p) → p = q.
E2. ≡-Identity pq ≡ rr → p = q.
E3. ≡-Transitivity pq ≡ rs ∧ pq ≡ tu → rs ≡ tu.
E4. ≡-Reflexivity pq ≡ qp.
E5. ≡-Extension ∃r (Bet(p, q, r) ∧ qr ≡ su).
E6. Pasch Bet(p, q, r) ∧ Bet(s, u, r) → ∃x (Bet(q, x, s) ∧ Bet(u, x, p)).
E7. Euclid Bet(p, q, t) ∧ Bet(r, q, s) ∧ p ̸= q → (∃x, y) (Bet(p, r, x) ∧ Bet(p, s, y) ∧ Bet(x, t, y)).
E8. 5-Segment (p ̸= q∧Bet(p, q, r)∧Bet(p′, q′, r′)∧pq ≡ p′q′∧qr ≡ q′r′∧ ps ≡ p′s′∧qs ≡ q′s′) → rs ≡ r′s′.
E9. Lower Dimension There exists three points which are not co1.
E10. Upper Dimension Any four points are co2.
E11. Continuity Axiom ∃r (∀p ∈ X1) (∀q ∈ X2) Bet(r, p, q) → ∃s (∀p ∈ X1) (∀q ∈ X2) Bet(p, s, q)
19This is an Isabelle-style notation. Isabelle is a higher-order logic (HOL) theorem proving assistant

and automated prover designed by Lawrence Paulson in the late 1980s in Cambridge. See Wenzel et al.
(2020) for the current Isabelle user’s manual. In this notation, “Bet :: atom ⇒ atom ⇒ atom ⇒ bool” is
a metatheory claim, indicating that Bet is a three-place predicate on atoms; and “λ :: atom ⇒ atom ⇒
atom” likewise indicates that λ is a binary function symbol on atoms.

20See Field (1980): 53, footnote. The precise definitions of the predicates con, expressing points being
in the same n-dimensional subspace, are given in Szczerba & Tarski (1979): 190. (Szczerba & Tarski call
these predicates Ln.) The definition is recursive: for n > 1, each con is defined in terms of the previous
ones. These definitions are due to Kordos (1969).
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See Tarski (1959), pp. 19–20, for a formulation of the first-order two-dimensional
theory, with twelve axioms and one axiom scheme (for continuity); and Tarski & Givant
(1999) for a simplification down to ten axioms and one axiom scheme (for continuity).
The above axiom system is the second-order, two-dimensional theory: i.e., the single
Continuity Axiom is the second-order axiom which quantifies over sets of points. Of
course, this is second-order relative to points; relative to sets & classes, it is first-order,
and our whole theory is indeed a first-order theory in a first-order language L(σ), with
∈ included amongst the primitives.

Definition 21 (Length abstraction axioms). The axioms for length abstraction are:

(L1) (∀a, b, c, d ∈ P) (λ(a, b) = λ(c, d) ↔ ab ≡ cd). (56)
(L2) (∀l ∈ L) (∃a, b ∈ P) (l = λ(a, b)). (57)

Definition 22 (Typing axioms). To ensure our theory knows what kinds of entities
P,L, B,≡ and λ are we need to tell it, explicitly. This requires eight “typing axioms”:

(T1) P ⊆ Atom
(T2) L ⊆ Atom
(T3) P ∩ L = ∅
(T4) set(P)
(T5) set(L).
(T6) B ⊆ P3

(T7) ≡⊆ P4

(T8) λ : P2 → L

(Strictly speaking, since we have a function symbol “λ”, we need to tell the theory
how calculate what the value of “λ(x, y)” is when either x or y are not points. A standard
convention would be, e.g., λ(x, y) = 0. Since we are not trying to put this into a theorem
prover, I feel I can fuzz over such arcane details, and we leave it to common sense never
to state a result where “λ” gets applied to something not a point.)

Definition 23 (Axioms). Our overall non-logical axioms are:

(1) The axioms of AM (ambient set (class) theory).
(2) The axioms of EG(2) (geometry).
(3) The typing axioms (T1)–(T8).
(4) The axioms for length abstraction, (L1) and (L2).

We let EG+(2) be the set of these axioms.

The results we give below are stated and verified semi-formally; but they can, in
principle, be proved inside EG+(2).

Lemma 16 (Symmetry of λ). λ(a, b) = λ(b, a).

Proof. We have: ab ≡ ba (by E4). By (L1), λ(a, b) = λ(b, a).
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Lemma 17 (Null segments are congruent). λ(p, p) = λ(q, q).

Proof. Consider points p, q. From E5, there exists a point r such that Bet(p, p, r) and
pr ≡ qq. And hence, from E2, p = r. And so pp ≡ qq. By (L1), λ(p, p) = λ(q, q).

Definition 24 (Definition of zero abstract length). 0 := λ(p, p).

This definition is independent of the point p, by the previous lemma.

3.2 Representation

Lemma 18 (Representation theorem for lines). Let O, I ∈ P be distinct points and let
ℓ = ℓ(O, I) be the line containing them. We define on ℓ(O, I) an addition operation +, a
multiplication operation × and an order ≤. Then there exists a unique isomorphism:21

φO,I : (ℓ, O, I,+,×,≤) → (R, 0, 1,+,×,≤) (58)

(I have “overloaded” the symbols pertaining to operations on the line ℓ, and the
symbols pertaining to operations in the ordered field of reals. Hopefully context always
disambiguates.)

We may indicate this isomorphism like this:

Figure 4: Line representation: φO,I

• • •

• • •
0 1 φO,I(p)

O I p
ℓ(O,X)

R

φO,I

The isomorphism is called “the local coordinate system” on the line ℓ(O, I). Following
Burgess (Burgess & Rosen (1997): 107), we may call the two points O, I “benchmarks”.

Definition 25. For x,y, z,u ∈ R2, we define:22

∆2(x,y) :=
√
(x1 − y1)2 + (x2 − y2)2 (59)

BR2(x,y, z) := (∃λ ∈ [0, 1]) (Φ(q)− Φ(p) = λ(Φ(r)− Φ(p))) (60)
xy ≡R2 zu := ∆2(x,y) = ∆2(z,u) (61)

We say that the system (R2, BR2 ,≡R2) is “the standard Euclidean coordinate struc-
ture”.

21Aside from the part dealing with ≤, the most detailed proof of this I know of can be extracted from
Bennett (1995), which is a descendant of proofs going back to Hilbert (1899) and Veblen (1904). The
(short) proof of Theorem 1 of Tarski (1959) provides the required definition of ≤ on a line.

