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This paper introduces a precise correspondence between the theory of stochastic processes and
quantum theory. This correspondence provides a new framework for using Hilbert-space methods to
formulate highly generic types of stochastic dynamics, with potential applications throughout the
sciences. This paper also uses this correspondence in the other direction to reconstruct quantum
theory in general from physical models that consist of classical kinematics combined with stochastic
dynamics. This reconstruction approach opens up new ways of understanding quantum-theoretic
phenomena like interference, decoherence, entanglement, noncommutative observables, and wave-
function collapse.

I. INTRODUCTION

The theory of stochastic processes describes the phe-
nomenological behavior of systems with definite config-
urations that evolve in time according to probabilistic
laws. Quantum theory is a comprehensive mathemati-
cal apparatus for making measurement predictions when
taking into account the microscopic constituents of var-
ious kinds of physical systems, from subatomic particles
to superconductors. At an empirical level, both theories
involve probabilities, and at the level of formalism, both
employ vectors and matrices.

There have been a number of previous attempts in
the literature to identify a fundamental relationship con-
necting stochastic-processes theory and quantum the-
ory [1–7]. This paper introduces a new and fully general
correspondence between these two theories in the form
of a simple ‘dictionary’ expressing any time-dependent
stochastic matrix in terms of a suitable combination of
Hilbert-space ingredients.

On the one hand, from a practical standpoint, this
‘stochastic-quantum correspondence’ provides a system-
atic framework for constructing highly generic forms of
stochastic dynamics, much as the classical Lagrangian or
Hamiltonian formulations of classical mechanics provide
systematic frameworks for constructing deterministic dy-
namics. Potential applications range from turbulence to
finance, to name just two examples. Importantly, this
stochastic-quantum correspondence does not require as-
suming that the stochastic dynamics in question can be
modeled as a Markov chain, nor does it require making
any other frequently deployed approximations.

Taking a more foundational perspective, this pa-
per also uses this stochastic-quantum correspondence
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to show that physical models based on classical kine-
matics combined with stochastic dynamics can repli-
cate all the empirical predictions of textbook quantum
theory—including interference, decoherence, entangle-
ment, noncommutative observables, and wave-function
collapse—without relying on the austere and metaphys-
ically opaque Dirac-von Neumann axioms [8, 9]. In this
alternative approach, systems have physical configura-
tions in classical configuration spaces, and the mathe-
matical objects of the Hilbert-space formulation serve a
functional role akin to gauge-theoretic degrees of free-
dom.

In addition to establishing these new results, this pa-
per identifies several forms of gauge invariance that have
not previously been described in the literature, analyzes
the measurement process in detail, and describes the im-
plications of the stochastic-quantum correspondence for
dynamical symmetries and for formal enlargements or di-
lations of a system’s Hilbert space. Taking advantage of
having a concrete model of stochastic hidden variables in
hand, this paper also revisits and clarifies a number of
important questions related to the status of nonlocality
in quantum theory.

Given the mathematical simplicity of this stochastic-
quantum correspondence, it is surprising that it has ap-
parently not shown up in the literature before. To the au-
thor’s knowledge, the only previous example that bears
a suggestive resemblance to the approach taken in this
paper, at least at the level of some of its equations, is the
unpublished draft [6].1 Although that reference argues
that some stochastic processes can be modeled using a
formalism similar to that of quantum theory, it does not
establish that the resulting Hilbert-space representation
is fully general. Nor does it attempt to show that the
correspondence is bidirectional, so that quantum systems
can be modeled by stochastic processes on classical con-
figuration spaces.

1 The author thanks Logan McCarty for finding this reference.

mailto:barandes@g.harvard.edu


2

II. STOCHASTIC PROCESSES

In the theory of stochastic processes [10], one starts
with a configuration space C and a stochastic map Γ(t)
that acts linearly on probability distributions over C at
an initial time t = 0 to yield corresponding probability
distributions over C at other times t 6= 0. The formalism
is easiest to express in the case in which C has a finite
number N of configurations labeled by positive integers
1, . . . , N :

C ≡ {1, . . . , N}. (1)

In that case, the probabilities at t = 0 can be denoted by

pj(0) [j = 1, . . . , N ], (2)

the probabilities at t 6= 0 can be denoted by

pi(t) [i = 1, . . . , N ], (3)

and the stochastic map consists of conditional probabili-
ties

Γij(t) ≡ p(i, t|j, 0) [i, j = 1, . . . , N ], (4)

where p(i, t|j, 0) denotes the conditional probability for
the system to be in its ith configuration at the time t,
given that it is in its jth configuration at the time 0.
(Note that no assumption is made here about whether
t > 0 or t < 0.) Being probabilities, these quantities
satisfy

pj(0), pi(t) ≥ 0,

N∑
j=1

pj(0) =

N∑
i=1

pi(t) = 1, (5)

and

Γij(t) ≥ 0,

N∑
i=1

Γij(t) = 1. (6)

Then from marginalization, one has the linear relation-
ship

pi(t) =

N∑
j=1

Γij(t)pj(0), (7)

where the initial probabilities pj(0) are arbitrary and can
therefore be freely adjusted without altering the condi-
tional probabilities Γij(t).

