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Abstract:
Machine learning techniques have become an essential part of many scientific inquiries, promoting novel discoveries. Here we distinguish between the output-oriented approach which regards neural networks as black boxes, and the feature-oriented approach which seeks to reveal and scientifically adopt the features captured by the network for the purpose of exploration and novelty. Focusing on the latter, we point at an issue of non-uniqueness when choosing between three types of features – mathematical, diagnostic, and real-world features. Scientists make choices among numerous features and rationalize their choices with background assumptions, but when aiming at exploration in an immature domain, rationalization neither justifies the choice nor guarantees that the chosen features are real. As a result, we propose that machine-captured features for this purpose should not be used as full-fledged evidence, but scientists should focus on the instrumental value of these features, such as refining existing descriptions or methods and inspiring future directions of research. We also suggest promoting the transparency of feature selection rationale and the plurality of choices.
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1. Introduction
The rise of data-driven science in the last few decades has evoked questions concerning its scope of application, productivity, and epistemic and methodological characteristics. Although difficult to be fully defined, data-driven science is often believed to consist of the utilization of large amounts of data and the application of data-analysis methods like regression, decision trees, machine learning, etc. Leonelli (2012, 1) points out two features key to data-driven science: “the intuition that induction from existing data is being vindicated as a crucial form of scientific inference”, and the central role of automated reasoning with machines in extracting meaningful patterns from data. These two features pinpoint a new context to rethink traditional topics in philosophy of science like induction, reasoning, inference, and the role of theories and hypotheses within research practices (Leonelli 2012, 2; Pietsch 2015). 
Fitting a statistical model to data and making reliable local predictions are, of course, not all that science is about; instead, scientists may pursue models that are also causal, explanatory, analyzable, or applicable to a more general scope (aka. extrapolation). Therefore, one can still ask how traditional scientific methods and theories should be utilized to guide data-driven science toward different scientific goals. Pietsch (2015), for example, proposes four conditions for statistical methods (e.g., decision tree and regression) to uncover causal relations in the real world, one of which is to formulate model parameters in stable causal categories. 
In artificial neural networks (ANN), a slightly different answer might be expected. In many ANNs, there is a weaker degree of controllability and manipulability with regard to parameters. Although human designs are involved in the pre-processing of input data, the choice of input variables, and the architecture of the network, it is not always possible to implement causal or interpretable categories in these designs. The expectation that neural networks may capture unnoticed patterns in the data and provide novel insight into the phenomena also suggests that the model should not be strictly pre-designed. Instead, scientists may engage in a post-hoc rationalization process when they choose to adopt certain results the network generates. 
Post-training rationalization is both epistemically and methodologically different from pre-training parameter design. Pre-training parameter design serves as a necessary step to constrain the model and prepare it for automated induction (Leonelli 2012; Pietsch 2015). In contrast, rationalization does not embed scientific theories or expert judgments into the network’s performance, but only uses them to select, interpret, and motivate the results for further instrumental or evidential use by scientists. The centrality of rationalization in many machine-learning-guided scientific inquiries calls for philosophical inspection. The rationalization process embodies a dialogue between black-box data-driven techniques, scientists’ background knowledge, and their expectations. Here, philosophical lessons about the relation between theory and evidence find their new manifestation and provide insights on what scientific contribution this dialogue could offer and what conditions ground its successful use. 
In this paper, we focus on a special and novel feature-oriented approach to ANNs championed in some domains of science. By extracting and adopting features captured by ANNs, this approach aims at the exploration and discovery of new patterns in data for the purpose of enriching our scientific representation. With this, the feature-oriented approach is distinct from the more traditional approach to ANNs (what we call the output-oriented approach) that expects them only to provide accurate input-output mappings.
We argue that this feature-oriented approach faces an epistemic issue of non-uniqueness. Non-uniqueness is a variant of underdetermination that stresses the variety of mathematical tools of representation and the conclusions that can be drawn from them (Baker 2013; Hagar and Hemmo 2013). In the feature-oriented approach, non-uniqueness appears when scientists want to make a choice between multiple equally plausible machine-captured features presented by different algorithms, and then connect them to any real-world features that could be incorporated into their scientific representation, while they lack the concrete knowledge that can justify these choices and connections. Non-uniqueness is not necessarily a problem, but it often has tricky practical consequences. Equally plausible mathematical tools may imply divergent interpretations and conclusions. Once one or a few tools are chosen, there is also a tendency to incorrectly view them as unique and endow them with an evidential role in support of relevant theories. 
Similar issues can apply to machine-captured features, as scientists may take the features they found from algorithms as “given” and use them as evidence, without paying sufficient attention to the context under which they are chosen and any possible alternatives. Therefore, we argue that caution should be applied. Because the choice of machine-captured features often involves tentative theoretical and technical assumptions, they should not be taken as unique or as full-fledged evidence for the assumptions used to single them out. Scientists do rationalize their choices with technical and theoretical considerations, but, methodologically important as it is, this practice is not sufficient to mitigate non-uniqueness. We suggest that a preferred scientific usage of ANNs should emphasize their instrumental potential, e.g., their contribution to traditional methods in the relevant domain, their reference to an existing theory under debate, and their power in providing a set of descriptors for certain phenomena. In this context, plurality and transparency in feature selection become paramount. 
In section 2 we distinguish two approaches to ANNs in science: the output-oriented approach and the feature-oriented approach. Focusing on the latter, in section 3, we distinguish three types of features. In an attempt to connect the features captured by the network to features in the world, scientists have to match the former with the latter. The problem is, we argue, there is no unique way to do this, and scientists lack the knowledge to justify their match. In section 4 we perform a case study on the application of convolutional NNs in cosmology. We discuss what questions and concerns motivate the feature-oriented approach in this domain, illustrate the mismatch between different types of features, and show how rationalization is performed. Despite its crucial methodological role, rationalization does not remove non-uniqueness. Finally, in section 5, we emphasize the instrumental use of ANNs and the importance of plurality and transparency in ANN-guided scientific discoveries.