22x = (x1, x2) etc.
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Definition 26. Let O,X, Y be three points in P. Then we say that O,X, Y is a Euclidean
2-frame in P if O ̸= X, O ̸= Y , X ̸= Y , and OX ≡ OY and OX ⊥ OY . Again, following
Burgess, we can call these three points “benchmarks”.

Figure 5: Euclidean 2-frame

•

•

•
O X

Y

ℓ(O,X)

ℓ(O, Y )

Lemma 19 (Representation theorem for EG(2)). Let O,X, Y be a Euclidean 2-frame.
There exists a unique bijection:23

Φ : P → R2 (62)

such that:

(1) Φ(O) = (0, 0) and Φ(X) = (0, 1) and Φ(Y ) = (1, 0)
(2) For any p, q, r ∈ P: Bet(p, q, r) iff BR2(Φ(p),Φ(q),Φ(r))
(3) For any p, q, r, s ∈ P: pq ≡ rs iff Φ(p)Φ(q) ≡R2 Φ(r)Φ(s).

Definition 27 (Cartesian coordinate system). Such a mapping Φ as given above is called
a Cartesian coordinate system. It is an isomorphism from (P, B,≡) to the standard
coordinate structure (R2, BR2 ,≡R2)

The basic gist of the proof of the representation theorem is provided in the diagram:
23The proof of this is sketched in Theorem 1 in Tarski (1959). In fact Tarski proves a slightly dif-

ferent result, concerning the first-order theory which I call EG0(2). Tarski shows that, for any model
M |= EG0(2) there is a real-closed field F such that M is isomorphic to “the two-dimensional Cartesian
coordinate space over F ”. For any full model of the second-order theory EG(2), this field is forced to be
R.
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Figure 6: Coordinate system Φ (based on benchmarks O,X, Y )

•

•

•

•

O X

Y

p•pY

•pX
•

•

•
(0, 0) (1, 0)

(0, 1)

x-axis

y-axis

•φO,Y (pY )

•
φO,X(pX)

•Φ(p) :=
(
φO,X(pX)
φO,Y (pY )

)Φ

P R2

Given a point p ∈ P, we first project it onto the axes ℓ(O,X) and ℓ(O, Y ) by lines
parallel to the axes. This yields two unique points, pX and pY . We then define Φ(p) to
be the pair of the local coordinates on the axes for these two points. I.e.,

Φ(p) :=

(
φO,X(pX)
φO,Y (pY )

)
(63)

One must then prove that this function Φ : P → R2 is a bijection and that it yields
the three required conditions:

(1) Φ(O) = (0, 0) and Φ(X) = (0, 1) and Φ(Y ) = (1, 0)
(2) For any p, q, r ∈ P: Bet(p, q, r) iff BR2(Φ(p),Φ(q),Φ(r))
(3) For any p, q, r, s ∈ P: pq ≡ rs iff Φ(p)Φ(q) ≡R2 Φ(r)Φ(s).

One can do this (it does require a lot of detailed calculation).
The representation theorem is equivalent to stating that (P, B,≡) is a full model of

EG(2) if and only if (P, B,≡) ∼= (R2, BR2 ,≡R2).

Lemma 20. Given the construction of the points pX and pY , we see that

p ∈ ℓ(O,X) ↔ pY = O (64)
p ∈ ℓ(O, Y ) ↔ pX = O (65)

Lemma 21. From the above lemma and the definition of Φ, we see that

p ∈ ℓ(O,X) ↔ Φ(p) =

(
φO,X(pX)

0

)
(66)

p ∈ ℓ(O, Y ) ↔ Φ(p) =

(
0

φO,Y (pY )

)
(67)
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Definition 28 (Unit length of a coordinate system). Let a Cartesian coordinate chart,
Φ : P → R2 be given, with benchmarks O,X, Y . We define:

uΦ := λ(O,X). (68)

This is called “the distinguished unit of the coordinate system Φ”.

Lemma 22. λ(a, b) = uΦ iff ab ≡ OX.

Proof. By the abstraction principle, λ(a, b) = λ(O,X) iff ab ≡ OX. This immediately
implies the claim.

Lemma 23 (Euclidean symmetry group). We consider the symmetries (automorphism
group) of the standard Euclidean coordinate structure. Let E := (R2, BR2 ,≡R2). Let
g : R2 → R2. Then

g ∈ Aut(E) (69)

if and only if g : R2 → R2 is a bijection and there exists α > 0, R ∈ O(2), and d ∈ R2

such that, for all x ∈ R2:24

g(x) = αRx+ d. (70)

Definition 29 (Coordinate length function). Let Φ be a Cartesian coordinate system.
We define a function

∆Φ : P2 → R+ (71)

pointwise, by:

∆Φ(p, q) := ∆2(Φ(p),Φ(q)) (72)

Lemma 24. Let Φ be a Cartesian coordinate system. Then, for points p, q, r, s:

pq ≡ rs ↔ ∆Φ(p, q) = ∆Φ(r, s). (73)

Proof. From the Representation Theorem for EG(2) (i.e., Lemma 19, condition (3)),
pq ≡ rs iff Φ(p)Φ(q) ≡R2 Φ(r)Φ(s), iff ∆Φ(p, q) = ∆Φ(r, s).

24I do not know the location of a published proof of this, but it’s not too hard to work out for oneself.
The essential ideas are that a symmetry of the reduct (R2, BR2) must be an affine transformation:
x 7→ Ax+d, where A is a GL(2) matrix. Then, from the requirement that congruence ≡R2 be invariant,
one can show that A must be of the form αR, with α ̸= 0, a multiple of some rotation R in O(2).
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Lemma 25. (P,∆Φ) is a metric space.

Proof. Using the Definition 29, we can show: ∆Φ(a, a) = 0. And ∆Φ(a, b) = ∆Φ(b, a)
(symmetry). And a ̸= b → ∆Φ(a, b) > 0 (positivity). And, for three points a, b, c,
∆Φ(a, b) + ∆Φ(b, c) ≥ ∆Φ(a, c) (Schwarz’s (or, the triangle) inequality).

Lemma 26. Let a coordinate system Φ be based on the 2-frame O,X, Y . Then

∆Φ(O,X) = 1 = ∆Φ(O, Y ). (74)

Lemma 27. λ(a, b) = uΦ iff ∆Φ(a, b) = 1.

