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ABSTRACT. A standard line in the contemporary philosophical literature has it
that physical theories are equivalent only when they agree on their empirical con-
tent, where this empirical content is often understood as being encoded in the
equations of motion of those theories. In this article, we question whether it is in-
deed the case that the empirical content of a theory is exhausted by its equations
of motion, showing that (for example) considerations of boundary conditions play
a key role in the empirical equivalence (or otherwise) of theories. Having argued
for this, we show that philosophical claims made by Knox (2011) that general
relativity is equivalent to teleparallel gravity, and by Weatherall (2016) that elec-
tromagnetism in the Faraday tensor formalism is equivalent to electromagnetism
in the vector potential formalism, can both be called into question. We then show
that properly considering the role of boundary conditions in theory structure can
potentially restore these claims of equivalence and close with some remarks on
the pragmatics of adjudications on theory identity.
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2 Respecting Boundaries
1. INTRODUCTION

Determining when two theories, models, or formulations of a theory are equivalent to
one another (and in what sense) remains a significant topic within the philosophy of
science (Glymour 1970; Quine 1975; Weatherall 2018). The rationale underlying the
attention which has been afforded to this issue presumably has to do with the idea
that it is only through understanding these issues of equivalence that one can come
to understand how a theory, model, or formulation comes to limn reality. Arguably,
the quest for such understanding has also aided scientific progress in the past—
examples include the equivalence of wave mechanics and matrix mechanics (von
Neumann 2018; Muller 1997a,b), Feynmann’s and Swinger’s approaches to quantum
field theory (Dyson 1949), Lagrangian and Hamiltonian mechanics (Barrett 2019;
Curiel 2014; North 2009), the AdS/CFT correspondence (Maldacena 1998; de Haro
et al. 2016), and many others.

The extant literature on theoretical equivalence is vast, and has focused on
developing criteria for—and assessing the conditions under which—particular the-
ories can be understood as being equivalent, as well as applying these criteria to
specific examples in order to illuminate our understanding of particular theories and
the interconnections that their structures may possess. In a recent discussion con-
cerning the equivalence of Lagrangian and Hamiltonian mechanics, Barrett (2019)
sketches an interesting connection between questions of theoretical equivalence and
questions concerning the content or structure of a physical theory. While theoreti-
cal equivalence is certainly a significant topic within the philosophy of science, Van
Fraassen (1986) famously considers the question, ‘what is the content of a theory?’,
to be the central foundational question of philosophy of science. In identifying this
relationship between questions of theoretical equivalence and the content of a the-
ory, Barrett (2019) argues that whenever we commit to a method of identifying the
content of a theory, we also necessarily commit to a standard of equivalence be-
tween theories. The converse also applies because when we commit to a particular
standard of equivalence between theories, we are (for Barrett) also saying which
features of our theories are significant or ‘contentful’, as these are the very features
that our assessment of equivalence will consider.

Within the physical sciences, this often manifests itself as philosophers taking
the relevant physical content of a theory to be the dynamical content encoded in
its equations of motion. This then necessarily results in empirical equivalence be-
ing identified with dynamical equivalence. There are a number of examples in the
equivalence literature where this relationship between standards of equivalence and
judgments about the content of a theory is evident. Examples include Knox (2011)
arguing for the theoretical equivalence of the teleparallel equivalent of general rel-
ativity (TPG) and general relativity (GR) and Weatherall (2016) arguing for the
theoretical equivalence of the Faraday tensor formulation and the gauge field formu-
lation of classical electromagnetism. In both cases, the authors adopt a standard of
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equivalence that holds that the ‘contentful’ features of the theories in question are
wholly captured in the theories’” dynamics. For example, when discussing empirical
equivalence, Weatherall stipulates “that on both formulations, the empirical content
of a model is ezhausted [our emphasis| by its associated Faraday tensor [that sat-
isfies Maxwell’s equations|” (Weatherall 2016, p. 1078), where of course Maxwell’s
equations represent the dynamical content of electromagnetism. Similarly, Knox
indicates that “the (TPG) Lagrangian above turns out to be identical, up to a di-
vergence, to the Einstein—Hilbert Lagrangian in standard GR. ... the equivalence of
the Lagrangians is enough to establish empirical equivalence” (Knox 2011, p. 272).
This is likewise just a statement that the two theories share the same dynamics
and that these dynamics exhaust empirical content. As we shall see, while they do
not explicitly advocate a particular view of theory structure in their analyses, this
standard of empirical equivalence (i.e., equivalent dynamics) nonetheless implicates
both of the above authors (amongst others) in a certain fairly typical version of the
semantic view of scientific theories. This view, as usually articulated, holds that a
theory’s content is captured by models comprised of the right kinds of mathematical
objects, where these objects obey some specified dynamics.

While this is certainly an understandable position given the prominence of dy-
namics in physical theories, recent decades have seen both philosophers and physi-
cists investigating content that is not entirely determined by a theory’s dynamics—
in particular, the content inherent to describing isolated subsystems and their re-
lationship to their environments. Recently, philosophers have both used isolated
subsystems to investigate the empirical significance of gauge symmetries (Wallace
and Greaves 2014; Teh 2016; Murgueitio Ramirez and Teh forthcoming; Gomes
2021; Wolf et al. 2023), and have explored the important explanatory role that the
boundary conditions associated with such isolated subsystems play in mathematical
modeling (Bursten 2021). Physicists have likewise focused on isolated subsystems
and boundary phenomena associated with them, as can be seen by prominent exam-
ples including the quantum Hall effect (Wen 1995), the study of black hole entropy
(Gibbons and Hawking 1977), and the AdS/CFT correspondence (Maldacena 1998).

Furthermore, when viewing the content of a physical theory as including the
kinds of boundary content associated with isolated subsystems, it becomes clear
that an analysis of empirical equivalence that relies only on dynamics is deficient.
In particular, in this paper we highlight how the analysis in the aforementioned ex-
amples from Knox and Weatherall does not account for such boundary phenomena;
doing so leads to a verdict that both pairs of theories, as presented by the authors,
are in fact empirically (a fortiori theoretically) inequivalent. These results thereby

invite the following conclusions:

(1) Adjudications of theoretical equivalence cannot be made independently of
clearly committing oneself to particular judgments regarding a theory’s rele-

vant content. If one fails to account properly for the contentful features of a
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theory, one will either be left with an adjudication of theoretical equivalence
that is incorrect or a view of the theories” structure that is deficient.

(2) The content of physical theories can extend beyond dynamics. Bound-
ary phenomena, boundary conditions, and the modeling of subsystem-
environment decompositions is relevant in questions concerning views of
the content of physical theories, and likewise concerning theoretical equiv-
alence, because these items are important to capturing the empirical con-
tent of physical theories. Indeed, some philosophers have begun to discuss
boundary conditions alongside other elements that are typically invoked
when specifying theoretical structure—see e.g. (Wallace and Greaves 2014;
Teh 2016).