2. Applying Supervised ANNs in Science
ANNs are computational systems that mimic the working of biological neurons (Fig. 1). They consist of interconnected units; each unit receives an input and produces an output for other units. The connections among units are assigned a relative weight. In a deep network, the units lie on multiple layers, and a nonlinear transformation is incorporated to connect those layers, allowing complex input-output transformation. In supervised learning, the network is fed with input data that is manually assigned an output. After iterative adjustment of its weights, the network is trained to map every input probabilistically to an output.[footnoteRef:1] [1:   Within the scope of this paper, we only discuss supervised learning. However, we expect a similar conclusion for unsupervised learning, as the choice of clustering algorithms in unsupervised learning also includes contextual and subjective elements (Cat 2022).] 
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Figure 1: An illustration of the structure and function of ANN.
There are two possible approaches to supervised ANNs in science. The first, which we call the output-oriented approach, regards the network as a black-box classifier or a regression model. After training, the network correlates inputs, such as the qualitative/quantitative description of a system or a visual/audio signal obtained with an instrument, with relevant scientific attributes. For example, ANNs could assign a certain degree of carcinogenicity to a molecule (Fjodorova et al. 2009) or correlate an image of a cell with a particular biological state (Webb 2018). However, here scientists are not concerned with how these mappings are performed or what parts in the input are responsible for the result. 
The output-oriented approach has been successfully applied to drug discovery, molecule sifting, and scientific image processing, to name a few. With multiple advantages like high processing speed, considerable accuracy, automaticity, and a general configuration that could be applied to different tasks, ANNs have become more efficient than humans, especially in tasks that involve a large data set. 
Despite these strengths, the opacity of the output-oriented approach has raised concerns and criticisms. One type of criticism expresses mistrust in complex statistical models and automated induction, pointing out that the impenetrable internal mechanics may obscure possible biases, overfitting, and poor generalizability (Watson et al. 2019). The concern stems from the possibility that the network only captures a superficial correlation coincidental to the sample but unintelligible or not generalizable to a wider scope (Samek and Müller 2019; Ilyas et al. 2019). The other type of criticism emphasizes the difficulty to match model parameters with familiar terms and categories in its context of application, and consequently the lack of interpretability (Watson et al. 2019). 
The second approach, the feature-oriented approach, to ANNs is based on the effort to overcome these criticisms and to promote transparency. Zednik (2019) insightfully points out that opacity and transparency are relative to a cognitive agent and the lack of knowledge needed to fulfill certain epistemic goals. For a system to become transparent to an agent, it should be able to provide the type of knowledge that could be cited to understand certain elements or behaviors that are either epistemically or practically important to the agent (Zednik 2019, 4-5). In line with this analysis, many AI developers and philosophers have underscored the knowledge that explains in familiar terms how ANNs perform a task, demonstrates the analogy between human reasoning and network decision, answers why the network functions in a specific way in given circumstances, and hints at the input elements that render the performance of networks successful (Samek and Müller 2019; Adadi and Berrada 2018; Zednik 2019; Watson et al. 2019). In other words, one needs to analyze either the input or the network configuration into respective parts and “hook” these parts to elements in the real world. 
Following this guidance, the feature-oriented approach goes beyond mere utilization of the output and employs several strategies to detect features that are captured by the network, seeking stable patterns in the input data that are crucial for the network to arrive at its accurate performance. When using ANNs in this way, scientists not only expect the network to answer questions like “what label/number can be assigned to a given input”, but also questions like “what features are important for the network to perform successfully”[footnoteRef:2].  [2: 2 Note that the features that ANNs make use of can be different from what are deemed as real patterns in the environment. Machine-captured features are the portion of input that is identified by certain network diagnostic algorithms as important for the network output. Moreover, ANNs could make use of extremely predictive patterns that do not have a physical counterpart. Machine-captured features might overlap with real patterns in the environment when the signal-to-noise ratio is significantly high, but in many practical cases what features are highlighted vary with both network configuration and diagnostic algoithms. ] 

Contrary to the output-oriented approach, the features that ANNs utilize for successful performance are believed to offer novelty to science. These features are not manually hard-wired into the network but are original products of the network (Buckner 2018). Because neural networks are not constructed with a bias toward human cognitive tendencies and existing scientific paradigms, they may contribute to science by discovering patterns that are not accessible to human experts (Samek and Müller 2019). While still in the course of development, this approach has been anticipated by scientists and philosophers to serve a unique role in scientific exploration, from refining representations of a phenomenon, through identifying starting points for future investigation, to suggesting potential explanations (Zednik and Boelsen 2022). Cosmologists, for example, in the Astro2020 Science White Paper titled “The Role of Machine Learning in the Next Decade of Cosmology”, propose three applications of machine learning that are potentially feature-oriented: “describing complicated relationships”, “exploring datasets to understand physical underpinning”, and “reducing scatter by using complex or subtle signals” (Ntampaka et al. 2019, 3). They anticipate this approach to promote both “physical understanding” and “the assessment of uncertainty and the removal of bias” (5). With these anticipations, it is highly desired that the features could be matched to some real, stable, or even causal, regularities in the target domain and that they could be somehow explained within existing theoretical framework. However, as we shall argue in the following sections, this process of interpretation is neither straightforward nor easily justifiable.