Proof. By the above lemma, λ(a, b) = uΦ iff ab ≡ OX. But ab ≡ OX iff ∆Φ(a, b) =
∆Φ(O,X). So, λ(a, b) = uΦ iff ∆Φ(a, b) = ∆Φ(O,X). But ∆Φ(O,X) = 1. So, λ(a, b) =
uΦ iff ∆Φ(a, b) = 1.

So, for a coordinate system, an arbitrary length is equal to the unit length of that
system just if its coordinate length is equal to 1.

The following is, I feel, a basic result, characterizing our coordinate-based approach:

Lemma 28. For any coordinate system Φ, for any points a, b, c, d ∈ P:

abstract length︷ ︸︸ ︷
λ(a, b) =

abstract length︷ ︸︸ ︷
λ(c, d) ↔

coordinate length︷ ︸︸ ︷
∆Φ(a, b) =

coordinate length︷ ︸︸ ︷
∆Φ(c, d) . (75)

As we show below (Lemma 51), this equivalence (for a given coordinate system Φ)
guarantees the existence of a unique bijection from the lengths to the coordinate lengths
wrt Φ. This bijection is then simply the corresponding measurement scale which maps
lengths to real numbers.

Lemma 29 (Coordinate transformations). Let Φ,Φ′ be Cartesian coordinate systems.
Then, there exists α > 0, R ∈ O(2), and d ∈ R2 such that, for all p ∈ P:

Φ′(p) = αRΦ(p) + d. (76)

Proof. Observe that if Φ,Φ′ are Cartesian coordinate systems, then Φ,Φ′ : (P, B,≡) →
(R2, BR2 ,≡R2) are isomorphisms. From this it follows that Φ′ ◦Φ−1 is an automorphism
from (R2, BR2 ,≡R2) to (R2, BR2 ,≡R2). Then, from Lemma 23, it follows that we have
α > 0, R ∈ O(2) and d ∈ R2 such that, for any x ∈ R2, (Φ′ ◦ Φ−1)(x) = αRx+ d. Let
x = Φ−1(p). Then, for any p ∈ P, Φ′(p) = αRΦ(p) + d, as claimed.

Lemma 30 (Coordinate length scaling). Let Φ,Φ′ be Cartesian coordinate systems.
Then, there exists α > 0, such that, for all p, q ∈ P,

∆Φ′(p, q) = α∆Φ(p, q) (77)
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Proof. The following calculation verifies the claim:

∆Φ′(p, q) =
√
((Φ′)1(p)− (Φ′)1(q))2 + ((Φ′)2(p)− (Φ′)2(q))2 (78)

=
√
(((αRΦ(p) + d)1 − (αRΦ(q) + d)1)2 + . . . (79)

= |α|
√∑

i,j,k

Rk,iRk,j (Φi(p)− Φi(q)) (Φj(p)− Φj(q)) (80)

= |α|
√∑

i,j

δi,j (Φi(p)− Φi(q)) (Φj(p)− Φj(q)) (81)

= |α|∆Φ(p, q) (82)

In this reasoning, we see that the displacement d “cancels” when we subtract the
coordinates; and the scale parameter α “factors” out of the large square rooo. We are left
with a matrix product, involving the rotation matrix R. But since the rotation R ∈ O(2)
we have: RRT = 1. I.e.,

∑2
k=1Rk,iRk,j = δi,j .

Lemma 31 (Segment ratios). Let a ̸= b and let a, b, c be collinear. Let φa,b be the local
coordinate system on the line ℓ(a, b). Let Φ be a Cartesian coordinate system. Then:

|φa,b(c)| =
∆Φ(a, c)

∆Φ(a, b)
(83)

Proof. Since a ̸= b, first we select a coordinate system Φ′ based on a 2-frame a, b, Y
(i.e., Y is a new point not on the line ℓ(a, b), with aY ≡ ab and aY ⊥ ab). In this
coordinate system, for any point c ∈ ℓ(a, b), we have Φ(c) = (φa,b(c), 0). So, Φ(a) =
(φa,b(a), 0) = (0, 0) and Φ(b) = (φa,b(b), 0) = (1, 0). So, ∆Φ′(a, b) = ∆2(Φ(a),Φ(b)) =

1. And ∆Φ′(a, c) = |φa,b(c)|. Consequently, ∆Φ(a,c)
∆Φ(a,b)

= |φa,b(c)|. Next, let Φ be any
coordinate system. Then there is a fixed α > 0 such that, for any points p, q ∈ P:
∆Φ(p, q) = α∆Φ′(p, q). And so, in particular, for any c ∈ ℓ(a, b), ∆Φ(a,c)

∆Φ(a,b)
=

∆Φ′ (a,c)
∆Φ′ (a,b)

=

|φa,b(c)|, as claimed.

Lemma 32 (Covariance). The following covariance claims hold: for any two Cartesian
coordinate systems Φ,Φ′ we have, for any points a, b, c, d, e, f ∈ P:

(1) ∆Φ(a, b) = ∆Φ(c, d) ↔ ∆Φ′(a, b) = ∆Φ′(c, d).
(2) ∆Φ(a, b) = ∆Φ(c, d) + ∆Φ(e, f) ↔ ∆Φ′(a, b) = ∆Φ′(c, d) + ∆Φ′(e, f).

Proof. Let Φ,Φ′ be coordinate systems. Hence, by Lemma 30, there is a fixed α > 0, for
any points p, q ∈ P, we have: ∆Φ′(p, q) = α∆Φ(p, q).

For (1): ∆Φ(a, b) = ∆Φ(c, d) holds iff α∆Φ(a, b) = α∆Φ(c, d), which holds iff ∆Φ′(a, b) =
∆Φ′(c, d) holds.

For (2): ∆Φ(a, b) = ∆Φ(c, d)+∆Φ(e, f) holds iff α∆Φ(a, b) = α∆Φ(c, d)+α∆Φ(e, f),
iff ∆Φ′(a, b) = ∆Φ′(c, d) + ∆Φ′(e, f).
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Lemma 33 (Addition of coordinate lengths). Let Φ be a Cartesian coordinate system.
Then:

Bet(a, b, c) → (∆Φ(a, c) = ∆Φ(a, b) + ∆Φ(b, c)) (84)

Proof. This holds when a = b because, in that case, ∆Φ(a, b) = 0. So, assume a ̸= b
and consider the line ℓ(a, b). We assume also that c ∈ ℓ(a, b). Consider a coordinate
system Φ′ whose x-axis lies along ℓ(a, b) and with benchmarks a, b, Y (Y a point so that
aY ⊥ ab). Then, we have the coordinates: Φ(c) = (φa,b(c), 0), and φa,b(c) ≥ 1, because
Bet(a, b, c). In particular, Φ(a) = (φa,b(a), 0) = (0, 0) and Φ(b) = (φa,b(b), 0) = (1, 0). A
calculation verifies that ∆Φ′(a, b) = 1, ∆Φ′(a, c) = φa,b(c), and ∆Φ′(b, c) = φa,b(c) − 1.
So, ∆Φ′(a, c) = ∆Φ′(a, b) + ∆Φ′(b, c).