2. VIEWS ON THEORETICAL EQUIVALENCE

Discussions of theoretical equivalence almost invariably begin with a notion of em-
pirical equivalence. If two theories disagree in terms of the empirical content asso-
ciated with them, then no further analysis is necessary: they are inequivalent tout
court. The reason for this is that empirical goings-on are naturally regarded as
supervening on physical goings-on. At a minimum, theories should necessarily have
the same empirical content if they are to be considered equivalent. This means
that two theories must have the same range of applicability regarding empirical
scenarios they describe and provide indistinguishable predictions for the observa-
tional phenomena. To be slightly more specific, we can understand that models
M of a theory T will have empirical substructures, which can represent observable
phenomena. Suppose, for every M of T, there is an M’ of 7', where the empirical
substructures of M and M’ are isomorphic. Then, T and 7" can be understood to
be empirically equivalent (Van Fraassen 1980). This is a fairly general way of stat-
ing what empirical equivalence amounts to. As we have seen above, showing that
two theories possess equivalent dynamical content is often taken to be sufficient to
demonstrate empirical equivalence within the physical sciences. While we do not
attempt to provide a fully exhaustive and all-encompassing definition of empirical
equivalence (we can be pragmatic about thisl—see §4.3), one of the goals of this
paper is to demonstrate clearly that within the physical sciences there is important
content beyond dynamics that should factor into our analyses of empirical equiva-
lence. That is, dynamical equivalence alone is not sufficient to establish empirical
equivalence.

Those of a positivist persuasion would consider empirical equivalence to be a
sufficient criterion for establishing theoretical equivalence because they would ar-
gue that a theory’s meaning and content is exhausted by its empirical consequences.
Yet, most subscribe to the idea that empirical equivalence is a necessary but not
sufficient condition for theoretical equivalence, because there are meaningful theo-
retical claims beyond strict empirical consequences, such as two theories differing in

regards to “what structure they attribute to the world, what sorts of entities exist
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in the world, or what the laws of nature are” (Weatherall 2018, p. 5). This has
motivated philosophers to propose further, stronger criteria for establishing theo-
retical equivalence that go beyond empirical consequences. These can be roughly
broken down into formal notions of equivalence and interpretational equivalence.
This literature is vast and we make no attempt at a fully exhaustive description of
the possibilities.

Definitional equivalence is a formal criterion developed initially by the likes
of Quine (1975) and Glymour (1970, 1980), and captures the idea that two theo-
ries should be inter-translatable. This means that one should be able to take all
of the vocabulary of theory T, and translate it into the vocabulary of theory T,
and wvice versa, in a manner that faithfully preserves the content of each theory.
Furthermore, there is generally an idea that these translations between theories
should be unique and invertible. Other formal attempts at cashing out equivalence
in something like this manner include categorical equivalence and Morita equiva-
lence. Categorical equivalence uses tools from category theory to address situations
that seem otherwise to be problem cases for definitional equivalence, such as when
transformations between models are many-to-one (Weatherall 2018). This is the
case, for example, when multiple gauge choices in one theory correspond to one
model on the other side of the transformation. Morita equivalence attempts to
weaken definitional equivalence by providing a notion of equivalence that applies to
theories that are formulated using different sorts (i.e., different classes of entities)
(Barrett and Halvorson 2016).

Interpretational equivalence, in contrast with definitional equivalence, seeks to
capture the notion that two theories are equivalent when they license all of the
same claims about the phenomena they describe, going beyond purely empirical
or formal considerations (Coffey 2014; Butterfield forthcoming). In other words,
theories T" and 7" can be understood to postulate the same ontologies and make
the same claims about this shared ontology.

With these notions of equivalence on the table, we next move on to analyzing
some recent discussions in the philosophical literature surrounding the issue of the-
oretical equivalence, and to evaluating these respective adjudications of theoretical
equivalence for particular theories. The examples we will consider are (i) the equiva-
lence of the teleparallel equivalent of general relativity (TPG) and general relativity
(GR) (Knox 2011), and (ii) the equivalence of the Faraday tensor formulation and
the gauge field formulation of electromagnetism (Weatherall 2016).

3. ADJUDICATING THEORETICAL EQUIVALENCE

3.1. Example 1: TPG and GR. Both TPG and GR are theories of gravitation,
but TPG differs from general relativity in a number of ways. The most obvious

is that rather than using the symmetric Levi-Civita connection I',, the unique

torsion-free connection, TPG uses the Weitzenbock connection I"ZV, which has a

non-vanishing torsion and vanishing curvature. That is, rather than expressing
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gravity as a manifestation of spacetime curvature as GR does, TPG holds that
gravity is a manifestation of spacetime torsion. TPG views gravity as a force because
torsion directs bodies experiencing gravitation away from geodesics, as opposed to
the situation in GR, whereby bodies experiencing gravitation follow the geodesics
resulting from spacetime curvature. Furthermore, TPG is usually formulated in
terms of tetrads e,
four linearly independent fields e” = ejdz* that at each point p of a differentiable

rather than a metric g,,. Tetrads, or frame fields, are sets of

manifold M specify a basis for the tangent space T,M." TPG uses frame fields hy, =
e, + Bj that are constructed to be invariant under local translations z® — 2 + €,
where Bj is the translation gauge potential. This gauge potential transforms as
0B, = —0,€" so as to make the frame field invariant under such local translations.
It is for this reason that TPG is often declared to be a gauge theory of the translation
group (Aldrovandi and Pereira 2013).2

TPG and GR are seemingly very different theories, constructed using different
mathematical structures—but Knox (2011) has argued that GR and TPG should in
fact be understood as being equivalent to one another. She argues for this conclu-
sion based upon: (i) the establishment of dynamical equivalence (and thus, for her
argument, empirical equivalence) and definitional equivalence between the two the-
ories, and (ii) an interpretation of TPG that holds that both TPG and GR actually
postulate the same underlying spacetime structure despite the surface level appear-
ances, which appears to be motivated by her advocacy of spacetime functionalism.
As before, theoretical equivalence is taken to be a combination of demonstrating
empirical equivalence, along with stronger notions of equivalence that demonstrate
clear formal relations between the theories and resolve interpretive issues such that
we can understand both theories as making the same claims about the target phe-
nomena. While the spacetime functionalism component of her argument certainly
brings up a host of interesting issues, this is not the place to fully adjudicate the
interpretational issues she raises regarding TPG and GR. However, we would like
to focus specifically on the discussion of empirical equivalence between the theories.

The claim that TPG and GR are empirically equivalent is motivated by ap-
pealing to actions used in each theory,
(1) Srpe = ﬁ d*zV/hT, Sep = ﬁ / d*z/gR,
where h is the determinant of the tetrad, T is the torsion scalar defined as T =
SHTh,, Sh is the so-called superpotential tensor, T/, is the torsion tensor, g is the
determinant of the metric, and R is the Ricci scalar. The superpotential tensor is
built out of the torsion tensor and the so-called contorsion tensor. The contorsion
tensor is defined as K7, := 1", — I where we see that it is simply the difference

pvo

between the Weitzenbock connection, ffw, and the Levi-Civita connection, I .

IWhat we have in fact written here are cotetrad fields e®, which are those 1-forms such that

efbeg‘ = 0; we do so since this will simplify the presentation in what follows.

For some critical discussion of this claim, see (Wallace 2015).
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This is significant because this allows one to translate between the mathematical
structures of the teleparallel theory and those of general relativity. One can use
this to re-write the TPG action in the language of GR as®

(2) Srpa = ﬁ d'z\/gR + # d*z\/gV T

This shows that the TPG action is identical to the Einstein-Hilbert action of GR
plus a total divergence term, which ensures that these actions both lead to the same
dynamical equations of motion. On the basis of these observations, Knox makes
three arguments regarding the equivalence of GR and TPG:

Empirical equivalence: The equivalence of the actions up to a total diver-
gence term, which indicates that they both share equivalent dynamics, guar-
antees the empirical equivalence of TPG and GR (Knox 2011, p. 272).