3. Three Types of Features and the Non-uniqueness Problem
Despite some successful instantiations of the feature-oriented approach, it faces epistemic and methodological challenges as a result of the multiplicity of possible features and the mismatch between them. Here we distinguish three types of such features: those learned by the neural network as parameters (mathematical features), those revealed by methods of feature diagnostic strategies (diagnostic features), and those that scientists expect to find in the target domain (real-world features). 

3.1. Mathematical Features
Mathematically, a neural network performs a complex combination of linear and non-linear transformations on input variables, which maps them into a state enabling classification or regression (Fig. 2). Within this context, computer scientists often use “feature” to refer to the variables on each layer used to represent the data. For example, a combination of transformations maps an input vector x to a vector i(x) on the i-th layer. The space where i(x) lies is called a “feature space”, and its dimensions are the features captured by the units on this layer (Bishop 2006, 192-195). Here is a more intuitive example: in convolutional neural networks (CNN), each unit on the convolutional layer seeks a certain pattern on the original image and generates a new representation thereof that highlights all the regions consisting of that chosen pattern (Fig. 3). The feature captured by such a unit is the numerical configuration of the kernel.
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Figure 2: After a set of linear and non-linear transformations, the data in the input space (left) is transformed into a feature space (right). Linear classification (the intersecting plane) can now distinguish two categories of data in the new space, a task that cannot be achieved in the input space.
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Figure 3: An illustration of how a kernel is used to generate a feature map. The kernel (middle) is designed to highlight short 45° slashes in the input image (left) by giving larger weights to the three diagonal pixels. After convolving the input with the kernel, a feature map (right) that highlights pixels constituting such slashes can be obtained.
 Philosophers and AI developers have already pointed out that ANN is opaque, complex, and uninterpretable. Since mathematical features are effectively the mathematical configuration of the entire network, these features share this notoriety. A network is highly distributed and holistic (O’Reilly et al. 2012, 48-54). When the lower-level activation vector is aligned with the weight vector of a higher-level unit, the unit is activated to the greatest extent. However, the higher-level unit often presents a spectrum of activation in reaction to lower-level patterns that are not in exact alignment with its weight. Therefore, there is no one unit that reacts uniquely to one category of inputs or one feature in them, and each category of inputs can activate a spectrum of patterns in the hidden units. 
Not only is the mathematical representation distributed spatially among units, but it is also temporally distributed throughout the training process. Many of the network designs are not directly aimed at extracting intelligible or stable statistical patterns but are guided by the practical goal of achieving a balance between minimizing the loss function and avoiding overfitting. The final weight assignment of each unit after training relies on the chosen algorithms in the processing and training history, including the pre-processing algorithms, loss functions, optimization algorithms, error propagation methods, and regularization methods. Alternative algorithms could be employed, and some of them display noticeable effects on the final weight assignment (Bishop 2006, 232-72). In this sense, a mathematical feature is not an atemporal statistical regularity in the input data, but an “expedient” choice that contributes to optimizing network performance at each step, for a particular data set, and according to designated algorithms. 
Given the spatial and temporal aspects of distributed representation, to have comprehensive knowledge of mathematical features and their roles, one often has to analyze all units in the network and the choice of algorithms in the training history. However, the deep network configuration, the non-linear transformation it employs, and the complex training history prevent such an analysis. Mathematical features are not easily summarized and matched to counterparts in the input. Additional diagnostic and interpretive strategies need to be implemented to enable these tasks.

3.2. Diagnostic Features
Diagnostic features emerge when scientists apply external diagnostic strategies[footnoteRef:3] to summarizing the functional behavior of the network.  [3: 3 Montavon et al. (2018) call these strategies “techniques of interpretation”. However, within the scope of this paper, we will refer to them as “diagnostic strategies” because they only offer algorithmic summaries of the network function in intelligible forms like images or texts, while what we mean by interpretation and rationalization require further understanding their results with existing knowledge in the domain of application.] 

Two of the important strategies are saliency maps and activation maximization. Saliency maps are images of the same dimension as the input, and each pixel in the map “is representative of the importance of that pixel for a given output neuron” (Matilla et al. 2020, 5). Here “importance” could be measured by different standards and characterized by different algorithms (Montavon et al. 2018). Activation maximization seeks to synthesize images that trigger the highest activation of one designated unit. This unit could be either on the output layer, where the technique effectively shows the prototypical input for a designated label, or on the hidden layers. Multiple derivations of the algorithm could also be generated by adding different prior models to the loss function (Montavon et al. 2018).
Diagnostic features generated via these methods are operational concepts defined through algorithmic operations of the network. They neither directly refer to patterns in the input domain with properties independent from the method, nor the actual parameters in the network. Instead, they reveal the input features that are important for the network performance according to a certain diagnostic strategy. 
The algorithms for these strategies are far from unique, and they show noticeable variances in results (Montavon et al. 2018; Nguyen et al. 2019). In general, despite the proliferation of diagnostic strategies, there is still no agreement on the objective standards by which certain algorithms and features are chosen as good explanations for how the network works. Features are often selected and evaluated with cognitive and practical considerations. For example, the evaluation of saliency maps considers whether the highlighted parts agree with what humans believe to be a key pattern, on what existing networks they have shown stability, and whether they also support other techniques like filtering (Montavon et al. 2018, 6-7). Likewise, in activation maximization, when desiring interpretability over predictive power, one may prefer an algorithm that reveals the shape of the object being classified over those that only generate patterns of high-frequency noise. One may also favor higher specificity of the synthesized image, namely that the image only optimizes one unit but does not trigger high activation among others on the same layer (Nguyen et. al. 2019). 
Even if an algorithm has been proven superior in some contexts, it may not be equally successful in science. Computer scientists often tune and evaluate these algorithms on open-source datasets like MNIST and ImageNet that contain mainly everyday-life images. It is relatively intuitive there what diagnostic features are more pertinent to the characteristics of the images (e.g., the tail of fish or the wings of birds). However, the standards of evaluating diagnostic strategies may not be straightforward for many scientific images in immature domains. When scientists themselves do not have a comprehensive grasp of the features they are looking for but rather expect ANNs to reveal them, it is difficult to justify any diagnostic feature by intuition or familiarity. It could also be expected that algorithm evaluations may not be perfectly extended from one type of input data to another, or from one network configuration to another (Montavon et al. 2018). 