Letting p(0) denote the N × 1 column vector with en-
tries given by the probabilities pj(0), letting p(t) denote
the analogous N × 1 vector with entries given by pi(t),
and letting Γ(t) denote the time-dependent N × N ma-
trix consisting of the conditional probabilities Γij(t), one
can recast the linear relationship (7) in matrix form as

p(t) = Γ(t)p(0). (8)

The conditions (6) on Γ(t) identify it as a (left) stochastic
matrix. On physical grounds, Γ(t) will be assumed to
satisfy the continuity condition that in the limit t → 0,
it approaches the N ×N identity matrix 1:

lim
t→0

Γ(t) = 1 ≡ diag(1, . . . , 1). (9)

Next, consider a random variable A(t) with (not nec-
essarily unique) magnitudes a1(t), . . . , aN (t) determined
by the system’s configuration i = 1, . . . , N , and possibly
also depending explicitly on the time t. Then the expec-
tation value 〈A(t)〉 is defined as the statistical average
or mean of the magnitudes of A(t) over the probability
distribution at t:

〈A(t)〉 ≡
N∑
i=1

ai(t)pi(t) =

N∑
i=1

N∑
j=1

ai(t)Γij(t)pj(0). (10)

One can go on to define the standard deviation and var-
ious statistical moments of A(t) by appropriate general-
izations of this basic definition.

All these formulas can be extended to systems with
continuous configuration spaces. For a system with a
continuous configuration space C, one uses probability
densities p(y, 0) at t = 0 and p(x, t) at t 6= 0, where
x and y each symbolically denotes a set of real-valued
coordinates. The linear relationship (7) then becomes

p(x, t) =

∫
C
dµ(y) Γ(x, y, t)p(y, 0), (11)

where dµ(y) is a suitable integral measure over C and
where the conditional probability density Γ(x, y, t) natu-
rally serves as an integral kernel. A random variable A(t)
then has magnitudes a(x, t) labeled by x and t, and its
expectation value (10) becomes

〈A(t)〉 ≡
∫
C
dµ(x) a(x, t)p(x, t)

=

∫
C
dµ(x)

∫
C
dµ(y) a(x, t)Γ(x, y, t)p(y, 0).

 (12)

For ease of exposition, the discrete case will be assumed
going forward.

Equations like (7), (9), and (11) may appear to single
out t = 0 as a special time. Section IX, however, will
show that for systems in sufficiently strong contact with
a noisy environment, t = 0 need not actually be a unique
time, but will typically be only one of many times that
play a similar role.

III. CONVENTIONAL APPROXIMATIONS

In textbook treatments of stochastic processes [10],
one often introduces various approximations or simpli-
fications of a system’s time-dependent stochastic matrix
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Γ(t) to make it easier to construct and describe. A typical
such approximation is to assume a discrete-time Markov
chain, meaning that for some small but finite time scale
∆t, one can express the time-dependent stochastic ma-
trix Γ(t = n∆t) at any integer number n ≥ 1 of steps of
duration ∆t as n powers of a constant stochastic matrix
Γ:

Γ(t = n∆t) = Γn. (13)

Somewhat more generally, a convenient simplification
is to assume that for any two times t and t′ satisfying
t > t′ > 0, one has the composition law

Γ(t) = Γ(t← t′)Γ(t′), (14)

which is known as divisibility [11]. Here Γ(t← t′) is like-
wise required to be a stochastic matrix, in the sense that
its entries are all non-negative and its columns each sum
to 1, as in (6).

An even more special simplification is to take Γ(t) to be
a time-dependent permutation matrix, meaning a matrix
whose rows and columns are permutations of the N ×N
identity matrix 1. In that case, Γ(t) does not contain
nontrivial probabilities at all, and the system transitions
deterministically from one configuration to another in its
configuration space C. In a suitable continuum limitN →
∞, the time evolution reduces to smooth, deterministic
dynamics.

Absent these sorts of approximations or simplifica-
tions, one is confronted with the task of constructing a
time-dependent, generically ‘indivisible’ N×N stochastic
matrix Γ(t) for a given configuration space C, ideally in a
systematic way. For small configuration spaces, it is easy
to devise smoothly time-dependent, indivisible examples,
like the 2× 2 stochastic matrix

Γ(t) ≡

(
e−t

2/τ2

1− e−t2/τ2

1− e−t2/τ2

e−t
2/τ2

)
, (15)

where τ is a constant with units of time, or

Γ(t) ≡
(

cos2 ωt sin2 ωt
sin2 ωt cos2 ωt

)
, (16)

where ω is a constant with units of inverse-time.

It may not seem obvious how to construct smoothly
time-dependent stochastic matrices Γ(t) systematically,
especially in the case of large (N � 1) configuration
spaces. A sufficiently general approach for accomplish-
ing this task could have numerous practical applications
in many scientific and technical fields. Ideally, one im-
mediate application would be making it possible to de-
rive a self-contained theoretical justification for why the
Markov and divisibility approximations work so well in
many real-world cases.