Definitional equivalence: The relationship between the Levi-Civita connec-
tion and the Weizenbock connection allows us to directly translate between
GR and TPG and vice-versa. While definitional equivalence is not explic-
itly mentioned in her argument, this is a clear appeal to a similar notion of
equivalence. Anything we express in the language of GR can be equivalently
expressed in the language of TPG and vice versa in a way that preserves the
content of each theory. For example, we have already seen how one moves
between different connection coefficients and translates between spacetime
curvature and torsion, but one can similarly translate between the frame
fields of TPG and the metric of GR as g, = nathhﬁ, where 7, is the
Minkowski metric (Knox 2011, p. 272).

Interpretational equivalence: TPG and GR both encode the same space-
time structure, upon adopting spacetime functionalism (which, for Knox, is
the view that spacetime structure is whatever identifies a class of local in-
ertial frames—for critical discussion of this view, see e.g. (Read and Menon
2021)), and thus can be understood as licensing the same claims about the
phenomena they describe (Knox 2011, p. 273).

The argument that the actions are empirically equivalent hinges on the ability
to throw away the total divergence term present in (2). Once this term is discarded,
the actions are equivalent full stop and the argument for definitional equivalence
goes through as well because these terms can be safely ignored when making these
kinds of translations between TPG and GR. But why can this total divergence term
simply be thrown away?

When discussing a particular theory whose content is captured by an action
S, typically one takes the empirical content of that theory to be derived via a varia-

tional principle.” The ‘principle of least action’ is a variational principle which holds
3see (Aldrovandi and Pereira 2013, ch. 9) for a fully explicit derivation.

4This isn’t to say that variational principles exhaust the empirical content of theories—for example,
conserved quantities can be derived via Noether’s theorems. These points will not matter for our
purposes here.
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that the variation of the action is held fixed when the equations of motion—i.e., the
dynamics—of the system are satisfied. Consider the simple textbook example of a
free massive particle in motion where our variables are position ¢(t) and velocity
¢(t) and the action is given by S = fttf Llq, g, t]dt:

@ as= B—’; -4 (g—j)] Sadt + 5 (t7)Sat7) = 5 (8 3a (8) = .

Here we find the familiar Euler-Lagrange equations of motion in the first term.
However, we also have two further terms which are the result of a total divergence
that appears after the integration by parts necessary to write the Euler-Lagrange
equations in their standard form. In this case we are simply concerned with the
motion of a particle between two fixed end points, d¢(t;) an dq(ty). These remaining
terms thus automatically go to zero, leaving just the dynamics of our system cap-
tured in the first term. These total divergence terms do not affect the underlying
dynamics of the system; furthermore, it is important to emphasize that any terms
like this must vanish for there to be a well-defined variational principle at all, as a
proper functional derivative could not be defined otherwise.

Given that we typically throw away total divergence terms because we know
that they have to vanish anyway, our work is seemingly done. The TPG ac-
tion encodes the same dynamics as the GR action, so the equations of motion
will be the same and we are left to choose the language in which to express
them: the force equations of TPG or the geodesic equations of GR. That is,
0Sqgr = 0STpg = ﬁ f d4x\/—_gGw,59“”, where G, contains the dynamical equa-
tions of motion. Thus, “the equivalence of the Lagrangians is enough to establish
empirical equivalence” (Knox 2011, p. 272). The question of the theoretical equiv-
alence between TPG and GR then hinges only upon the interpretive questions.

When doing GR, we typically consider only manifolds without boundary. This
guarantees that the total divergence term in (2) is zero because Stokes’ theorem
allows us to convert a total divergence term into a boundary term. In the event
that there is no boundary, this term automatically vanishes. For example, this
is exactly what is done in using GR to model cosmological solutions as we are
attempting to describe the entire universe and its contents filling an infinite space.
What if we wanted to model some isolated subsystem instead? Consider an isolated
subsystem & that is being modeled with respect to an external environment £. For
example, we might be interested in determining the mass-energy content of a finite
region of spacetime, such as the mass-energy content contained within a black hole,
as defined by an external observer who is sufficiently far away so that they do not
interact with any of the relevant gravitational or material fields. In this event, it is
not appropriate to consider manifolds without boundary. Rather, the manifold M
must have a boundary 0M along with appropriate boundary conditions to properly
describe a subsystem S isolated from its environment £. Total divergence terms
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such as the one we have considered then cannot be automatically discarded and
generally will not vanish.

When considering the Einstein-Hilbert action in the presence of the boundary
OM , such residual total divergence terms are indeed present and we must find
appropriate boundary conditions to render this a well-defined variation.” Here, it is
natural to consider Dirichlet boundary conditions, g, |,,, = 0, as these boundary
conditions correspond to asymptotically flat spacetimes. These are spacetimes that
approach flatness ¢,, — 7,, at null-infinity and are particularly significant for a
number of reasons. Here is Penrose (1982) on the issue:

Asymptotically flat spacetimes are interesting, not because they are
thought to be realistic models for the entire universe, but because
they describe the gravitational fields of isolated systems, and because
it is only with asymptotic flatness that general relativity begins to
relate in a clear way to many of the important aspects of the rest of
physics, such as energy, momentum, radiation, etc.

That is, in the asymptotic regime we can clearly define critical, empirically relevant
concepts such as mass, energy, and momentum, and relate them to these concepts
as they are understood in other realms of physics. (In brief: in the asymptotic
regime, one has Killing fields, with which one can associate conserved quantities in
a well-understood way: see e.g. (De Haro 2021).)

Upon imposing Dirichlet boundary conditions dg,,|,,, = 0, we find that there
is a problem. There are multiple boundary terms and it is only the term that de-
pends on the tangential derivatives of the metric that vanishes, while another term
that depends on the normal derivatives survives.® This is because Dirichlet bound-
ary conditions fix only the values of the metric of the boundary, but this does not
necessarily require the values of derivatives of the metric to vanish. In other words,
the variation of this action does not yield a well-defined variation and cannot be
used to represent or model isolated subsystems of the type that Penrose refers to
in his description of asymptotically flat spacetimes. This is closely related to what

SRecalling the Einstein-Hilbert action of GR, considering a manifold with a boundary M, and
varying the action yields

_ 1 4 Qv
(4) 0Sgr = 16nC /Md v/ —9G 09" + 167G Dons

where G, is the Einstein tensor, g,, is the metric tensor, h,, is the induced metric on the
boundary, and I'Y', represents the connection coefficients of the Levi-Civita connection (Blau n.d.,
ch. 20.2). The first term yields via variation the Einstein field equations and vanishes when the
dynamics of the theory are satisfied. The remaining term comes from a total divergence that has
been converted to a boundary term via Stokes’ theorem.