But, by Lemma 32, the statement ∆Φ(a, c) = ∆Φ(a, b) + ∆Φ(b, c) is coordinate in-
variant ; so, since it holds in the given system Φ′, it holds in all.

The converse of Lemma 33 also holds:

Lemma 34 (Addition of coordinate lengths 2). Let a, b, c be points. Let Φ be a Cartesian
coordinate system. Then:

∆Φ(a, c) = ∆Φ(a, b) + ∆Φ(b, c) → Bet(a, b, c) (85)

I leave the proof of this to the reader.

3.3 Defining 0, ⊕, ⪯ and •

To prove Theorem 2, I must first define the following:

(1) A zero length: 0.
(2) A length addition operation: ⊕.
(3) A length ordering relation: ⪯.
(4) A scalar multiplication of lengths (by reals): •.

We have already defined 0. The definition of ⊕ proceeds in terms of segment con-
catenation.25

Definition 30. Segments ab and cd are concatenated on ℓ just if a, b, c, d ∈ ℓ and b = c
and Bet(a, b, d). We write this: concatℓ(a, b, c, d).

25Our segment concatenation is linear : along a line. In his Ellis (1966), Brian Ellis defines a peculiar
non-standard form of segment concatenation. ab and cd count as “concatenated” just when b = c and
ab ⊥ cd! This is right-angled concatenation. Ellis goes on to argue that the resulting notion of “length
addition”, ⊕e, is equally legitimate. But it is clear that the resulting structure is not an extensive quantity
as we’ve defined it, because it does not respect the vector space structure given by scalar multiplication
(where scalar multiplication is defined via the usual theory of proportions, which is our approach, given
in a moment). For, assuming l ̸= 0, we get: l ⊕e l ̸= 2 • l.
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Figure 7: Concatenation: concatℓ(a, b, c, d)

• • •
a b

c

d
ℓ(a, b)

Definition 31 (Definition of ⊕ℓ). Fix a line ℓ. We define the operation ⊕ℓ on the line
ℓ. Let a, b, c, d, e, f ∈ ℓ. Then:

λ(e, f) = λ(a, b)⊕ℓ λ(c, d) := (∃c′, d′)(concatℓ(a, b, c′, d′) ∧ c′d′ ≡ cd ∧ ef ≡ ad′) (86)

Lemma 35. Fix a line ℓ, with a, b, c ∈ ℓ and Bet(a, b, c). Then:

λ(a, c) = λ(a, b)⊕ℓ λ(b, c) (87)

Figure 8: Length addition: λ(a, c) = λ(a, b)⊕ℓ λ(b, c)

• • •
a b c

ℓ(a, b)

λ(a, b) λ(b, c)

λ(a, c)

Definition 32 (Definition of ⊕). We declare that l3 = l1 ⊕ l2 if and only if, there exists
a line ℓ containing points a, b, c such that:

(1) l1 = λ(a, b).
(2) l2 = λ(b, c).
(3) l3 = λ(a, c).
(4) λ(a, c) = λ(a, b)⊕ℓ λ(b, c)

We next define the blunt order ⪯:

Definition 33 (Definition of ⪯). l1 ⪯ l2 := (∃l3 ∈ P) (l2 = l1 ⊕ l3).

The corresponding sharp order ≺ is defined accordingly:

Definition 34 (Definition of ≺). l1 ≺ l2 := l1 ⪯ l2 ∧ l2 ̸= l2.

Lemma 36. The following claims hold for the structure (L,⊕,⪯):
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(1) l ⊕ 0 = l = 0⊕ l.
(2) l1 ⊕ l2 = l2 ⊕ l1.
(3) l1 ⊕ (l2 ⊕ l3) = (l1 ⊕ l2)⊕ l3.
(4) l ⪯ l
(5) l1 ⪯ l2 ∧ l2 ⪯ l1 → l1 = l2.
(6) l1 ⪯ l2 ∧ l2 ⪯ l3 → l1 ⪯ l3.
(7) l1 ⪯ l2 ∨ l2 ⪯ l1.
(8) 0 ⪯ l
(9) l1 ≺ l2 → (∃l3 ∈ L) (l1 ≺ l3 ≺ l2).
(10) l1 ⪯ l2 → l1 ⊕ l3 ⪯ l2 ⊕ l3.

I shall not prove these directly, since far easier proofs are available after we estab-
lish that L is a positive extensive quantity (Theorem 2). Our approach is a kind of
inverse of Otto Hölder’s classic article (Hölder (1901)). For Hölder takes a system of
axioms for abstract magnitudes, like the properties (1)–(10), as well as some complete-
ness assumptions, and then proves a representation theorem. Instead, we characterize L
geometrically, prove that it is indeed a positive extensive quantity—i.e., isomorphic to
the positive cone (R+,+,≤, •)—and then we can derive these properties (1)–(10) from
that conclusion, by transfer.

Assuming these are so, it follows that the algebraic reduct (L,⊕) is a commutative
monoid. And the ordered reduct (L,⪯) is a dense linear order with a least element 0.
And together, (L,⊕,⪯) is a densely linearly ordered commutative monoid with a least
element.