IV. THE HILBERT-SPACE FORMULATION

This paper introduces a novel and highly general
framework for formulating time-dependent stochastic
matrices Γ(t), conceptually akin to the Lagrangian or
Hamiltonian frameworks for formulating deterministic
dynamics for mechanical systems.

The starting place is to ‘solve’ the non-negativity con-
dition Γij(t) ≥ 0 of the individual entries of Γ(t) by ex-
pressing them in the following way:

Γij(t) = |Θij(t)|2. (17)

This equation is not a postulate—it is a mathematical
identity.

The N ×N matrix Θ(t) introduced in (17) is guaran-
teed to exist, although it is not unique. Its entries Θij(t)
could be taken to be the real square roots of the corre-
sponding quantities Γij(t), but they could also include
complex numbers, quaternions, or even the elements of
a more general normed algebra (although associativity is
a very helpful property to require). To keep things sim-
ple, this paper will assume that Θij(t) involves only the
complex numbers.

On account of the general properties of Γ(t) specified
in (6), note that the matrix Θ(t) must satisfy

N∑
i=1

|Θij(t)|2 = 1. (18)

For now, no further conditions, such as unitarity, will
be imposed on Θ(t), whose significance will soon become
more clear.

There are several helpful ways to re-express the iden-
tity (17). To begin, introduce the Schur-Hadamard prod-
uct �, which is defined for arbitrary N ×N matrices X
and Y as entry-wise multiplication [12–14]:

(X � Y )ij ≡ XijYij . (19)

One can then regard (17) as expressing the stochastic
matrix Γ(t) as a Schur-Hadamard factorization of the
complex-conjugated matrix Θ(t) with Θ(t) itself:

Γ(t) = Θ(t)�Θ(t). (20)

Schur-Hadamard products are not widely used in linear
algebra, in part because they are not basis-independent.
For the purposes of analyzing a given stochastic system,
however, the system’s configuration space C naturally sin-
gles out a specific basis, to be defined momentarily.

As an alternative approach that will turn out to have
significant ramifications, start by defining an N -member
collection of constant, diagonal N ×N projection matri-
ces P1, . . . , PN , which will be called ‘configuration projec-
tors.’ For each i = 1, . . . , N , the configuration projector
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Pi consists of a single 1 in its ith row, ith column, and
0s in all its other entries. That is, Pi is defined as

Pi ≡ diag(0, . . . , 0, 1
↑

ith entry

, 0, . . . , 0), (21)

with individual entries

Pi,jk = δijδik, (22)

where δij is the usual Kronecker delta:

δij ≡

{
1 for i = j,

0 for i 6= j.
(23)

It follows immediately that these configuration projectors
satisfy the conditions of mutual exclusivity,

PiPj = δijPi, (24)

and completeness,

N∑
i=1

Pi = 1, (25)

where again 1 is the N × N identity matrix. The con-
figuration projectors P1, . . . , PN therefore constitute a
projection-valued measure (PVM) [15, 16].

Letting tr( ) denote the usual matrix trace, one can
then recast (17) instead as

Γij(t) = tr(Θ†(t)PiΘ(t)Pj). (26)

This equation is a new result. It will turn out to serve as
an important ‘dictionary’ between the classical theory of
stochastic processes, as symbolized by Γij(t) on the left-
hand side, and an expansive set of mathematical tools
for constructing stochastic dynamics, as embodied by the
right-hand side.2

To understand what these mathematical tools are, in-
troduce a set of N × 1 column vectors e1, . . . , eN , where
ei has a 1 in its ith component and 0s in all its other
components. That is, ei has components

ei,j = δij . (27)

It follows that the column vectors e1, . . . , eN form an or-
thonormal basis for the vector space of all N × 1 column
vectors, so e1, . . . , eN will be called the system’s ‘config-
uration basis.’ In particular,

e†iej = δij , eie
†
i = Pi, (28)

2 Similar-looking formulas appear in equations (3)–(6) of [17] as
an intermediate step in proving a lemma used for conceptually
different purposes.

where Pi is the ith configuration projector, as defined in
(21).

Hence, the right-hand side of the dictionary (26) is a
trace over a Hilbert space H, meaning a complete inner-
product space over the complex numbers. The dictio-
nary therefore provides a Hilbert-space formulation for
constructing generic forms of stochastic dynamics.

Substituting the right-hand side of the dictionary (26)
into the linear relationship (7) between the probabilities
pj(0) at t = 0 and the probabilities pi(t) at t 6= 0, one
finds that

pi(t) = tr(Piρ(t)), (29)

where ρ(t) is a time-dependent, self-adjoint, unit-trace,
generically non-diagonal N ×N matrix defined as

ρ(t) ≡ Θ(t)

 N∑
j=1

pj(0)Pj

Θ†(t)

= Θ(t)diag(. . . , pj(0), . . . )Θ†(t)

= ρ†(t),

tr(ρ(t)) = 1.