3.3.  Real-world Features
In the feature-oriented approach, scientists are interested in discovering real-world features. By real-world features, we mean stable patterns that are characteristic of a class of phenomena and are meaningful to the relevant scientific domain. “Characteristic” means that the features are not coincidental similarities only in the sample, but are distinctions between classes of phenomena in a more general scope. In some extreme cases, they may even be the decisive reason for assigning a phenomenon to one class rather than another. For example, when recognizing enemy military tanks in real circumstances, the shade of the sky or the pattern of plants in the background do not count as features characteristic of the tanks, but logos, types, and paint may be. By “meaningful” we mean that the features can be described using terms from the relevant scientific domain, or can be connected to (or explained by) scientific theories.
As a clarification, we do not assign real-world features any ontological weight. In the context discussed here, these features do not have to indicate real entities, natural kinds, or causal regularities. As long as they are recognized, discussed, and studied by scientists as stable and pertinent elements, they could be either a mixture of the above categories or a more moderate version thereof. In this sense, even if not all scientific practices claim to generate knowledge about those ontological categories, many of them would be able to determine their own real-world features. This concept is thus aimed not at stipulating what a feature in science should be, but rather to illustrate the tension between features already meaningful to scientific practices and features extracted by machines before interpretation.
Mathematical and diagnostic features themselves are not real-world features. Real-world features are semantic, constructed by scientists according to their research activities, with physical meanings, and generalizable to a broader scope of phenomena. In contrast, the former two features are numerical, determined by algorithms, not entailing physical meanings, and often not generalizable to situations very different from the training dataset. To make it clearer, the weight of a unit (mathematical feature) is only a set of numbers that, when combined with all the network parameters, achieves the optimal outcome during the training process; a saliency map of a network (diagnostic feature) only calculates how slight numerical changes in a designated input affects the output. These are very different from how scientists find real-world features in their subjects: scientists do not assign weights to individual features and calculate the outcome by combining all of them, but they reason with qualitative languages; scientists do not carve their subjects in any way that optimizes the ability to distinguish them, but often introduce intuitive, conventional, or theoretical reasons. For example, machines may learn to be sensitive to certain pixels of a galaxy picture to optimize their classification performance in a given dataset, whereas real-world features are the real galaxy parts that are connected to certain physical mechanisms or morphological characteristics that scientists have determined in the past.
Scientists have to interpret mathematical or diagnostic features in order to connect them to real-world features and generate knowledge about the latter. However, interpretation may not be straightforward to achieve. Sullivan (2019) points out the difficulty of interpretation and coins the term “link uncertainty” to refer to the lack of evidence supporting the connection between an abstract model like ANN and the target phenomenon. She argues that this uncertainty can be reduced with prior knowledge and empirical evidence that supports the interpretation. However, as I will argue in the next subsection, scientists often lack such knowledge and evidence in the feature-oriented approach that aims at exploration in an immature domain. 