STt is helpful to rewrite the boundary term from the GR action eq. (4) as:

1
5
(5) 167G
where N is the vector normal to the boundary (Blau n.d., ch. 20.5). The first term depends on
tangential derivatives of the metric and its variation, whereas the second term depends on normal
derivatives of the metric and its variation. Dirichlet boundary conditions kill only the first term,
while leaving the second term intact.

d*Qv/h (g7 oT%, — g7PoTH,)

% BOVR(NPRH'N 1,6 — NFRPY 13g,)
oM
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Belot (2018) observes when he emphasizes that two isomorphic solutions in GR do
not always represent the same physical possibilities. In Belot’s analysis, he notes
that cosmological solutions and asymptotically flat solutions are isomorphic dy-
namically, but do not represent the same physical possibilities. This is because the
boundary conditions imposed for each solution are physically relevant facts. This
discussion of the variational problem in GR reveals that the Einstein-Hilbert action
only has the resources to represent one of these two physical possibilities (cosmo-
logical solutions), and that we need to look elsewhere to represent asymptotically
flat solutions. We see that even within GR, dynamically equivalent solutions do not
necessarily represent the same physical possibility. Thus, merely demonstrating the
dynamical equivalence between a GR action and a TPG action likewise would not
necessarily indicate that the two theories are physically equivalent.

This indicates the importance of boundary conditions in specifying the content
of our theory and the scope of the empirical scenarios and target systems that our
models and theories can represent. Let us now compare the analogous scenario in
TPG to see how the teleparallel theory fares in describing isolated subsystems with
aysmptotic characteristics.

Amazingly, upon varying the TPG action and imposing Dirichlet boundary
conditions, we find that the TPG action indeed does have a well-defined variation
(Oshita and Wu 2017). The variation of the additional boundary term that dis-
tinguishes the TPG and Einstein-Hilbert actions ensures that the total variation is
well-defined for asymptotic spacetimes because the additional terms perfectly can-
cel out the previously problematic terms.” The reason for this can be traced to the
fact that the TPG action contains only first derivatives of the frame fields, whereas
the Einstein-Hilbert formulation contains second derivatives of the metric. The
additional boundary term effectively removes the second derivatives of the metric
that fail to vanish when working with the Einstien-Hilbert action.

This TPG action functions perfectly well for describing such isolated subsys-
tems. For anyone who may understandably be perturbed by the thought that GR
cannot describe such systems: do not worry. The ways in which GR handles these
situations will be important later. The point is that as this argument for theoretical
equivalence is presently formulated (in terms of these two dynamically equivalent
actions), TPG and GR are not empirically equivalent—and so, as per the above,
"Recall that TPG differs from the GR action by a total divergence term. Therefore, we can apply
Stokes’ theorem to the divergence term in eq. (2), and add this to the result above. Converting
the boundary term in eq. (4) to the language of TPG frame fields, adding the additional TPG

boundary term, and imposing Dirichlet boundary conditions g, |,,, = 0, dey, = 0 yields the
following (Oshita and Wu 2017):

|8M

— 1 4 — pv € 3 nl,a A_ o A
0S1p = 1o Md o/ =9G 9" + 6Md QVhn* [e40a0¢; — €40 del)]
€
+ el *QvVhnt [ej@,ﬁeﬁ - ei@a(Selﬂ

=0.
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should not be regarded as being equivalent, full stop. Under this articulation, these
theories do not even have the resources to describe all of the same target systems,
much less discuss whether one can compare the empirical consequences derived from
them for said target systems.

3.2. Example 2: Faraday Tensor EM and Gauge Field EM. This is not the
only example from the recent philosophical literature on equivalence where there
has been a proclaimed theoretical equivalence between two theories that relies on
understanding empirical equivalence as dynamical equivalence. Weatherall (2016)
examines two different formulations of classical electromagnetism which are typi-
cally taken to be theoretically equivalent to each other. These two formulations are
EM;, where electromagnetism is presented in terms of the Faraday tensor F),,, and
EM,, where electromagnetism is presented in terms of the electromagnetic potential
field A,. This example is slightly different from the previous example of TPG and
GR (where there is some serious uncertainty regarding equivalence) as here there is
a near-universal consensus amongst both physicists and philosophers that EM; and
EM; are in fact theoretically (hence empirically) equivalent. Here the issue is that
actually cashing out this consensus with a philosophical model of equivalence is a
slightly thornier business than one would initially expect due to the gauge freedom
present in the EMy formulation.

Weatherall proposes that while these two different formulations do not meet the
standard criteria for definitional equivalence as proposed by Glymour (1970, 1980)
due to there being non-isomorphic translations between formulations, one can use
categorical equivalence to capture the theoretical equivalence of these formulations.
However, his argument for full theoretical equivalence also depends on establishing
that models derived from these different formulations really do capture all of the
same empirical content and are thus empirically equivalent as well. We find that
the manner in which he argues for empirical equivalence follows a similar pattern to
Knox in that there is important empirical content that is missing from his account
due to the overly restrictive view that empirical content is exhausted by dynamical
content. To stress (and to repeat), there is an overwhelming consensus from both
physicists and philosophers that EM; and EMs are empirically equivalent. We are
not challenging the notion that they are in fact equivalent, but rather challenging
the philosophical criteria used in this analysis because they fail to capture the
empirical equivalence that these two formulations readily display within the practice
of physics.

Examining Weatherall’s analysis more closely, we find that he utilizes a concep-
tual framework that is broadly consistent with the semantic conception of scientific
theories. We will have more to say on this later, but essentially the standard ar-
ticulation of the semantic view holds that theories are collections of dynamically
equivalent models. Weatherall takes EM; to be a theory given by models built out
of the following objects: (M,n,,, F,,), where M is a smooth manifold, 7,, is the
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Minkowski metric, and F},, is the Faraday tensor. These models furthermore must
all satisfy the dynamics encoded by Maxwell’s equations (1) V[,F,,) = 0 and (2)
V. F* = J¥, where J¥ is the charge density current. EM, is a theory given by
(M, 1, Ay, where A, = (¢, ff) is the four-potential vector field and these mod-
els likewise satisfy Maxwell’s equations in the form OA* = J#, where O is the

® Weatherall’s analysis quite understandably holds that

D’Alembertian operator.
these two ‘theories’” or ‘formulations’ of a single theory (whichever you prefer), are

empirically equivalent:

Empirical equivalence: “We stipulate that on both formulations, the em-
pirical content of a model is exhausted by its associated Faraday tensor.
In this sense, the theories are empirically equivalent, since for any model
of EM;, there is a corresponding model of EM, with the same empirical
content (for some fixed J¢), and vice versa” (Weatherall 2016, p. 1078). In
other words, EM; and EM, both share all of the same dynamical content
and are thus empirically equivalent.’

As we all know, these different formulations are very closely related. Given the
Faraday tensor F),, that satisfies Maxwell’s equations, there is always a vector field
A, that also satisfies Maxwell’s equations and satisfies the definition F),, = V|, 4,).
Similarly, given a vector field A, that satisfies Maxwell’s equations, there is always
a corresponding tensor F), that satisfies Maxwell’s equations and can be defined
as Fy, = V[, A, (all of these facts follow from elementary properties of differential
forms). As Weatherall notes, however, one cannot find an isomorphism between the
spaces of models of these two formulations of classical electromagnetism. Starting

with the EM, formulation, given a vector potential A,, one can uniquely define a

"
Faraday tensor F),, in EM;. Conversely, going in the other direction and given a
Faraday tensor F),, in EM;, one cannot uniquely determine a model in EM, due to
the gauge freedom present in the four-potential A,. That is, F},, is compatible with
infinitely many different A, because F,, = V|, A4,) will hold for any A, such that
A, = A, + G, if V|,G,) = 0, or in other words, if G, is a closed one-form. Given
that a straightforward application of definitional equivalence is blocked, Weatherall
motivates modifying Glymour’s criterion for definitional equivalence (i.e., for every
model in 7', there is an isomorphic translation to a model in 7" that preserves
all of the same empirical content) in terms of isomorphisms between categories of
models that preserve empirical content. Here, we now understand the models of
EM; to be (M, ., [A,]), where here [A,] is an “equivalence class of physically
equivalent vector potentials” that correspond to the same £, (Weatherall 2016,
p.1079). Note that this adjustment depends on the argument that EM; and EM,

8When we refer to ‘Maxwell’s equations’ in what follows, strictly speaking we equivocate between
the formulation of these equations in terms of F},,, and the formulation in terms of A,; that said,
which version we have in mind should always be evident from context.