(30)

Similarly, by substituting the formula (29) for pi(t) into
the definition (10) of the expectation value of a random
variable A(t), one obtains

〈A(t)〉 = tr(A(t)ρ(t)), (31)

where A(t) is now understood to be the diagonal N ×N
matrix defined as

A(t) ≡
N∑
i=1

ai(t)Pi = diag(. . . , ai(t), . . . ). (32)

In the special case in which the system’s probability
distribution at t = 0 is pure, meaning that one of the
system’s configurations j is occupied with probability 1,
the system’s probability vector at t = 0 is equal to the
jth vector ej in the configuration basis (27):

p(0) = ej [pure]. (33)

Defining a unit-norm, N × 1 column vector

Ψ(t) ≡ Θ(t)ej
[
Ψ†(t)Ψ(t) = 1

]
, (34)

which is ultimately just the jth column of Θ(t), the ith
component Ψi(t) of Ψ(t) is a purely law-like quantity
equal to the specific matrix entry Θij(t):

Ψi(t) = Θij(t). (35)

It follows immediately that the self-adjoint matrix ρ(t)
defined in (30) is rank-one and has factorization

ρ(t) = Ψ(t)Ψ†(t) [pure]. (36)
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The probability formula (29) then simplifies to

pi(t) = |Ψi(t)|2, (37)

and the formula (31) for the expectation value of a ran-
dom variable A(t) becomes

〈A(t)〉 = Ψ†(t)A(t)Ψ(t). (38)

Looking at all these results, one notices a striking re-
semblance to mathematical objects and formulas that are
familiar from textbook quantum theory.3 Specifically,
one sees that Θ(t) plays the role of a time-evolution op-
erator, ρ(t) is a density matrix, Ψ(t) is a state vector or
wave function, and A(t) represents an observable. The
probability formulas (29) and (37) have the same form
as the Born rule, and (31) and (38) have the same form
as quantum-theoretic expectation values.

These formulas are all expressed in what would con-
ventionally be called the Schrödinger picture. One could
instead work in the Heisenberg picture, with the defini-
tions

ρH ≡ ρ(0), ΨH ≡ Ψ(0),

AH(t) ≡ Θ†(t)A(t)Θ(t),

}
(39)

where AH(t) now includes both a possible explicit de-
pendence on time through its magnitudes ai(t) as well as
implicit dependence on time through the time-evolution
operator Θ(t). The probability formula (29) would then
become4

pi(t) = tr(PH(t)ρH), (40)

and the formula (31) for expectation values would be-
come

〈A(t)〉 = tr(AH(t)ρH). (41)

Despite the similarity to expressions found in quan-
tum theory, as well as the appearance of non-diagonal
matrices, it is important to keep in mind that the sys-
tem under investigation here is always fundamentally in
a specific configuration i = 1, . . . , N in its configuration
space C at any given time, and that the system’s dynam-
ics is completely captured by the stochastic matrix Γ(t),
whose entries are conditional probabilities p(i, t|j, 0), in
accordance with (4). The mathematical objects Θ(t),
ρ(t), Ψ(t), A(t), despite being extremely useful, are not
uniquely defined by C or Γ(t).

3 For pedagogical treatments of quantum theory, see [18–22].
4 Note that for a generic time-evolution operator Θ(t), the

Heisenberg-picture version PHi (t) ≡ Θ†(t)PiΘ(t) of a projector
Pi will not likewise be a projector.

V. GAUGE TRANSFORMATIONS

To make this non-uniqueness more manifest, it will be
helpful to introduce an analogy with the Maxwell theory
of classical electromagnetism.5

In classical electromagnetism, the electric and mag-
netic fields are physically meaningful quantities, but it is
often very convenient to work instead in terms of scalar
and vector potentials, which are not uniquely defined.
All choices for the potentials that yield the same elec-
tric and magnetic fields are said to be related by gauge
transformations, and any one such choice for the poten-
tials is called a gauge choice. Making a suitable gauge
choice can greatly simplify many calculations, such as us-
ing Lorenz gauge to compute the electric and magnetic
fields for delayed boundary conditions. Ultimately, how-
ever, all calculations of physical predictions in classical
electromagnetism must conclude with expressions that
are written in terms of gauge-invariant quantities.

To set up the claimed analogy with electromagnetic
gauge transformations, start by observing that the Schur-
Hadamard product of the time-evolution operator Θ(t)
with a matrix of time-dependent phases exp(iθij) is a
transformation of Θ(t) with no physical effects, and
therefore corresponds to a genuine form of gauge invari-
ance:

Θ(t) 7→ Θ(t)�

e
iθ11(t) eiθ12(t)

eiθ21(t)
. . .

eiθNN (t)

. (42)

This gauge transformation can be written equivalently at
the level of individual matrix entries as

Θij(t) 7→ Θij(t)e
iθij(t). (43)

To the author’s knowledge, this kind of gauge invariance,
which could be called a ‘Schur-Hadamard gauge transfor-
mation,’ has not yet been described in the literature. It
will turn out to play a key role in the analysis of dynam-
ical symmetries that will be presented in Section XVI,
and will be extended in an interesting way in the context
of Hilbert-space dilations in Section XVII.