3.4.  Non-Uniqueness
By “non-uniqueness” we mean that (1) there exist multiple alternative mathematical characterizations of the target system for a scientific purpose, which then leads to (2) the epistemic difficulty in justifying the choice between these multiple characterizations. 
The umbrella that non-uniqueness lies under is the general thesis of underdetermination, an enduring topic in the philosophy of science under multiple contexts. Proponents of contrastive underdetermination argue that it is not only logically possible but also a fact in many scientific contexts that there may exist multiple empirically equivalent theories for a given set of evidence (Stanford 2017). Multiple alternative theories may generate the same prediction, and there may be alternative ways to modify a set of hypotheses to match existing evidence. Because evidence alone cannot arbitrate the choice among alternative theories, the burden finally lies on other factors like conventions, contexts, and non-epistemic values. 
Non-uniqueness is a variant of underdetermination that stresses the multiplicity of equally plausible mathematical structures and tools for measuring and representing a system. Examples include the choice of geometrical systems in modern physics (Heinzmann and Stump 2017), network representations of a real system in network science (Baker 2013), measures in statistical and quantum mechanics (Hemmo and Schenker 2012, 69), and algorithms for similarity measures in data clustering (Cat 2022). Non-uniqueness deserves special attention especially in the era of data-driven science. Metrics, algorithms, and mathematical models proliferate in many domains, while the nature of them being general tools that can be applied in different circumstances often obscures the context in which they are developed, the purpose they are designed to fulfill, the assumptions underlying them, and when they can be applied successfully. 
Failing to recognize the non-uniqueness of the tool chosen can lead to problematic consequences. One can be blind about alternatives, and falsely attribute an evidential significance to the result obtained because it is produced by “the objective tool”. For example, in the case offered by Hagar and Hemmo (2013), scientists claim to “infer” a unique structure out of raw evidence, while what they perform is actually an interpretation of the evidence, which presupposes a desired non-unique theoretical framework. Proponents of dynamical approaches to spacetime claim to derive the Riemannian metric from non-geometrical quantum gravity consideration, while in fact, this non-unique derivation relies on a contingent presupposition about counting. Hagar and Hemmo point out that the justification for this “derivation” does not naturally follow from the physical theory (in this case, a version of quantum gravity known as the causal set approach), but actually from the preference for the chosen metric at the very beginning, hence is circular, and at most amounts to a consistency proof between the dynamical approach and the geometry. 
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Figure 4: An illustration of the relation between the three types of features. The solid arrow refers to diagnostic strategies that generate diagnostic features from network parameters. The dashed arrows refer to scientists’ interpretation that links mathematical or diagnostic features to real-world features. In the feature-oriented approach, this linkage is established through scientists’ perceived similarity or isomorphism between machine-captured features and patterns, entities, or relations in the existing representation of the real world. Here we take how this interpretation is done to be a pragmatic move of scientists on a case-by-case basis and do not intend to delimit how it is or should be done in general.
The problem of non-uniqueness saturates science, and the feature-oriented approach to ANNs is no different. When interpreting a network, one has to choose from numerous network parameters or their combinations, multiple diagnostic features generated with divergent algorithms, and several ways to interpret them (Fig. 4). Some of these may point at alternative real-world features: for example, the combination of some network parameters M2 and M3 (e.g., a feature map produced by combining two highly-weighted convolutional kernels) suggests the significance of R1, whereas D1 suggests the saliency of R2, and D2 suggests the importance of R3; R1, R2, and R3 may be so divergent and even competitive that accepting them all leads to a trivial conclusion that simply everything matters. Therefore, in order to gain something from this approach, scientists at some point need to make a choice between machine-captured features and put forward rationalizations for their choices against others.
Rationalization, however, faces epistemic difficulty in evaluating and justifying the preference for specific machine-captured features. A desired rationalization should show that those machine-captured features relate to genuine real-world features instead of just being coincidental or unintelligible patterns. According to Sullivan (2019), this is usually achieved by linking model parts with stable elements in the target system via existing theories or empirical evidence that support the match between the two. Nevertheless, it is unlikely to perform such a strategy and establish links with certainty in the feature-oriented approach due to its own aim. 
Within the scope of the feature-oriented approach we depicted, scientists use ANNs for the purpose of scientific discovery and exploration, expecting neural networks to provide novel insights into a domain that is immature. Scientists search for new real-world features with the help of networks, rather than citing existing ones to make sense of the network. This often happens when scientists themselves lack the vocabulary to describe phenomena or when theories have not been fully developed in the relevant domain. In other words, scientists expect R1, R2, and R3 to be constructed out of or tested by machine-captured features, and they do not have sufficient knowledge about what R1, R2, and R3 should be like, let alone how to choose among them. This lack of knowledge is an unavoidable consequence of the feature-oriented approach. Rationalization, therefore, only suggests some machine-captured features as possible candidates, without being able to match them to genuine real-world features and thus justify the choice with certainty.
Can the justification then come from the side of machine-captured features? Our short answer is no. As has been argued in the last section, mathematical and diagnostic features are themselves only products of optimization algorithms and lack physical meaning. To be given strong weight on a specific layer, to be highlighted in a saliency map, or to be produced in activation maximization does not indicate the role a feature plays in the real system and for a scientific purpose. As a part of a real system, real-world features are not simply a reconfiguration of numerical data (e.g., certain pixels in a scientific picture), but indicate causal elements or stable regularities in the system that the data refers to (e.g., the physical parts that the pixels stand for). This mismatch is further complicated by the existence of multiple alternative features. Moreover, as a part of scientific practices, real-world features are defined within a scientific paradigm or with regard to a research question. An “important” real-world feature in a scientific domain could mean a plethora of things, such as theoretical elements, causal factors, understandable explanans, heuristics, or useful conventions, depending on the judgments of practitioners in actual scientific practices. One cannot take it for granted that algorithms, especially those designed and tuned for general purposes, are sufficient for meeting these pragmatic requirements in a specific context. In fact, the relative performance of diagnostic strategies varies even with the change in network structure and data type (Montavon et al. 2018, 9). 
Thus, the embarrassing situation of the feature-oriented approach is that while ANNs are expected to provide novel real-world features for the purpose of scientific discovery, to justify the choice between a multiplicity of them requires that one already knows much about the real-world features being pursued, which is often not the case due to the aim of the approach itself. Note that, as we argue in section 5, we are not suggesting that extracting features from ANNs cannot contribute to scientific discovery at all, but a distinction has to be made between using them as given evidence and taking them as heuristic instruments.

4. Case Study: CNNs in Cosmology
In this section, we introduce a concrete case in which non-uniqueness dwells. The case illustrates how scientists put forward rationalization for machine-captured features without knowing real-world features that can tightly match them. We will show how scientists make choices based on their theoretical or technical assumptions in each step of the rationalization. As a result, CNNs do not simply “give” us novel real-world features, but it is we who make the choice and the connection to the real world. The crucial role of choice affects how the features should be used.  
According to general relativity, light rays emitted from faraway galaxies are distorted by the gravitational field between them and the observer. This distortion allows cosmologists to reconstruct the intermediate gravitational field from the observed light with a technique known as weak gravitational lensing. Weak lensing offers evidence for the Lambda cold dark matter (ΛCDM) cosmological model agreed among many cosmologists. The model describes the expansion of metric space based on three components of the universe: dark energy, cold dark matter, and ordinary matter. In weak lensing images, the statistical properties of the gravitational field are sensitive to two parameters of the ΛCDM model: m and 8. m represents the mean matter density of the universe, and 8 characterizes the amplitude of the initial perturbations that served as seeds for the cosmic structure growth (Matilla et. al. 2020). In the case study below, cosmologists use CNNs to process weak lensing images and constrain the values of these two parameters.
Traditional statistical methods such as power spectrum, peak counts, and Minkowski functionals have allowed cosmologists to constrain the parameters with summary statistics of the image. However, these general methods fail to capture some features that are specific to weak lensing images. As Matilla et al. (2020, 1) admit, “the choice of any particular statistics will, however, generically entail a loss of information.” To overcome the limitation of traditional methods, cosmologists turn to CNNs. Because CNNs map the entire image directly to the output, they could extract more information from data than traditional statistics and further constrain the two parameters. Indeed, well-tuned CNNs have successfully aided scientists to increase the precision of the estimation of those two parameters. 