90ne might be puzzled here by Weatherall’s lack of mention of the Aharonov-Bohm effect on this
point; we will not dwell on this issue further in this article.
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are actually empirically equivalent, and this equivalence class of vector potentials
essentially is constructed to wash out the gauge parameter so that the translations

between formulations are isomorphisms.

Categorical equivalence: Categorical equivalence is stated in terms of cat-
egories of models that preserve empirical content. Thus, according to
Weatherall’s construction, we can uniquely and invertibly translate between
models of EM; and EM, and their respective vocabularies, provided that
EM, is redefined such that [A,] is an equivalence class of vector potentials
that lead to the same F),,. Then, we have (M, n,,, F,,) <= (M, 0., [A.]),
where “there exists an isomorphism between their categories of models that
preserves empirical content” (Weatherall 2016, pp. 1080-1) and this further
notion of formal equivalence is then used to argue that both formulations

are theoretically equivalent.

While it is certainly correct that all models in both formulations possess the
same dynamical content, as we have seen that does not mean that they necessarily
share all of the same empirical content. After all, we just saw in the previous
section how multiple actions can share the same dynamical content, while still
differing in the totality of their empirical content due to their differing capacities
to represent certain target phenomena. As before, the idea that dynamics capture
the full empirical content of a theory is present in this argument for theoretical
equivalence. Yet again, when considering boundaries, we will find that there is
important and relevant empirical content that goes beyond dynamics.

The following example is significantly more familiar than what we considered in
the previous section on TPG and GR. Consider an environment-subsystem decom-
position that includes a simple Faraday cage, described by a finite spatial subsystem
region with a surface boundary dM. This subsystem region has boundary condi-
tions conducive to describing a perfect electric conductor with a surface charge o
and this Faraday cage serves to shield the interior of the subsystem from electro-
magnetic fields in the environment. Let us now consider EM; and EMs; models of
the Faraday cage.

Beginning with the Faraday tensor formulation EM;, this construction in terms
of the electric and magnetic fields will lead to the conclusion that the Faraday
tensor describing the subsystem is always zero. This is simply a consequence of
the fact that regardless of what the external electric and magnetic fields are, the
conducting boundary will always arrange the surface charge o to cancel the effect
of the external fields. Thus, F,, = 0 inside the cage regardless of facts about the
external fields and surface charge. By contrast, the gauge field formulation EM,
shows that the gauge potentials describing the subsystem will instead be constant.
While so far this is all consistent as this is what we expect of potentials that lead
to £, = 0, as Murgueitio Ramirez and Teh (forthcoming) emphasize in their paper

concerning the direct empirical significance of gauge symmetries, specifying the
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scalar electric potential ¢ on the boundary uniquely specifies the surface charge o
on the boundary. Furthermore, in general one can fully construct a solution for ¢ for
both the subsystem and exterior in terms of the surface charge o, which comes back
to the fact that shifts in the potential shift the charge at the boundary surface.'

How do these considerations influence our verdict on the empirical equivalence
of these two formulations? EM; treats the Faraday tensor as the fundamental ob-
ject of interest. The same Faraday tensor F},, within the isolated subsystem could
potentially correspond to two empirically distinct surface charges o7 and oy (in
fact, it corresponds to infinitely many different surface charges!). However, EM,
treats gauge potentials as the fundamental objects of interest and the gauge po-
tential ¢ always distinguishes between o; and o,. To be completely explicit, let
us adopt Weatherall’s initial characterization of EM; and EMs as models given by
(M, Ny, F) and (M, 1, A,), respectively.'’ Furthermore, let us say that we are
interested in an empirical description of a Faraday cage with a surface charge o;.
On Weatherall’s characterization, EM; corresponds to (M, 7,,,0) and EM, corre-
sponds to (M, n,,, ¢:i(01)), where ¢; is the scalar potential for the subsystem. This
EM; description could correspond to infinitely many subsystems all with different
surface charges because they will all lead to F),, = 0, whereas the EM, description
uniquely describes the subsystem with the particular surface charge we are consid-
ering here. In other words, the model of the subsystem in EM; has the information
necessary to model empirical facts about boundary phenomena and the external
environment, information that the model of the subsystem in EM; simply does not
have when we hold that the structural content of a theory is given exclusively in
terms of mathematical objects and dynamics. Essentially, the mathematical ob-
jects that the respective formulations are built out of carry different amounts of
empirical information. On this reading, these descriptions of the subsystem are not
empirically equivalent because they do not carry the same empirical information
about the target system and you cannot deduce the same empirical consequences
from them.

It is important to emphasize here that we are not arguing against the empir-
ical equivalence of the Faraday tensor and gauge field formulations of electromag-
netism. In other words, a physicist can deduce the same empirical claims about

0T his happens in three steps, following Murgueitio Ramirez and Teh (forthcoming). (1) One
introduces a gauge transformation A — A’ + dx(z,t), where x is the gauge parameter. (2) One
fixes the gauge parameter by choosing the Coulomb gauge by V- A" =V - (A+ Vx(z,t)) = 0. (3)
This then leads to Poisson’s equation for the scalar electric potential ¢(x). They note that this
procedure reveals interesting features of the gauge parameter x(z,t). That is, x(z,t) is a field-
dependent parameter that depends on the four-potential A and in gauge-fixing this parameter,
one shifts the electric scalar potential ¢(x) — ¢'(z) = ¢(x) — dex(z,t) both in the interior and
boundary of the subsystem. To make this more explicit, ¢’ satisfies the Poisson equation, where
at the boundary V2¢' = 0. We can then recognize a relationship between y and o through
V2(p(x) — Oy x(x,t)) = 0. As specifying the potential ¢ uniquely specifies the surface charge o,
shifts in the gauge parameter x also induce shifts in the surface charge o.

HHere we are concerned with empirical equivalence which is independent of the categorical equiv-
alence issue that Weatherall addresses in his later characterization of EMs
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such a subsystem from both formulations as using these formulations in practice
involves specifying further items (like the boundary conditions and their relation-
ship to surface charges) that are necessary to build the electromagnetic fields and
potentials relevant to describing the system. Rather, we are arguing that the philo-
sophical criteria for evaluating empirical equivalence in terms of dynamics alone is
insufficient to account for the equivalence of EM; and EM,. Indeed, this view leads
to the shocking conclusion that EM; and EMy (when stated as (M,,,, F,,) and
(M, 1, A,) respectively) are not equivalent because there is significantly more em-
pirical information contained within a model specified as (M, 7., A,). As before,
the account of empirical equivalence gets tripped up when considering isolated sub-
systems and external environments. However, as we shall soon see, a more nuanced
view of theory structure and empirical equivalence can restore our intuition that

both formulations of electromagnetism are equivalent to each other.