The Hilbert-space formulation has another form of
gauge invariance, which appears to have first been writ-
ten down in [26] in the context of transformations of the
Schrödinger equation between inertial and non-inertial
reference frames. Letting V (t) be a time-dependent uni-
tary matrix, the following transformation is also a gauge
invariance of the Hilbert-space formulation, leaving all
probabilities pi(t), expectation values 〈A(t)〉, and the

5 For pedagogical treatments of classical electromagnetism, see
[23–25].
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stochastic matrix Γ(t) as a whole unchanged:6

ρ(t) 7→ ρV (t) ≡ V (t)ρ(t)V †(t),

Ψ(t) 7→ ΨV (t) ≡ V (t)Ψ(t),

A(t) 7→ AV (t) ≡ V (t)A(t)V †(t),

Θ(t) 7→ ΘV (t) ≡ V (t)Θ(t)V †(0).

 (44)

If the unitary matrix V (t) is time-independent, then
the gauge transformation (44) is merely a change of ba-
sis. However, if V (t) depends nontrivially on time, and if
one regards the system’s Hilbert space at each moment
in time as a fiber over a one-dimensional base manifold
parameterized by the time coordinate t, then V (t) rep-
resents a local-in-time, unitary transformation of each
individual Hilbert-space fiber. In particular, any given
time-dependent state vector Ψ(t), regarded as a trajec-
tory through the Hilbert space H, can be mapped to any
other trajectory by a suitable choice of time-dependent
unitary matrix V (t), so trajectories in H do not describe
gauge-invariant facts.

VI. KRAUS DECOMPOSITIONS

In the most general case, a time-evolution operator
Θ(t) may not satisfy any nontrivial constraints apart
from (18). It will turn out to be helpful to find alter-
native ways of representing the N × N matrix Θ(t) in
terms of more tightly constrained mathematical objects.

For β = 1, . . . , N , let Kβ(t) be the N × N matrix
defined to share its βth column with Θ(t), but with 0s in
all its other entries:

Kβ(t) ≡

0 · · · 0 Θ1β(t) 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 ΘNβ(t) 0 · · · 0

 [β = 1, . . . , N ].

(45)
The entries of Kβ(t) are given explicitly by

Kβ,ij(t) = δβjΘij(t). (46)

Then the summation condition (18) on Θ(t) becomes the
statement that the matrices K1(t), . . . ,KN (t) satisfy the
Kraus identity

N∑
β=1

K†β(t)Kβ(t) = 1, (47)

so these matrices are called Kraus operators [27]. One
can then write the dictionary (26) in an alternative form

6 Note the appearance of t = 0 in V †(0) in the transformation rule
for Θ(t).

called a Kraus decomposition:

Γij(t) =

N∑
β=1

tr(K†β(t)PiKβ(t)Pj). (48)

Like all the other mathematical objects in the Hilbert-
space formulation, the Kraus operators K1(t), . . . ,KN (t)
are not unique. Notice also that any number of N × N
matrices satisfying the Kraus identity (47) are guaran-
teed to yield a valid stochastic matrix Γ(t) via the Kraus
decomposition (48).7

VII. UNISTOCHASTIC DYNAMICS

In the most minimal case in which the stochastic ma-
trix Γ(t) is determined by just a single Kraus operator
K1(t), that Kraus operator will be denoted instead by
U(t). In that case, the general Schur-Hadamard factor-
ization (20) specializes to

Γ(t) = U(t)� U(t). (49)

That is,

Γij(t) = |Uij(t)|2, (50)

or, equivalently, in dictionary form (26),

Γij(t) = tr(U†(t)PiU(t)Pj). (51)

The Kraus identity (47), meanwhile, reduces to the state-
ment that U(t) is unitary,

U†(t) = U−1(t), (52)

and Γ(t) is then said to be unistochastic [29, 30].8 It fol-
lows immediately from the dictionary formula (51) that
every unistochastic matrix is doubly stochastic, meaning
that summing over its rows or its columns yields 1:

N∑
i=1

Γij(t) =

N∑
j=1

Γij(t) = 1. (53)

Note that U(t) will not generically remain unitary un-
der Schur-Hadamard gauge transformations (42), so writ-
ing a unistochastic matrix Γ(t) in terms of a unitary time-
evolution operator U(t) corresponds to making a gauge

7 Kraus operators and Kraus decompositions play an important
role in quantum information theory. They provide (non-unique)
expressions for specific generalizations of unitary time evolu-
tion known as quantum channels, or completely positive trace-
preserving (CPTP) maps. In particular, conditional probabilities
similar in form to (48) were studied in [28].

8 In Section XVII, it will be shown that all stochastic matrices
can be expressed in terms of a unitary time-evolution operator
on a suitably enlarged or dilated Hilbert space, so assuming unis-
tochastic dynamics is not as special a condition as it might seem.
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choice—or, somewhat more precisely, to partially fixing
the gauge freedom (42). Notice also that every permu-
tation matrix is unitary, so deterministic dynamics is a
special case of unistochastic dynamics.