4.1 Why the Feature-Oriented Approach?
Beyond taking CNNs merely as black-box regression models, there are good reasons that motivate the feature-oriented approach. Revealing and adopting features are important because cosmologists do not take CNNs’ results to pursue other ends, but regard them as an end in itself. In other scientific practices, where neural networks are used in an output-oriented way, they are usually incorporated as a module for some further goals, and the predictive success in achieving that goal can be used to justify the use of the network. For example, when using neural networks to classify carcinogenic chemicals from their chemical structures, the classification results help to preliminarily screen compounds for further tests (Fjodorova et al. 2010); in multiscale modeling, ANNs are employed to parameterize local systems, whose results are later fed into a larger model (Peng et al. 2020). Contrary to these examples, the objective of weak lensing is not to produce results “fast and cheap” for a different end; building an accurate cosmological model is the stated goal, and the parameter pair is unique and fundamental to it. Therefore, what is at stake is exactly by what process the result is obtained, and whether one could fully understand and trust this process.
The feature-oriented approach also makes it possible to analyze systematic errors and thereby build trust. Each method that tightly constrains the parameters is precise but not necessarily accurate because it is still susceptible to unknown systematic errors. Systematic errors can only be assessed by comparing multiple methods that extract non-identical information from data. Therefore, one not only has to know the network output but also what information in data the network utilizes. 
Moreover, the feature-oriented approach could supplement an immature domain like weak lensing with the vocabulary to describe phenomena. Weak lensing pictures are visual representations of gravitational fields, which are among highly unintuitive scientific pictures. How would one describe a gravitational field? What parts or patterns of it constitute the vocabulary to express its properties? Among numerous possible combinations of pixels that could be used to summarize a picture, neural networks might be able to single out the ones that are epistemically fruitful and even physically meaningful.
Finally, features could be taken away from the holistic networks in order to be tested in isolation or incorporated into manual practices. Because of the widely-known weakness in extrapolation, networks trained on simulation images may not be directly applied to real weak lensing images that involve different types of noise. To take advantage of the local accuracy of CNNs while circumventing the problem of extrapolation, features could be extracted and used “as a hint” to “build an easy-to-understand and robust estimation method” (Ribli et al., “Inference Scheme,” 2019, 93). 

4.2 Rationalization in Feature Selection
	Cosmologists employ different methods to obtain features within a well-trained CNN. In this subsection, I will show how the choices of features are rationalized. This rationalization incorporates background assumptions from both technical and theoretical aspects. 
Two projects (Ribli et al., “Inference Scheme,” 2019; Ribli et al., “Noisy Data,” 2019) started by inspecting the mathematical features of the network, especially the convolutional kernels. They studied the first convolutional layer in a deep CNN consisting of multiple layers and focused on 3 kernels among all 32 on that layer. To justify this choice, cosmologists have to explain why the first layer is favored, what role these three kernels play in the network performance, and how they map onto any real-world features. 
For this purpose, cosmologists suggest several lines of rationalization with somewhat relevant background assumptions. First, they rationalize the choice of the first layer among all others with an assumption about the specific property of weak lensing data. They believe that what traditional statistical methods fail to capture and can be contributed by CNNs are the small-scale non-Gaussian patterns related to gravitational collapse. They also assume that small-scale features are mostly captured by the first convolutional layer, so only that layer is relevant to the epistemic goal of using CNNs.
In addition to this, they use a diagnostic strategy called layer-wise relevance propagation (LRP) to create a saliency map showing diagnostic features (“Noisy Data,” 2019). The diagnostic features identified are small-scale patterns around high-signal peaks in the images. These diagnostic features suggest that the convolutional kernels that are sensitive to the signal gradient around peaks are of the most importance to the entire network performance.
Then, cosmologists further rationalize the choice of the 3 kernels among all 32 based on their morphological similarity with known filters that have special applications in other domains of physics. In “Inference Scheme,” one kernel resembles a “2D discrete Laplace operator”, which “basically calculates the difference of the peaks and the surrounding pixel values”; the other resembles one of the so-called “Roberts cross kernels”, which “approximate the gradient of an image” (Ribli et al. 2019, 93-94). These known filters have been used as a solution to other physical image processing problems. The other kernel picked in “Noisy Data” is also interpreted to be a version of “aperture-mass filter”, which “may be able to capture the true profiles of structures arising in ray-traced full N-body simulations” (Ribli et al. 2019, 1853).
Beyond this, cosmologists further suggest that the kernels may map onto certain previously recognized real-world features. Ribli et al. (“Noisy Data,” 2019) invoke existing simulation-based studies that show the general correlation between peak steepness and cosmological parameters, indicating that peak steepness is a feature in the real world and is already meaningful for cosmologists. Because the 3 chosen kernels somehow highlight the steepness of the peaks, they are suggested to map onto real-world physical regularities. 
	The successful application of these features should not conceal the fact that first, the chosen features are not unique and more features could have been analyzed, and second, the choices are made under certain background assumptions and could have been different with others. For example, another study by Matilla et al. (2020) identifies different machine-captured features as more important. They create saliency maps for their CNN with seven saliency methods and discover that some of these maps suggest drastically different diagnostic features. To evaluate these methods, they rely on a technical standard based on a model parameter randomization test: if randomizing parameters in the network does not also reconfigure the saliency map, it suggests that the diagnostic features do not reflect what is learned by the network, but something inherent to the raw network setting. Whereas in “Noisy Data” (Ribli et al. 2019), peak areas in the input are highlighted by the saliency method LRP-, Matilla et al. (2020) show that methods like this do not reflect learned diagnostic features well. Instead, the more reliable gradient-based methods suggest that the distribution of importance among pixels favors non-peak areas: in noiseless data, it is not the peak areas, but the void areas that contain the most information[footnoteRef:4].  [4: 4 If one takes this result from saliency maps literally, it is not consistent with what is suggested by the algorithms used by Ribli et al., as the whole distribution of information in the input are shown to be different. The conflict indicated by algorithms, however, does not dismiss the possibility that both voids and peaks contain important information and could be used together in some way to constrain the cosmological parameters. This suggests that further work needs to be done beyond simply taking the results of algorithms at face value, such as evaluating the types of information provided by different regions, deciding whether they are complementary or conflicting, and exploring the best use of them.] 