4. VIEWS ON THEORY STRUCTURE

What is happening here? We have two fairly prominent examples of arguments for
the theoretical equivalence of the respective theories considered in these examples.
One of these examples (TPG and GR) is more contentious given the extent of the
interpretive arguments that need to be made to secure interpretational equivalence,
but the other (Faraday tensor and vector potential formulations of EM) is utterly
uncontroversial. Yet, as articulated, these arguments for theoretical equivalence
cannot even support claims of empirical equivalence for these respective theories.
Something has clearly gone wrong!

Perhaps it is the way in which the theories have been stated that has dis-
rupted these claims of empirical equivalence. After all, in making an adjudication
of theoretical equivalence, it is certainly important to correctly specify the empirical
content contained by a theory. Views on the structure of scientific theories can be
roughly broken down into three camps: the ‘syntactic’, ‘semantic’, and ‘pragmatic’
views. The syntactic view seeks to axiomatize a theory in terms of abstract math-
ematical sentences. The semantic view casts a theory in terms of models and the
kinds of mathematical objects that comprise these models. While the syntactic view
was initially dominant as it emerged first as an outgrowth from logical empiricism,
van Fraassen has prominently advocated for the semantic view by arguing that the
semantic view, with its focus on models, can often more simply demonstrate the
logical claims of a theory than a set of axioms.'? Furthermore, he argues that the
semantic view is a far more comprehensive and useful tool because it avoids the

restrictions inherent to describing a theory in a particular axiomatic language, and

12T deed, van Fraassen acknowledges that one can often derive the same logical claims concerning
the statements a theory makes about the world from both approaches, with the caveat that these
claims are more clearly and simply expressed on the semantic view. Lutz (2017) has taken this
further and argued that both syntactic and semantic views are actually far more closely related
than has been supposed in the literature and the debate surrounding which approach is preferable
is largely illusory.
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allows us to conceptualize the objects and classes of structures that comprise a
model in terms of a variety of valid, non-unique descriptions (Van Fraassen 1980,
pp. 43-4). Finally, the pragmatic view is a more recent perspective that emphasizes
representational aims, model pluralism, scientific practice, and other non-formal
characteristics (Cartwright 1983; Hacking 1983; Kitcher 1993; Winther 2021). In
this article, we will focus on viewing these adjudications of theoretical equivalence

through the lens of both the semantic and pragmatic views.

4.1. The Semantic View. The semantic view of theories holds that a theory is
individuated via class of models. One modern way of expressing the semantic view
is to say that a theory 7 has a set of ‘kinematically possible models’ K (KPMs),
defined by tuples of the form (O;, ...O,,), where these O; are mathematical objects,
e.g. tensor fields on a differentiable manifold. Furthermore, these objects come with
a set of particular dynamical equations that define the relationships and interactions
between the O;. KPMs that satisfy these dynamical equations form a subspace D C
K of KPMs known as the ‘dynamically possible models’ (DPMs). In other words,
“the KPMs can be thought of as representing the range of metaphysical possibilities
consistent with the theory’s basic ontological assumptions. The DPMs represent a
narrower set of physical possibilities” (Pooley 2013, p. 12). This dynamical content
is then understood to capture the empirical content of the models that comprise the
theory, via what van Fraassen calls the ‘empirical substructures’ of each of these
models (Van Fraassen 1980, p. 45).

It is clear that Weatherall draws from this framework in his analysis. For
example, his descriptions of EM; and EM, as theories with associated respective
classes of models (M, n,,, F,,) and (M, n,,, A,) identifies the relevant KPMs, where
his specification that these models obey Maxwell’s equations identifies the particular
DPMs that correspond to the theories in question.

While the utilization of the standard semantic view is not as obvious in Knox,
it is clear that something like this is being supposed in her identifying the theory of
GR with the empirical content contained within the Einstein-Hilbert action. Recall
that in her argument it is the local equivalence of the two actions that cements
the case for empirical equivalence, which really is just the statement that both
theories share the dynamical content when the actions are varied per standard
variational principles. In identifying the Einstein-Hilbert action as capturing GR’s
content and adjudicating the empirical equivalence of GR and TPG based on the
dynamical equivalence of these actions, there is a naturally consistency with the
standard semantic expression of GR in the philosophical literature.

In more detail: in the above-introduced model-based language (Pooley 2013,
2015), GR is usually given by KPMs of the form (M, g,,,, ®), where (again) M is a
smooth, four dimensional differentiable manifold, g, is the metric tensor field on M,
and ® represents the matter fields of the theory. The DPMs of GR are the subset
of the KPMs that obey the Einstein equation, which is given by G,, = 877,
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where G, = R, — %ng, is the familiar Einstein tensor and 7}, is the stress-
energy tensor. For Knox, the Einstein-Hilbert action contains all of these objects
we are interested in that comprise the kinematic possibilities of GR, and varying
this action gives us the dynamics that these models obey. We could likewise identify
TPG with the KPMs <M, €ns <I>>, whose DPMs are the subset of KPMs that also
obey the Einstein field equations (written in terms of the primitive objects of TPG,
i.e. the objects specified in the KPMs of that theory).

Read through this lens, both Weatherall and Knox are operating within a
framework whereby they are identifying the relevant empirical content of the theo-
ries they are interested in with the dynamics obeyed by the models that comprise
these theories. It is a very straightforward argument. There are theories given
by models of the form (M, g,,,®) and <M, eZ,CID>, as well as (M,n,,, F,,) and
(M, N, Ay). The first pair obeys the dynamics encoded by the Einstein field equa-
tions and the second pair obeys the dynamics encoded by the Maxwell equations.
Therefore, both pairs are empirically equivalent to each other. The key assumption,
of course, is that dynamics fully specifies the empirical content of these theories and
the models that comprise them. Yet, as we have already seen, there is important

empirical content that this characterization leaves out.

4.2. Boundary Possible Models. The above discussion invites a modification of
the now-standard KPM/DPM version of the semantic approach. Here, we introduce
a third class of models—proposed by Read (2016)—known as ‘boundary possible
models’ B (BPMs). Here, B C K, and would denote the subset of KPMs compatible
with particular boundary conditions. Then those BU D C K would specify those
KPMs that are compatible with both particular boundary conditions and particular
dynamics.

Coming back to the example of TPG, the action Sypg and its variation
0STpe = 0 captures the empirical content for models that are compatible with
both Dirichlet boundary conditions and the Einstein field equations. That is Stpg
gives us the subset of the KPMs that satisfies Dirichlet boundary conditions and
the dynamics of the Einstein field equations Bp U Dgrg. As we saw, while the

Einstein-Hilbert action (which we will now switch to specifying as Sgy) shares the
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same dynamics Dgpg, it is not capable of representing isolated subsystems with
the Dirichlet boundary conditions Bp. This invites the question: can the mod-
els derived from the Einstein-Hilbert action represent any isolated subsystems and
can isolated subsystems with Dirichlet boundary conditions be modeled within the
framework of GR at all?