Assuming that U(t) is a differentiable function of the
time t, one can define a corresponding self-adjoint gen-
erator H(t), called the system’s Hamiltonian, according
to

H(t) ≡ i~∂U(t)

∂t
U†(t) = H†(t). (54)

Here the factor of i ensures that H(t) is self-adjoint, and,
for present purposes, ~ is a fixed constant introduced for
purposes of units.

In terms of the Hamiltonian, the system’s density op-
erator ρ(t) then evolves in time according to the von Neu-
mann equation,

i~
∂ρ(t)

∂t
= [H(t), ρ(t)], (55)

its state vector Ψ(t) (if it exists) evolves according to the
Schrödinger equation,

i~
∂Ψ(t)

∂t
= H(t)Ψ(t), (56)

its Heisenberg-picture random variables AH(t) evolve ac-
cording to the Heisenberg equation of motion,

dAH(t)

dt
=
i

~
[HH(t), AH(t)] +

(
∂A(t)

∂t

)H
, (57)

and its expectation values 〈A(t)〉 evolve according to the
Ehrenfest equation,

d〈A(t)〉
dt

=
i

~
tr([H(t), A(t)]ρ(t)) +

〈
∂A(t)

∂t

〉
. (58)

The matrix HH(t) appearing in the Heisenberg equa-
tion of motion (57) is the Hamiltonian in the Heisenberg
picture. Note also that the brackets [X,Y ] that natu-
rally show up in these equations are genuine commutators
XY − Y X, not Poisson brackets, and involve products
of non-diagonal matrices that do not generally commute
with each other under multiplication.

The emergence of these famous equations from a phys-
ical model based on classical kinematics—with a classical
configuration space C—is a surprising new result.

If the system’s time-evolution operator Θ(t) = U(t)
is indeed unitary, then under the unitary gauge trans-
formation defined by (44), the Hamiltonian transforms
precisely as a non-Abelian gauge potential:9

H(t) 7→ HV (t)

= V (t)H(t)V †(t)− i~V (t)
∂V †(t)

∂t
.

 (59)

9 For pedagogical treatments of non-Abelian gauge theories, see
[31, 32].

This transformation behavior makes clear that a Hamil-
tonian is not a gauge-invariant observable, even though
it may happen to coincide with various observables ac-
cording to particular gauge choices.

Moreover, one can write the Schrödinger equation (56)
as

D(t)Ψ(t) = 0. (60)

Here D(t) is a gauge-covariant derivative defined accord-
ing to

D(t) ≡ 1
∂

∂t
+
i

~
H(t). (61)

These formulas make manifest that the Hilbert-space
formulation of a stochastic system is ultimately a col-
lection of gauge-dependent quantities. Hence, although
a Hilbert-space formulation may be extremely useful for
constructing stochastic dynamics or for carrying out cal-
culations, one should be suspicious about trying to assign
direct physical meanings to its mathematical ingredients.

Notice that if one picks

V (t) ≡ U†(t), (62)

then the Hamiltonian precisely vanishes:

HV (t) = 0. (63)

This choice of gauge is nothing other than the definition
(39) of the Heisenberg picture. Unitary gauge trans-
formations (44) can therefore be viewed as generalized
changes of time-evolution picture.10

VIII. INTERFERENCE

The appearance of the Schrödinger equation (56) is an
important signal that the dictionary (26) is more than
just a tool for using Hilbert-space methods to craft highly
general forms of stochastic dynamics. It also suggests
that stochastic dynamics might have the resources to
replicate the features of quantum theory more broadly.

As another hint pointing in this direction, start by not-
ing that an arbitrary time-dependent stochastic matrix
Γ(t) is generically indivisible, in the sense that it does not
satisfy the divisibility property (14) at arbitrary times.
To see what goes wrong, suppose that at some time t′,
Γ(t′) has a matrix inverse Γ−1(t′), and let

Γ̃(t← t′) ≡ Γ(t)Γ−1(t′). (64)

10 The fact that one can set HV (t) = 0 for all t is a manifestation of
the fact that the fiber bundle in this case, consisting of copies of
the system’s Hilbert space over a one-dimensional base manifold
parameterized by the time t, has vanishing curvature.
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As an immediate consequence, one then has

Γ(t) = Γ̃(t← t′)Γ(t′), (65)

which resembles the divisibility property (14). However,
it follows from an elementary theorem of linear alge-
bra that the inverse of a stochastic matrix can only be
stochastic if both matrices are permutation matrices, and
therefore do not involve nontrivial probabilities.11 Hence,
the matrix Γ̃(t← t′) defined in (64) is not generically
stochastic, so (65) does not express a genuine form of
divisibility.

There is an alternative—and far-reaching—way to un-
derstand the generic indivisibility of a time-dependent
stochastic matrix Γ(t). To this end, suppose that Γ(t)
happens to be unistochastic for simplicity, and let U(t)
be a unitary time-evolution operator for Γ(t). Then for
any two times t and t′, one can define a relative time-
evolution operator

U(t← t′) ≡ U(t)U†(t′), (66)

which yields the composition law

U(t) = U(t← t′)U(t′). (67)

At the level of the unistochastic matrix Γ(t), one has
from the Schur-Hadamard factorization (49) that

Γ(t) = U(t)� U(t)

= [U(t← t′)U(t′)]� [U(t← t′)U(t′)],

}
(68)

which cannot generally be expressed in the form
Γ(t← t′)Γ(t′) for any stochastic matrix Γ(t← t′), due
to the presence of cross terms.