Finally, we must define scalar multiplication (•). There are two ways to do this, but
they are equivalent.26

Definition 35 (Definition of •ℓ). Fix a line ℓ. We now define the scalar multiplication
operation •ℓ on the line ℓ. Let x ∈ R+, and a, b, c ∈ ℓ. Then:

λ(a, c) = x •ℓ λ(a, b) :=

{
λ(a, c) = 0 if a = b

x = |φa,b(c)| if a ̸= b
(88)

26The other way works geometrically with configurations of three points representing given reals, and
defines scalar multiplication geometrically, by proportions. My definition is analytic, invoking the local
coordinate system φa,b on a line ℓ(a, b) with distinct points a, b.
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Figure 9: Scalar multiplication: λ(a, c) = x •ℓ λ(a, b)

• • •

• • •
0 1 x = φa,b(c)

a b c
ℓ(a, b)

R

φa,b

λ(a, b)

λ(a, c)

Definition 36 (Definition of •). For x ∈ R+, and l1, l2 ∈ L, we declare that l2 = x • l1
holds if and only if, there exists a line ℓ containing points a, b, c such that:

(1) l1 = λ(a, b).
(2) l2 = λ(a, c).
(3) λ(a, c) = x •ℓ λ(a, b)

Lemma 37. Let a, b, c lie on a line ℓ, with a ̸= b. Then

λ(a, c) = x •ℓ λ(a, b) ↔ x = |φa,b(c)|. (89)

Proof. This follows from Definition 35.

Lemma 38. For any x ∈ R+, x • 0 = 0.

Proof. Pick a point, a. Then 0 = λ(a, a). Let l = x • 0. Then, from Definition 36,
l = x •0 if and only if there exists a line ℓ containing points a, c such that l = λ(a, c) and
λ(a, c) = x •ℓ λ(a, a). But from Definition 35, it follows that λ(a, c) = 0. So, l = 0.

Definition 37 (Definition of the structure L). Let L := (L,⊕,⪯, •).

3.4 Defining hΦ

Lemma 39. For each l ∈ L, there is a unique x ∈ R+ such that:

(∃p, q ∈ P) (l = λ(p, q) ∧ x = ∆Φ(p, q)) (90)

Proof. Let l be given. The existence axiom (L2) for λ implies that the length l has at
least one representative p, q: l = λ(p, q). Then x = ∆Φ(p, q). And x ∈ R+, because
∆Φ(p, q) ∈ R+. For uniqueness, suppose

(∃p, q ∈ P) (l = λ(p, q) ∧ x = ∆Φ(p, q)) (91)
(∃p′, q′ ∈ P) (l = λ(p′, q′) ∧ x′ = ∆Φ(p

′, q′)) (92)
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So, we have p, q, p′, q′ with l = λ(p′, q′) and l = λ(p, q) and x = ∆Φ(p, q) and x′ =
∆Φ(p, q). Hence, λ(p′, q′) = λ(p, q). By the abstraction axiom (L1) for λ, we have: p′q′ ≡
pq. Then, by the representation theorem for coordinate lengths, we have: ∆Φ(p

′, q′) =
∆ϕ(p, q). So, x′ = x.

Definition 38 (Definition of hΦ). Assume a coordinate system Φ is given. I define the
function:

hΦ : L → R+ (93)

as follows. For any l ∈ L, we define:

x = hΦ(l) := (∃p, q ∈ P) (l = λ(p, q) ∧ x = ∆Φ(p, q)) (94)

This correctly defines a function hΦ by the previous lemma. So, for each length l, the
value hΦ(l) is independent of the representative points, p, q, chosen such that l = λ(p, q).

Lemma 40. For any points a, b ∈ P:

hΦ(λ(a, b)) = ∆Φ(a, b). (95)

Proof. This is immediate from the definition.

Lemma 41. Let Φ be a coordinate system based on the 2-frame O,X, Y . Then

hΦ(uΦ) = 1. (96)

Proof. By Definition 28, uΦ = λ(O,X). So, hΦ(uΦ) = hΦ(λ(O,X)) = ∆Φ(O,X) =
1.

We’ll next drop the subscript on “hΦ”, and leave it implicit. We will show that
the function h just defined above is an isomorphism from L to the standard extensive
quantity, E0. This will establishes that h is a measurement scale for L. Thus, I must
now show that h is bijective, and also that we have the isomorphism conditions: for any
x ∈ R+, and l1, l2 ∈ L,

h(l1 ⊕ l2) = h(l1) + h(l2) (97)
l2 ⪯ l2 ↔ h(l1) ≤ h(l2) (98)
h(x • l) = x · h(l) (99)
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3.5 Properties of hΦ

Lemma 42. h(0) = 0.

Proof. Recall that 0 = λ(a, a). So, by Lemma 40, h(0) = h(λ(a, a)) = ∆Φ(a, a) = 0.

Lemma 43. h(l) ≥ 0.

Proof. By (L2), we may let l = λ(a, b), for points a, b ∈ P. By the definition of h,
we have: h(l) = ∆Φ(a, b). For any a, b, ∆Φ(a, b) ≥ 0, since ∆Φ is a metric. Hence,
h(l) ≥ 0.

Lemma 44. h is a bijection.

Proof. I first show injectivity of h. Suppose h(l1) = h(l2). I claim: l1 = l2. Let
l1 = λ(p, q) and l2 = λ(r, s). Such points exist by the existence axiom for λ. We reason
with what I call a “conditional stream”, as follows:

h(l1) = h(l2) (100)
⇒ h(λ(p, q)) = h(λ(r, s)) (101)
⇒ ∆Φ(p, q) = ∆Φ(r, s) (by Lemma 40) (102)
⇒ pq ≡ rs (Representation theorem, Lemma 19) (103)
⇒ λ(p, q) = λ(r, s) (Abstraction axiom L1 for λ) (104)
⇒ l1 = l2 (105)

as claimed.
For surjectivity, suppose x ∈ R+. I claim there exists l such that h(l) = x.
Consider the function ∆Φ : P2 → R+. Its range is R+. For recall that each line

ℓ(O,X) (with O,X distinct parameters) is isomorphic to the reals. So, there is a point
p ∈ ℓ(O,X) such that ∆Φ(O, p) = x. Consequently, h(λ(O, p)) = x. Let l = λ(O, p):
then h(l) = x. So, h is surjective.

A more abstract proof of this is given below, in Lemma 52.
We next show that h respects length addition ⊕:

Lemma 45. For l1, l2 ∈ L: h(l1 ⊕ l2) = h(l1) + h(l2).

Proof. Let l3 = l1 ⊕ l2. So, we claim: h(l3) = h(l1) + h(l2). By our definition, there
exists a line ℓ containing points a, b, c such that l1 = λ(a, b), l2 = λ(b, c), l3 = λ(a, c) and
λ(a, c) = λ(a, b)⊕ℓ λ(b, c). Now h(l1) = ∆Φ(a, b), h(l2) = ∆Φ(b, c), h(l3) = ∆Φ(a, c). So,
we claim: ∆Φ(a, c) = ∆Φ(a, b) + ∆Φ(b, c). But this is simply Lemma 33.