The answer to the former question is that there are boundary conditions that
make the Einstein-Hilbert action well-defined. Recall that the normal derivatives
of the metric did not vanish when examining the boundary terms in eq. (5). Neu-
mann boundary conditions, rather than specifying the values of the metric on the
boundary, specify the values of the metric’s derivatives on the boundary. It turns
out that when one imposes suitable Neumann boundary conditions, both the terms
involving tangential and normal derivatives with respect to the metric vanish (Frei-
del et al. 2021). We can then clearly see with this framework that Sgpy and Srpg
do not share the same empirical content because By U Dgrr # Bp U Dgpg (recall
again that Stpg gives us the subset of the KPMs Bp U Dgrg).

Finally, how does GR actually model isolated subsystems with Dirichlet bound-
ary conditions and study important concepts found in asymptotic spacetimes? The
answer is that we must set aside the Einstein-Hilbert action Sgy in favor of what
is known as the Gibbons-Hawking-York (GHY) action Sgpy:

(6) Scny = ﬁ / d*z/—gR + ﬁ ﬁ . PQeVhK,

where K = V#n, is the trace of the extrinsic curvature, h is the induced metric
on the boundary, and € is +1 when the boundary hypersurface is spacelike and
—1 when the boundary hypersurface is timelike (York 1972; Gibbons and Hawking
1977). We see here that this action is equal to the Einstein-Hilbert action plus a
boundary term. When varying this action, we find the bulk term that contains

the dynamical Einstein field equations G, the boundary term from before, and a

s
further boundary term originating from the GHY term. Upon imposing Dirichlet
boundary conditions dg,.|,,, = 0, we find that the variation of the GHY boundary
term exactly cancels out the previously non-vanishing terms. Thus, in the presence
of manifolds with boundaries with Dirichlet boundary conditions, we have 6 Squy =
16;(; / o d*x/=gG 09" . This follows the exact same pattern as the variation of
the TPG action. The additional boundary term plays a similar role and cancels out

previously problematic terms, yielding a well-defined variation.

We see that Sggy gives us the subset of KPMs Bp U Dgpg. This matches up
with the subset of KPMs given to us by Srpg, which as we have seen is also Bp U
Dgrg. Indeed, 0S7pe = 6Sgry when Bp is imposed, so we know that both theories
share the same dynamical content and the same representational capacity when it
comes to isolated subsystems. Important quantities that depend on these boundary
terms and conditions such as the ADM mass Mapy and black hole entropy Sgy

are found to be in agreement. For example, M 4p)s is one of the quantities to which
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Penrose referred and represents the mass-energy content contained within a finite
region of spacetime. Using Sy and Srpg to determine this quantity gives the
same results and these results are crucially dependent on the role and behavior of
the boundary terms and conditions that we have discussed (Dyer and Hinterbichler
2009; Wald 1993; Iyer and Wald 1994; Hammad et al. 2019). As Freidel and Teh
have noted, these boundary terms can also effectively bring the Noether charges
of a theory into alignment with the corresponding Hamiltonian charges (i.e., the
ADM mass), which connects such quantities to Hamiltonian observables (Freidel
and Teh 2021). Coming to black hole entropy Spp, one can use the Euclidean
semi-classical path integral approach and find that one obtains identical results for
this quantity and the boundary terms present in both Srpe and Sgpy contribute
the entire entropy in the calculation (Gibbons and Hawking 1977; Gibbons et al.
1978; Oshita and Wu 2017).

Our conception of a theory should specify the empirical content of the theory.
KPMs define the objects of interest to us within a particular theory, but we would
not say that defining a theory exclusively in terms of KPMs is satisfying because it
plainly fails to do this. We also want to specify how these objects interact with each
other and behave empirically. DPMs specify their dynamics. However, as the above
examples demonstrate, dynamics does not constitute the full extent of the empir-
ical content of these models. We also want to specify the subsystem-environment
decompositions that these models can represent, as well as any boundary related
empirical content that goes beyond the dynamics of these objects. Just as KPMs
are insufficient to fully specify a theory’s empirical content, nor are DPMs alone:
the latter should be supplemented with BPMs to more fully specify to empirical
content of a theory.

Coming back to the issues of empirical and theoretical equivalence, it is clear
that one’s conception of a theory will have a non-trivial impact on any subsequent
adjudication of theoretical equivalence. The identification of GR with the dynamics
resulting from the Einstein-Hilbert action and of EM; with a Faraday tensor obeying
Maxwell’s equations does not fully specify the empirical content of those theories
and thus is responsible for incorrect adjudications of empirical equivalence when
compared with their allegedly equivalent counterparts. Both Knox and Weatherall
do make some qualifying statements. Knox notes that the local equivalence of the
TPG and EH actions up to a divergence may lead to some global worries (Knox 2011,
p. 272), while Weatherall notes that he assumes that the empirical content of EM
is exhausted by Faraday tensors compatible with Maxwell’s equations (Weatherall
2016, p. 1078). Yet, it is clear that in both cases, there are indeed global worries
that render their adjudications problematic and that these qualifying statements
do not do justice to the empirical content that is lost when one looks exclusively at
local dynamics.

How could one go about arguing for theoretical equivalence of GR and TPG

given our characterization of the semantic view that includes KPMs, DPMs, and
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BPMs? One way would involve taking inspiration from the characterization of
equivalence found in Nguyen (2017). This would mean showing that models from
both GR and TPG can represent the same target systems, and that they make
the same empirical claims about these target systems. We have already partially
done that by showing Sggy and Srpg coincide in the target systems they represent
and discussing how they align in the empirical claims they make about boundary
dependent phenomena that goes beyond the shared dynamics of all these models.
One could similarly investigate other actions, models, and isolated subsystems in
both GR and TPG and ensure that they align in both representational capacity and
empirical claims. This still leaves open the admittedly more difficult interpretative
questions regarding whether GR and TPG license all of the same interpretive claims
about the world and their target systems, but it at least provides a straightforward
path to perspicuously demonstrating their empirical equivalence.

For EM; and EM,, the key is simply to realize that boundary conditions are
essential information in any attempt to represent a subsystem-environment decom-
position. That is, whether we are using EM; or EM,, we must specify boundary
conditions in order to actually build solutions for the mathematical objects that
those descriptions make use of (electric and magnetic fields versus gauge fields, re-
spectively). Yet, under the standard semantic way of expressing these theories (in
terms of mathematical objects and dynamics), for a system like the Faraday cage
one formulation contains more empirical information than the other precisely be-
cause the boundary conditions we used in building the mathematical objects are left
out of the formal description of the theory. If boundary conditions are admitted to
the formal criteria that defines the structure of a theory, this incongruity dissolves
because these boundary conditions contain the information that is needed for the
Faraday tensor formulation EM; to distinguish between different surface charges
from within the Faraday cage; ie, something that EMs naturally does because the
surface charges find their way into the gauge potentials. Thus, it then becomes
clear that EM; and EM; are indeed empirically equivalent once we admit boundary

conditions into the semantic criteria.

4.3. The Pragmatic View. We can also draw from the pragmatic view of theories
to illuminate these adjudications of theoretical equivalence and the importance of
having a firm view of the structure of the theories in question. Rather than totally
repudiating the syntactic and semantic views, the pragmatic view acknowledges the
utility of many of the formal components of these other perspectives, while also
emphasizing non-formal considerations. While there is significant variety amongst
proponents of this view (Cartwright 1983; Hacking 1983; Kitcher 1993; Winther
2021), two strands of thought stand out as particularly relevant to the present

discussion: (i) model pluralism and (ii) focus on scientific practice.
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On (i): Cartwright claims that models are the appropriate level of scientific
investigations (as opposed to theories), and that “models serve a variety of pur-
poses, and individual models are to be judged according to how well they serve the
purpose at hand” and notes that there are many different but legitimate reasons
to utilize different models (Cartwright 1983, p. 152). One model might be focused
on accuracy for a particular quantity, while another might be trying to incorporate
additional phenomena into the description and consequently, might be less focused
on maximizing accuracy of any one particular quantity.