Indeed, examining individual matrix entries, one finds
more explicitly that

Γij(t) =

N∑
k=1

|Uik(t← t′)|2|Ukj(t′)|2

+
∑
k 6=l

Uik(t← t′)Ukj(t′)Uil(t← t′)Ulj(t
′).

 (69)

11 Proof: Let X and Y be N ×N matrices with only non-negative
entries and with Y = X−1, so that XY = 1. Then, in particular,
the first row of X must be orthogonal to the second through
Nth columns of Y . Because Y is invertible, the columns of Y
must all be linearly independent, so the first row of X must be
orthogonal to the (N − 1)-dimensional subspace spanned by the
second through Nth columns of Y . Because the entries of X and
Y are all non-negative by assumption, the only way that this
orthogonality condition can hold is if precisely one of the entries
in the first row of X is nonzero, with a 0 in the corresponding
entry in each of the second throughNth columns of Y . Repeating
this argument for the other rows of X, one sees that X can only
have a single nonzero entry in each row. If X is a stochastic
matrix, then each of these nonzero entries must be the number
1, so X must be a permutation matrix. QED

With Γkj(t
′) defined according to (50) as usual,

Γkj(t
′) = |Ukj(t′)|2, (70)

and defining

Γik(t← t′) ≡ |Uik(t← t′)|2, (71)

which is manifestly unistochastic, one sees that the
discrepancy between Γ(t) and its would-be division
Γ(t← t′)Γ(t′) is given by

Γij(t)− [Γ(t← t′)Γ(t′)]ij

=
∑
k 6=l

Uik(t← t′)Ψk(t′)Uil(t← t′)Ψl(t
′),

 (72)

where Ψ(t′) ≡ Θ(t′)ej is the system’s state vector at the
time t′, in keeping with the general definition of state vec-
tors in (34). Remarkably, the right-hand side of (72) has
precisely the mathematical form of quantum-theoretic in-
terference, despite the absence of manifestly quantum-
theoretic assumptions.

One sees from this analysis that interference is a direct
consequence of stochastic dynamics not generally being
divisible. More precisely, interference is nothing more
than a generic discrepancy between indivisible stochastic
dynamics and divisible stochastic dynamics.

In particular, interference does not imply that mat-
ter is physically wavelike, contrary to frequent claims in
textbook treatments like [33]. Indeed, from the perspec-
tive of the present discussion, the notion that interfer-
ence ever suggested a wavelike quality for matter was
merely an unfortunate accident of history, arising from
the fact that many early empirical examples of interfer-
ence in quantum-theoretic systems happened to resemble
the behavior of interfering waves propagating in three-
dimensional physical space. These historical examples
were clearly special cases, as is evident from considering
interference in multiparticle systems, whose purported
waves would need to propagate through high-dimensional
configuration spaces (as was noted by Schrödinger in his
early work on wave mechanics [34]), or in more abstract
systems, like qubits, that lack continuous configuration
spaces altogether.

Nor does interference mean that, say, a particle in a
double-slit experiment fails to go through one slit or the
other.12 According to the approach laid out in this pa-
per, the particle does go through a specific slit in each

12 The exposition in [33] ends up at precisely such a conclusion: “It
is not true that the electrons go either through hole 1 or hole
2.” [Emphasis in the original.] This conclusion, however, does
not logically follow from the empirical appearance of interference
effects, but also implicitly depends on the hidden assumption
that the behavior of an electron in a double-slit experiment can
be described by divisible dynamics.
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run of the experiment. The interference that shows up in
the double-slit experiment may be surprising, but that
is only because indivisible stochastic dynamics can be
highly nonintuitive, and in the historical absence of a
sufficiently comprehensive framework for describing indi-
visible stochastic dynamics, it was difficult to recognize
just how nonintuitive such dynamics could be.

The fact that interference shows up in a sufficiently
generic stochastic model means that relative phase fac-
tors in state vectors have clear empirical signatures, even
in the absence of the usual axioms of textbook quan-
tum theory. These empirical manifestations of relative
phases are strong evidence that it should be possible to
carry out measurements on a much wider set of observ-
ables than those that are represented by diagonal ma-
trices (32) in the system’s configuration basis. Indeed,
Section XIII will show that non-diagonal self-adjoint ma-
trices will turn out to be candidate observables as well.

These results also suggest that interference should arise
in a much broader class of contexts than just for quantum
systems. One could imagine experimentally measuring
interference effects for essentially any system that can be
modeled using indivisible stochastic dynamics.

IX. DIVISION EVENTS

Why do discrete-time Markov chains (13) provide such
a good approximation to so many stochastic processes in
the real world? One intuitively reasonable explanation
is that when a system is not isolated from a noisy envi-
ronment, delicate correlations from one time to another
‘wash out’ over short time scales as those correlations
leak out into the environment. Using the framework pre-
sented in this paper, it is possible to make this intuitive
picture more precise.