Lemma 46. h(λ(p, q)⊕ λ(q, r)) = ∆Φ(p, q) + ∆Φ(q, r).
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Proof. By Lemma 45, h(λ(p, q)⊕ λ(q, r)) = h(λ(p, q)) + h(λ(q, r)). By the definition of
h, we have h(λ(p, q)) + h(λ(q, r)) = ∆Φ(p, q) + ∆Φ(q, r).

Lemma 47. Bet(p, q, r) ↔ λ(p, q)⊕ λ(q, r) = λ(p, r).

Proof. By Lemma 33 and Lemma 34, we have, for any coordinate system Φ,

Bet(p, q, r) ↔ ∆Φ(p, q) + ∆Φ(q, r) = ∆Φ(p, r) (106)

Consequently, we can reason with a simple biconditional stream, as follows:

Bet(p, q, r) ⇔ ∆Φ(p, q) + ∆Φ(q, r) = ∆Φ(p, r) (107)
⇔ h(λ(p, q)⊕ λ(q, r)) = h(λ(p, r)) (by Lemma 46 above) (108)
⇔ λ(p, q)⊕ λ(q, r) = λ(p, r) (injectivity of h) (109)

Lemma 48. For l1, l2 ∈ L: l1 ⪯ l2 ↔ h(l1) ≤ h(l2).

Proof. By Definition 33, l1 ⪯ l2 iff ∃l3 (l2 = l1 ⊕ l3). We reason as follows using a
biconditional stream:

l1 ⪯ l2 ⇔ l2 = l1 ⊕ l3 (for some l3) (110)
⇔ h(l2) = h(l1 ⊕ l3) (for some l3) (111)
⇔ h(l2) = h(l1) + h(l3) (for some l3) (112)
⇔ h(l1) ≤ h(l2) (113)

where to obtain the final line, we used the fact (Lemma 43) that h(l3) ≥ 0.

Finally, we must show that h respects scalar multiplication:

Lemma 49. For x ∈ R+, l ∈ L: h(x • l) = x · h(l).

Proof. First, assume l = 0. Hence, by Lemma 42, h(l) = 0. Also, we have: x • l = 0, for
any x ∈ R+, by Lemma 38. So, h(x • l) = 0. So, h(x • l) = x · h(l) as claimed.

So, instead, assume l ̸= 0. Let l′ = x • l. So, we claim: h(l′) = x · h(l). Since
l′ = x • l, from our definition, we infer, there exists a line ℓ containing points a, b, c such
that l = λ(a, b), l′ = λ(a, c) and λ(a, c) = x • ℓλ(b, c). Note that a ̸= b. So h(l) = ∆Φ(a, b)
and h(l′) = ∆Φ(a, b). But, by Lemma 37, we have: λ(a, c) = x •ℓ λ(a, b) → x = |φa,b(c)|.
So, x = |φa,b(c)|. By Lemma 31, we have: ∆Φ(a, c) = |φa,b(c)|∆Φ(a, b). Hence, h(x • l) =
x · h(l), as claimed.
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3.6 Hooking Lemma for λ and ∆Φ

Definition 39. Let f : A → X and g : A → Y be functions, with the same domain. We
say that f and g are hooked just if f and g are surjective, and

f(a) = f(b) ↔ g(a) = g(b) (114)

This is a kind of mutual determination condition.

Figure 10: Hooked functions, f, g
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Lemma 50 (Hooking lemma). Suppose that f : A → X and g : A → Y are hooked.
Then there exists a unique bijection H : X → Y satisfying, for all a ∈ A:

H(f(a)) = g(a) (115)

In a picture:

Figure 11: Hooking function, H
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Proof. We first define:

y = H(x) := (∃a ∈ A) (x = f(a) ∧ y = g(a)) (116)

We must show that this is well-defined.
For existence, let x ∈ X. By surjectivity of f , there exists a ∈ A with x = f(a). Let

y = g(a), and so we have existence.
For uniqueness, let x ∈ X and let y1, y2 ∈ Y . Suppose the defining condition holds

in both cases:

(∃a ∈ A) (x = f(a) ∧ y1 = g(a)) (117)
(∃a ∈ A) (x = f(a) ∧ y2 = g(a)) (118)

34



We claim: y1 = y2. Skolemize the assumptions, and we have a1, a2 ∈ A st.

x = f(a1) ∧ y1 = g(a1) (119)
x = f(a2) ∧ y2 = g(a2) (120)

Thus, f(a1) = f(a2). By hooking, g(a1) = g(a2). Hence, y1 = y2.
For injectivity, suppose H(x1) = H(x2). We claim: x1 = x2. Let y1 = H(x1) and let

y2 = H(x2). So, y1 = y2. We have a1 ∈ A such that x1 = f(a1) ∧ y1 = g(a1); and we
have a2 ∈ A such that x2 = f(a2) ∧ y2 = g(a2). Since y1 = y2, we have: g(a1) = g(a2).
By hooking, f(a1) = f(a2). Hence, x1 = x2.

For surjectivity, suppose y ∈ Y . By surjectivity of g, we have a ∈ A such that
y = g(a). Let x = f(a). Then there exists a ∈ A with x = f(a) ∧ y = g(a). So,
y = H(x). Hence, H is surjective.

We next show that the claimed condition (115) holds. From the definition,

y = H(f(a)) ↔ (∃b ∈ A) (f(a) = f(b) ∧ y = g(b)) (121)

By “hooking”, we have:

y = H(f(a)) ↔ (∃b ∈ A) (g(a) = g(b) ∧ y = g(b)) (122)

But (∃b ∈ A) (g(a) = g(b) ∧ y = g(b)) holds automatically. So, y = H(f(a)) and so
g(a) = H(f(a)), as claimed.

Next, to show that any such bijection is unique, suppose we have another bijection
H ′ : X → Y satisfying, for all a ∈ A:

H ′(f(a)) = g(a) (123)

Let x ∈ X. By surjectivity of f , we have a ∈ A such that x = f(a). So, we have
H(f(a)) = g(a) and H ′(f(a)) = g(a). Hence, H(x) = H ′(x). So, H = H ′.

For the next two lemmas, fix a coordinate system Φ.

Lemma 51. The functions λ : P2 → L and ∆Φ : P2 → R+ are hooked.