This point is made quite generally, but we can see something similar go-
ing on in GR. We have already encountered two actions used in GR, Sgyp and
Sauy, but there are others, including but not limited to the Gamma-Gamma ac-
tion Srr = og [ d'zy/—gg"” (Ffjﬁf‘gl, — ngrfw) and the ADM action Sapy =

L [d'ay/=g(R+ K"K, — K?), where R is the three-dimensional Ricci scalar

of the spatial slice in the in the 34+ 1 decomposition in the ADM formulation and K

is the extrinsic curvature. Spr turns out to be incredibly convenient for demonstrat-

ing that GR corresponds to the self-coupling of a massless spin-2 particle, due to
the cubic nature of the form of the Lagrangian, which is in analogy with both Yang-
Mills fields and spin-1 particles and chiral fields and spin-zero particles (Deser 1970,
1987). Additionally, Sapys is particularly important because it leads to a Hamil-
tonian interpretation of GR that, among many other benefits, has become crucial
in numerical relativity due to Hamiltonian systems leading to first-order equations
of motion rather than the second-order equations of motion one derives from La-
grangians. This has opened the door for GR to study and model far more rich and
complex physical possibilities than could ever have been done using pure analytic
methods (Pretorius 2005), including the modeling of binary black hole mergers that
proved crucial in the eventual detection of gravitational waves (Abbott et al. 2016).
Whether we choose an action based on convenience, clarity, or necessity, there are a
lot of options at our disposal for modeling phenomena in GR. Under this pragmatic
approach of embracing model pluralism, it is clear that GR is much broader than
the dynamical content of one of these actions and any adjudication of theoretical
equivalence would need to address this broader scope.

Another theme that the pragmatic view emphasizes—point (ii) above—is that
our view of theories should be commensurate with scientific practice. While ac-
knowledging the utility of formal criteria, Teh has argued that a theory should be
more properly viewed as a collection of physical representations, “accompanied by
a keen ‘know how’ about what we can do with such representations and how they
are related to each other” (Teh forthcoming, p. 7). This emphasis on ‘know how’
implores us to consider scientific practice in specifying the structure of theories and
has indeed been a major focus of advocates for the pragmatic view (Hacking 1983;
Kitcher 1993). Clearly, practitioners of GR use many different dynamically equiva-
lent actions depending on the problem at hand, but this discussion also highlights
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how boundary phenomena has become more relevant in both physics and philos-
ophy communities in more recent years. As we have already noted physics itself
has been exploring boundary phenomena and isolated subsystems in recent decades
with examples including the quantum Hall effect, black hole entropy, and AdS/CFT
correspondence, while philosophy has been interested in them as a way to cash out
the direct empirical significance of symmetries and the explanatory capabilities of
models.

Here, we see a potential connection between the semantic and pragmatic ap-
proaches. While the pragmatic view does emphasize non-formal elements of model-
ing and theory structure, its embrace of pluralism also allows it to accommodate a
variety of strategies in describing theory structure, including the use of more formal
notions. Indeed, some philosophers have even argued that “the semantic concep-
tion in its bare minimal expression” is very compatible with “pragmatic elements
and themes” (Sudrez and Pero 2019, p. 348). We can thus rely on pragmatic con-
siderations such as scientific practice to inform us of what structures should find
their way into a formal representations of the models in our theories. Before the
theoretical and empirical importance of boundaries was truly appreciated, it might
have made more sense to view a theory exclusively in terms of its dynamics and
mathematical objects. However, as scientific practice (and philosophical interest)
has changed and brought this boundary phenomena more into focus, it now makes
sense to adjust our views on the structure of theories to be commensurate with
scientific practice. As we saw in the previous section, one can easily accommodate

boundary conditions within a tradition semantic analysis of a theory.

5. CONSEQUENCES AND CONCLUSIONS

Discussions concerning both the equivalence and structure of physical theories have
been and will continue to be important themes in the philosophy of science. As we
have seen (following Barrett (2019)), each of these questions bears upon the other
because adopting a particular standard of equivalence will necessarily specify a view
of what the contentful features of a theory actually are; and similarly, adopting a
particular view of theory content or structure will necessarily set the standard by
which equivalence is to be judged.

The aforementioned examples in the literature regarding the supposed theo-
retical equivalence between TPG and GR and between EM; and EM, illustrate
both that these questions do indeed interact with each other and suggest that these
questions need to be tackled in parallel. In navigating these issues surrounding
theory equivalence and structure, we take one moral from this discussion to be that
adopting a pragmatic attitude towards theory structure can be very fruitful. In-
deed, we saw that in both examples considered, the source of the failure of empirical
equivalence came about from the authors adopting a view of theory structure that,
while useful and fairly standard throughout the philosophy literature, used formal

criteria that were overly restrictive regarding the empirical substructures that one
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could attribute to the theories. Thus, in adopting this standard semantic view, ad-
ditional empirical content related to boundary phenomena and isolated subsystems
did not make its way into the analysis.

Recalling Knox’s analysis of TPG and GR, this creates a scenario where adopt-
ing the standard semantic view indicates that both theories are empirically equiv-
alent, but this equivalence is hollow because it is based off a deficient view of the
theories’ structure and empirical content, as the importance and richness of bound-
ary phenomena has come into full view for both physicists and philosophers alike.
In other words, this equivalence only goes through when one omits certain em-
pirical content. When we properly consider these further empirical substructures
stemming from boundary phenomena, the argument for empirical equivalence—as
articulated based upon analyzing the dynamical content derived from two particular
actions—fails because the theories (again, as articulated) are clearly not empirically
equivalent due to their inability to represent all of the same target systems.

However, the pragmatic view can help bring these discussions of equivalence
and structure into alignment. As we have seen in these examples, the pragmatic
view indicates that we should be pluralistic regarding the actions we use to model
phenomena in these theories and allows us to pragmatically update the components
we consider when utilizing formal descriptions of theory structure by supplementing
the standard semantic representation with boundary conditions. In so doing, we
can construct an argument for the equivalence of TPG and GR that also reflects the
full richness of the empirical content that these theories are currently understood
to possess. While the example of EM; and EM, is not quite as dramatic given that
there are not multiple actions to choose from in representing these formulations of
the theory, there is something similar going on. When boundary conditions are in-
cluded in the formal criteria that describe theory structure, it is clear that EM; and
EM, are equivalent as well and that the issue merely stemmed from adopting an
overly restrictive view of the empirical content contained within the formal descrip-
tions. Furthermore, this pragmatic attitude provides flexibility in that it allows us
to continuously update our understanding of theory structure as previous empirical
substructures become better understood and novel empirical substructures come
into view. In the context of these many empirical realizations surrounding bound-
ary phenomena and their increased importance to both physicists and philosophers,
it is clear that such an update is needed and that boundary conditions and phe-
nomena must be considered in discussions of the empirical content that a theory is
understood to possess.
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