The emphasis on voids differs even from how the mainstream traditional statistical methods extract information, but Matilla et al. (2020) are able to rationalize this result by mapping it onto existing studies that promote a different approach focusing on cosmic voids. Based on those studies, they suggest that certain statistical properties of voids are significant real-world features, as they are potentially affected by or immune to certain real physical processes: “Large voids, accounting for de-magnified and under-dense regions, have previously been found to contain most of the cosmological information in simulated maps with a galaxy redshift distribution and shape noise levels somewhat lower than considered here and appropriate for LSST. These regions have also been shown to be less affected by baryonic physics, which are hard to capture accurately in simulations of growth of structure. On the other hand, these regions have been shown to be sensitive to neutrino physics and modified gravity theories.” (11) 

4.3. The Limitation of Rationalization and the Persistence of Non-Uniqueness
Both aspects of non-uniqueness proposed in section 3.4 are manifested in the case study. With regard to the multiplicity of alternatives, both research projects could have studied more features than the ones they actually analyzed. Ribli et al. selected only 3 out of 32 convolutional kernels on the first layer of the network, and only applied one of the diagnostic strategies. Matilla et al. selected only the gradient-based diagnostic strategies. Moreover, when they compare the saliency of peak or void areas, because these regions are continuous, there is no unique way to draw the line for void or peak areas, and there are no unique specific features in those areas that should be adopted.
	The epistemic difficulty is shown by the fact that both technical knowledge about neural networks and theoretical knowledge in the domain of weak lensing are not sufficient to justify the choices and the reality of the relevant real-world feature. On the technical side, as has been argued in section 3, mathematical features elude analysis due to their holistic nature; diagnostic strategies are designed, tuned, and evaluated not for the specific context, network, and scientific purpose. As a result, there is no guarantee that these algorithmic features represent any real-world feature candidates desired in the domain. 
On the theoretical side, drawing connections to existing regularities is only suggestive here. For example, Ribli et al.’s assimilation of mathematical features to existing kernels in image processing (“2D discrete Laplace operator” and “Roberts cross kernels”[footnoteRef:5]) does not count strictly as a justification out of physical regularities. Without an explicit theoretical or simulation basis, the usage of certain kernels may only be a mathematical maneuver: performing the operation of calculating gradients and steepness does not necessarily mean that the operation is based on a physical regularity that involves gradients. Likewise, in the study of Matilla et al., only a loose connection can be drawn between the manually delimited high-saliency regions and the relevant statistics proposed by existing studies.  [5: 5 The “aperture-mass filter” they discover in “Noisy Data” is slightly different from these two. It has been verified by many studies, including N-body simulations, that the aperture-mass statistics are sensitive to the cosmological parameters. Therefore, this filter is more physically embedded, but the trade-off is that it lacks the expected novelty.] 

Furthermore, when domain-specific regularities are referenced as real-world features, due to the immaturity of the domain, scientists do not have agreed-upon knowledge about what regions in the data contain more crucial information for a desired purpose, what the relevant real-world features exactly are, or whether information from different regions is competing, converging, complementary, or suitable under different physical and observational conditions. Therefore, caution needs to be taken when evaluating the role those features play in the domain. As different features are chosen in light of different hypotheses about the nature of cosmic peaks or voids, it would be a circularity if one then takes the identified features as “given” evidence in support of the assumption used to single them out. When used this way, the feature-oriented approach cannot add to the reliability of the hypothesis, and the hypothesis also cannot justify the choice of features. However, as we suggest in the next section, these features do play an instrumental role, when they are taken as starting points for future scientific investigations.
As a result, by reducing the number of plausible choices and suggesting potential connections to existing hypotheses, the rationalization process only temporarily points to a step away from the state of non-uniqueness, but it does not provide epistemic security for the features chosen to be unique and real.