Proof. Both functions λ : P2 → L and ∆Φ : P2 → R+ are surjections. For ∆Φ is, because
Φ : P → R2 is a bijection. And λ is, because of the abstraction axiom (L2). Moreover,
by Lemma 28,

λ(a, b) = λ(c, d) ↔ ∆Φ(a, b) = ∆Φ(c, d) (124)

So, λ : P2 → L and ∆Φ : P2 → R+ are hooked.
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Lemma 52. There is a unique bijection HΦ : L → R+ satisfying, for all a, b ∈ P,

HΦ(λ(a, b)) = ∆Φ(a, b) (125)

Proof. This follows from Lemma 50 and Lemma 51 .

Figure 12: HΦ
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Clearly,

Lemma 53. HΦ = hΦ.

We can picture the relation between the (abstract) Length function, λ, the coordinate
length function, and the corresponding measurement scale as follows:

Figure 13: Length λ, Coordinate Length ∆Φ and Measurement Scale hΦ
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4 Main Theorems

In the main theorems below, we let Φ be some fixed, but arbitrary Cartesian coordinate
chart P → R2. And we let ∆Φ : P2 → R+ be the coordinate distance function on P,
determined by Φ. In Definition 38, we defined the function
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hΦ : L → R+ (126)

such that it satisfies, for any points p, q ∈ P,

hΦ(λ(p, q)) = ∆Φ(p, q) (127)

We now are able to obtain our main theorems very quickly. First:

Theorem 1. hΦ : L → E+
0 is a measurement scale.

Proof. Let hΦ : L → R+ be defined as above. Then (dropping the subscript), as we have
shown in §3.5:

(1) h : L → R+ is a bijection.
(2) For any l1, l2 ∈ L: h(l1 ⊕ l2) = h(l1) + h(l2).
(3) For any l1, l2 ∈ L: l1 ⪯ l2 ↔ h(l1) ≤ h(l2).
(4) For any l ∈ L, any x ∈ R+: h(x • l) = x · h(l).

Hence, h : L → E+
0 is an isomorphism, and hence a measurement scale.

Theorem 2 (Main Theorem). L is a positive extensive quantity.

Proof. By Theorem 1, h : L → E+
0 is an isomorphism. Therefore, L is a positive extensive

quantity.

Lemma 54. Let u ∈ L be any unit length (i.e., 0 ≺ u). Then, for any length l ∈ L,

l = ∥l∥u • u (128)

Proof. By Theorem 2, L is a positive extensive quantity. So, we apply The Magnitude
Lemma 7 above to obtain (128).

Theorem 3. Let u ∈ L be any unit length. Then, for any points p, q ∈ P,

λ(p, q) = ∥λ(p, q)∥u • u (129)

Proof. Let p, q be given. Let l = λ(p, q). We then obtain Theorem 3 as an immediate
corollary of Lemma 54.

Theorem 4. For any points p, q ∈ P: ∆Φ(p, q) = ∥λ(p, q)∥uΦ .

Proof. By The Magnitude Lemma 7, we have: λ(p, q) = |λ(p, q)|uΦ
• uΦ. Applying hΦ

to both sides, we conclude: hΦ(λ(p, q)) = hΦ(|λ(p, q)|uΦ
• uΦ) = |λ(p, q)|uΦhΦ(uΦ). But

hΦ(uΦ) = 1. Hence, hΦ(λ(p, q)) = ∥λ(p, q)∥uΦ . And thus: ∆Φ(p, q) = ∥λ(p, q)∥uΦ , as
claimed.
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Theorem 5. For any points p, q ∈ P: λ(p, q) = ∆Φ(p, q) • uΦ.

Proof. By The Magnitude Lemma 7, λ(p, q) = ∥λ(p, q)∥uΦ
•uΦ. By the above, ∆Φ(p, q) =

∥λ(p, q)∥uΦ . This implies: λ(p, q) = ∆Φ(p, q) • uΦ.

A final corollary of the above is obtained from Lemma 15 and Theorem 2:

Theorem 6. Aut(L) ∼= (R+ − {0},×).

5 Discussion

For simplicity, I focused on two dimensions. But this can easily be modified to any
number of dimensions, including three, of course. Insofar as the betweenness and con-
gruence relations in ordinary three-dimensional physical space are well-approximated by
the Euclidean axioms, we can transfer our results to that setting.

Earlier I mentioned being puzzled (when I was a physics undergraduate) by what “1
cm” refers to. Well, we now have established that the Length property (better: structure)
L is a continuous positive extensive quantity. So the specific length quantity 1 cm is an
example of a unit length, an element of the Length quantity L. I.e., there are two distinct
points in space p, q such that 1 cm = λ(p, q). These representative points are by no
means unique, and may be taken to be any two points on a ruler separated by a 1 cm
long segment. Likewise, we wondered how measurement reports, like

(1) The length (height) of Nelson’s Column = 5159 cm.
(2) The length (height) of Nelson’s Column = 2031 inch.

are to be analysed. Let 1 cm ∈ L be the centimetre unit length and let 1 inch ∈ L be
the inch unit length. Our analysis states:

(3) The length (height) of Nelson’s Column = 5159 • 1 cm.
(4) The length (height) of Nelson’s Column = 2031 • 1 inch.

Moreover, we have:27

(5) 1 inch = 2.54 • 1 cm.

So, 1 inch and 2.54 •1 cm are thus the precisely the same object (i.e., abstract length).
Recall that, in an extensive quantity, we can perform division (Lemma 9) of two quan-
tities, obtaining a real number:28

1 inch
1 cm

= 2.54 (130)

Approximating, obviously, let a, b be points at the very bottom and very top of
Nelson’s Column (say at a fixed time). Then:

27Nowadays, this is not approximate: it is exact, and treated as a definition of 1 inch.
28Cf. “By number we understand not so much a multitude of Unities, as the abstracted Ratio of any

Quantity to another Quantity of the same kind, which we take for Unity” (Newton (1707): 2).
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(6) λ(a, b) = 5159 • 1 cm.
(7) λ(a, b) = 2031 • 1 inch.

Figure 14: The height of Nelson’s Column
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=

the height of Nelson’s Column

Mainly, this paper has been motivated by the aim to clarify the meaning of state-
ments (measurement reports) like (1), (2), (3), (4), (5), (6), (7). I find the conventional
“The Representational Theory of Measurement” (RTM) unsatisfactory, because of its ex-
cessive operationalism.29 Although there is an important gist of truth in operationalism
(Campbell (1920), Bridgman (1927)), I am sceptical that the implicit reductionism is
true for physics. I do not believe, for example, that ∇ • B = 0 is a statement reducible to
measurement reports, even though it does imply complicated implications between such
reports.

Up to various revisions in physical theory, physical quantities are built into the mind-
independent Universe, and the relevant properties are completely independent of human
assignments and so on. Our approach has not involved “metre rods”, or “physical con-
catenation”, or some sort of axiomatization of an “empirical system”, as one finds in the
measurement literature. Instead, we have treated Length as a physical quantity built into
geometry itself, and we have abstracted individual lengths via the (physical) congruence
relation and the abstraction axiom. A metre rod measures length, a mind-independent
geometric property of line segments, just as a Hall probe measures the magnetic field.

29Classic monographs in the RTM literature are: Krantz et al. (1971), Roberts (1985), Narens (1985),
Suppes (2002). The exposition Tal (2015) provides a nice summary of the background philosophical
debates and questions. The exposition Eddon (2013) provides a valuable survey of debates about the
analysis of quantitative properties.
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Hence, we are adopting a realist view of theLengthquantity, and a fortiori, of length
measurement (Michell (2005), Michell (2021)): “According to this paradigm, real numbers
are instantiated in nature in ratios of magnitudes and measurement is the estimation of
such ratios” (Michell (2021): 5). Our account developed here is similar, at least in outlook
and also in methods, with earlier realist-oriented approaches (Swoyer (1987) and Mundy
(1987)) (and also perhaps with the recent monograph Wolff (2020) on the metaphysics
of quantities).

We have shown that physical Length, on the assumption that Euclidean geometry is
true, is a continuous positive extensive quantity—henceforth, a continuous PEQ. The as-
sumption (known to be not quite physically correct) that EG is true can be relaxed. The
account can be generalized to the spacetime setting, and yields a completely analogous
account of temporal duration. I.e., for spacetime events we shall introduce a duration
function τ which maps events e1, e2 to a time duration, τ(e1, e2). Then temporal dura-
tions are governed by an abstract axiom involving the temporal congruence relation:30

τ(e1, e2) = τ(e3, e4) ↔ e1e2 ≡tim e3e4 (131)

So, we have an account of physical length that fits modern physics, as currently
understood.

However, perhaps physical Length is not, in reality, a continuous PEQ? Perhaps there
exists a minimum non-zero length, lp, and all physically exemplified lengths are then
multiples, nlp, for n ∈ N. In that case, it seems that we could then infer that physical
Length would be isomorphic to (N,+,⪯), which distinguishes itself from (R+,+,≤) by
being rigid. There are no automorphisms of (N,+,⪯) except the identity. I have no idea
if this is true, or viable. As I understand it, causal set theory does postulate a minimal
length (i.e., directly connected vertices). But this programme has yet not born fruit.31

Finally, I wish to briefly mention Mass. We have given a geometric basis for talking
about abstract lengths (and temporal durations). If this is correct, it establishes that

30I also believe it can also be generalized to Riemannian geometry, (M, g). A rough sketch (which
might be slightly wrong in technical detail or for pathological metrics) is this. The definition of the
numerical length of a smooth curve γ : [0, 1] → M from a to b is: Lg(γ; a, b) :=

∫ 1

0
dt
√

g(γ̇, γ̇). Then we
define dg(a, b) to be the greatest lower bound of all Lg(γ; a, b), over all smooth curves γ from a to b. In
stating the abstraction axiom, the Euclidean notion of congruence ab ≡ cd, is now replaced by the clause
“dg(a, b) = dg(c, d)”: i.e., λ(a, b) = λ(c, d) ↔ dg(a, b) = dg(c, d). The Hooking Lemma 50 above then
guarantees the existence of a unique (bijective) measurement scale h from abstract lengths to numerical
values in R+. Note that metrics g and αg, for a fixed positive real α, give rise to exactly the same length
congruence relation. This is explained as follows. For given g, the preferred unit, ug (determined by the
metric g) is the length λ(a, b) of a geodesic from a to b, whose metric length relative to g, i.e., dg(a, b)
is equal to 1. If the metric tensor g is scaled by a positive real, to α · g, say, then while the numerical
length dg(a, b) of a geodesic between a and b scales too, the equality dg(a, b) = dg(c, d) is invariant. I.e.,
dg(a, b) = dg(c, d) ↔ dαg(a, b) = dαg(c, d). As the numerical length scales up, the corresponding unit
scales down inversely. Consequently, the physical length itself, λ(a, b) = ∥λ∥ug

• ug, is invariant. This is
a form of gauge symmetry.

31A detailed exposition of the causal set approach to quantum gravity may be found in Surya (2019).
For some further discussion of the issue of the continuum in physics, see John Baez’s “Struggles With
The Continuum” (Baez (2021)).
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Length (and Time) is a continuous PEQ, via the assumption of geometrical axioms and
the length abstraction principle, with respect to the “has the same length” equivalence
relation. Is it not also obvious that the physical quantity of Mass is also a continuous
PEQ? The problem is that I cannot see an analogous geometric abstraction principle for
Mass.

There is a standard procedure for mass comparisons amongst a set (Bod, say) of solid
macroscopic bodies, like ball bearings or medium-sized lumps of matter, on a weighing
scale (“equal-arm balance” in the terminology of Krantz et al. (1971)). And we may
define “concatenation” by, say, gluing the ball bearings or putting them into the same
pan:

A comparison relation for mass often developed is using an equal-arm balance.
... The main requirements for such balance are that it should have as little
friction as possible and that if a and b balance when a is in one pan and b
in the other, then they should also balance when their locations are reversed.
Concatenation is simply interpreted as the positioning of both objects together
in the pan. (Krantz et al. (1971): 89)

But, note that this will be a partial operation: for Bod will not be closed under ◦. Still,
using various theorems from RTM, we may then arrive at a numerical representation,
ϕ : Bod → R+. But this is highly non-surjective. Clearly the cardinality |Bod| is
quite small (say, less than 1000). So we do not have, for each real x ∈ R+, a ball
bearing b ∈ Bod such that ϕ(b) = x. Only under a gigantic idealization can we imagine
|Bod| = 2ℵ0 ! So, assuming thatMassis a continuous PEQ, it seems that individual mass
quantities do not, in general, have representatives—at least not these ones, or anything
similar. Alternatively, we may attempt to define the measurement of mass using ideas
derived from Ernst Mach, essentially that mass ratios for a system of N interacting
particles can be determined by (measurable) acceleration ratios (see Kibble & Berkshire
(1996), Ch. 1, §1.3, pp. 9–10).
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