5. Instrumental Value, Transparency, and Plurality
The issue non-uniqueness is not unique to our case of cosmology, but also appear in other domains of science (for an example in medicine, see Eitel et al. 2019). In this section, we offer some general suggestions on what to expect from the feature-oriented approach and how they could be better used.
We suggest that the commitment to features should be based on their instrumental rather than evidential value, no matter how tempting the latter is. This means that features interpreted from machines should only be used for inspiration and guidance toward further studies, but not as concrete and full-fledged evidence to settle the reality of relevant real-world features or the correctness of hypotheses. 
The maneuver of using existing scientific theories to interpret features and using features to inform scientific theorizing does not entail a vicious circle, if the role of features is instrumental and not evidential. When feature interpretation and rationalization are mainly suggestive, they are not necessarily performed to find exactly what is expected by the background assumptions, but only to draw plausible connections. Hence, evidence is still anticipated outside this circle and awaits further studies.
Aside from the exploratory use of ANNs proposed by Zednik and Boelsen (2022), the instrumental use also includes but is not limited to: (1) integrating features into traditional methods and exploring their contribution thereto, (2) referencing existing theories under dispute and bringing promising theories to the front for further study, (3) using features to serve as descriptors on the phenomenal level, and (4) suggesting possible physical influences on machine performances and indicate sources of errors. 
The integration of features into traditional methods for improvement is an important move in Ribli et al. (“Inference Scheme,” 2019). The filters are manually applied to the images before scientists perform traditional statistical methods like peak counts and power spectrum. Having the extrapolation problem in mind, cosmologists are cautious about using CNNs directly to estimate cosmological parameters in real-world images. Extracting features from the network and employing them in isolation circumvent this problem, as this renders the features independently verifiable in a broader scope. Moreover, with the knowledge of the properties that different kernels have, scientists can make modifications to the kernels in order to fit them into slightly different situations and use them to accomplish different goals. For example, in their study, the Roberts cross kernels are changed into a similar pair of kernels called Sobel filters, in order to tackle the noise in a realistic measurement. No matter how unreliable ANNs are, these concrete contributions testify the value of the features they capture.
Even though machine-captured features cannot arbitrate theory choice and construction, they could still serve an instrumental function of referencing existing theories for further studies and bringing debates to the fore. In our case, despite the relation between information from peaks and voids is unsettled, the divergent features help to expose the community to the existence of such alternatives, and to highlight the hypotheses that stress different regions, including the relatively novel and unorthodox one that stresses the role of voids. 
Lessons from the literature on non-uniqueness suggest that there might be a tricky consequence of taking a choice as unique and well-justified. Likewise, in the feature-oriented approach, individual scientists often do have to make choices among features, as they may not have access to all possible background assumptions and diagnostic strategies, and they often need to make a tradeoff between identifying too many possible features and giving constructive suggestions about investigating a few of them. The risk here is that rationalization can be interpreted as justification, and the choice may blind scientists from alternatives. 
To mitigate this risk, the implication from the case study is that a pluralistic and transparent feature selection and rationalization process is crucial. The co-existence of the different results of the two cases helps to show the community how many different choices and interpretations of features may be rationalized to a similar extent. As a lesson from the traditional underdetermination thesis, Longino (1990) has proposed that to retain the objectivity of science when contextual values are necessarily involved, it is crucial to secure that a community performs critical scrutiny upon the background knowledge that is involved. In this context, to recognize the background knowledge involved in adopting features, both transparency and plurality are needed. Scientists have to be transparent about the way they extract and rationalize features, expose what alternative features are omitted and what theories are invoked, and how neat and reliable the matching between captured features and expected real-world features is. As for plurality, combining different diagnostic strategies and rationalizing as many features as possible with competing theories would defend the community from a single biased orientation, and help to highlight different interpretable features to a similar extent for further research. 

6. Conclusion
With the developments in recent years, ANNs have proven their strengths as efficient research tools and have started to substitute human labor in some domains of science. This leads to anticipations, discussions, and doubts about the future of ANNs in science, both from scientists and philosophers of science. The question arises as to whether the opaque statistical inferences and automatic reasoning performed by machines could meet the needs of science, which is a domain originally guided and delimited by human cognitive abilities, values, and conventions. To answer this question calls for projects to investigate the interface between humans and machines in science, e.g., to show how exactly machine learning is used by scientists, how it could be contributive to science, and where its limitations lie. These questions are not only raised for philosophical curiosity about the working of science, but also for scientific lessons about how to lead successful practices and avoid biases.
Echoing the recent development of network diagnostic strategies and the anticipation that ANNs may not only serve a mechanical but also creative role in scientific discoveries, we distinguish two different ways of utilizing them. In comparison to the output-oriented approach, which adopts the classification outcomes without inquiring into how they are achieved, the feature-oriented approach is concerned with what features in the input are especially important for the result. It is believed that because these features are original products of the network’s algorithm without introducing human cognitive habits and existing scientific paradigms, they could discover new patterns that are constructive to existing scientific theories and methodology. 
We analyze how this approach is performed, evaluate what can be reasonably expected from it, and highlight some potential caveats. We point out that the three notions of features involved in this process – mathematical, diagnostic, and real-world features – do not neatly match with each other. This mismatch results in an issue of epistemic non-uniqueness: multiple alternative features could stand out when adopting them to enrich science, but scientists lack the knowledge to justify their choices. With our case study in cosmology, we demonstrate that non-uniqueness cannot be eliminated by rationalizing and interpreting the features with existing theoretical and methodological assumptions, especially when novelty is the aim and the domain is not mature enough. 
If our observation and arguments do hold in a broader scope and point to a genuine concern of the feature-oriented approach, there is good reason to be critical and cautious about how the features should be used. It is unlikely that ANNs will automate scientific practices by giving solid evidence and dispensing with the uncertainties of induction. Decisions from scientists based on their background assumptions are made in many important steps of the application of ANNs. In order to guard science against over-enthusiasm about the prosperity of ANNs and mitigate the potential risk from non-uniqueness, we suggest that the feature-oriented approach should stick to its instrumental value, instead of being used evidentially to justify existing hypotheses or serve as the solid foundation for new theoretical or methodological frameworks. Moreover, it is important that this approach does not conceal its uncertainties or blind scientists with limited options. Therefore, we propose that scientists have to be transparent about the multiplicity of features, as well as on what ground they are rationalized and adopted. Moreover, the community should promote plurality by combining different diagnostic strategies and rationalizing as many features as possible with competing theories. 
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