To set things up, start by introducing a composite sys-
tem SE consisting of a subject system S together with an
environment E . Label the configurations of the subject
system’s configuration space CS by i = 1, . . . , N , and la-
bel the configurations of the environment’s configuration
space CE by e = 1, . . . ,M , where M ≥ N . The configura-
tion space of the composite system is then the Cartesian
product

CSE = CS × CE , (73)

meaning that each element of CSE is a simple ordered
pair of the form (i, e).13 Single out N configurations of
the environment by labeling them as e(1), . . . , e(N).

13 Note that the right-hand side of (73) is indeed a Cartesian prod-
uct, not a tensor product, because this equation is solely a state-
ment about the composite system’s kinematics, not its dynamics.

For the dynamics, suppose for simplicity that the com-
posite system evolves according to an overall unistochas-
tic matrix

ΓSE(t) = USE(t)� USE(t), (74)

or, in terms of individual entries,

ΓSEie,i0e0(t) = |USEie,i0e0(t)|2. (75)

Furthermore, suppose that the subject system and the
environment interact up to a time t′ > 0 in such a way
that they end up with joint probabilities of the form

pSEi′e′(t
′) = pSi′(t

′)δe′e(i′), (76)

which describe an idealized correlation between the con-
figuration i′ of the subject system at t′ and the corre-
sponding configuration e(i′) of the environment.

If there is to be any possibility of the two subsystems
evolving independently for times t > t′ after the interac-
tion has concluded, then it should be possible to factorize
the composite system’s relative time-evolution operator
USE(t← t′) between the two subsystems for t > t′ as the
following tensor product:

USE(t← t′) = US(t← t′)⊗ UE(t← t′)

for t > t′.

}
(77)

In terms of individual entries, one has

USEie,i′e′(t← t′) = USii′(t← t′)UEee′(t← t′)

for t > t′,

}
(78)

meaning that each entry USEie,i′e′(t← t′) of the composite
system’s relative time-evolution operator is the product
of corresponding entries USii′(t← t′) and UEee′(t← t′) of
the relative time-evolution operators for the two subsys-
tems individually.14

In light of the Born rule (37), the joint probabilities
(76) correspond to a wave function

ΨSEi′e′(t
′) = ΨSi′(t

′)δe′e(i′), (79)

so the composite system’s wave function at later times
t > t′ after the interaction is given in terms of the relative
time-evolution operator (78) according to

ΨSEie (t) =
∑
i′,e′

USEie,i′e′(t← t′)ΨSEi′e′(t
′)

=
∑
i′

USii′(t← t′)ΨSi′(t
′)UEee(i′)(t← t′).

 (80)

14 Note the natural appearance of a tensor product in (77) and (78),
which are statements about the composite system’s dynamics.
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From the Born rule (37), one sees that the joint proba-
bilities for t > t′ are given by

pSEie (t) =
∣∣ΨSEie (t)

∣∣2. (81)

Marginalizing over the configuration e of the environment
and invoking the unitarity of the environment’s relative
time-evolution operator UE(t← t′), one obtains the stan-
dalone probabilities pSi (t) for the subject system alone for
t > t′:

pSi (t) =
∑
e

pSEie (t)

=
∑
i′1,i

′
2

USii′1
(t← t′)ΨSi′1

(t′)USii′2(t← t′)ΨSi′2(t′)

×
∑
e

UEee(i′1)
(t← t′)UEee(i′2)(t← t′)

=
∑
i′

|USii′(t← t′)|2|ΨSi′(t′)|2.


(82)

Taking the limit t→ t′ in (82) and referring back to the
Born rule (37) again, one sees that the subject system’s
standalone probabilities at t′ > 0 are

pSi′(t
′) = |ΨSi′(t′)|2. (83)

One also sees from (82) that, as in (71), one can identify

ΓSii′(t← t′) ≡ |USii′(t← t′)|2. (84)

Hence, (82) simplifies to a genuinely linear relationship
that precisely mirrors the basic marginalization formula
(7) for a stochastic process, with t′ > 0 now serving as
the ‘initial time’:

pSi (t) =
∑
i′

ΓSii′(t← t′)pSi′(t
′). (85)

Applying the basic marginalization formula (7) to the
stochastic process from t = 0 to t′ > 0, one also has the
equation

pSi′(t
′) =

∑
j

ΓSi′j(t
′)pSj (0). (86)

Combining (85) with (86) immediately yields

pSi (t) =
∑
j

ΓSij(t)p
S
j (0), (87)

where ΓS(t) is a manifestly divisible stochastic matrix:

ΓS(t) ≡ ΓS(t← t′)ΓS(t′). (88)

Thus, the interaction between the subject system S and
the environment E up to the time t′ > 0 has led to a
stochastic matrix ΓS(t) for the subject system that is
instantaneously divisible at t′.

It is natural to refer to t′ as a ‘division event.’ An
important corollary is that t = 0 is not a unique or special
time, but is instead only one of many division events
inevitably experienced by a system in sufficiently strong
contact with a noisy environment.

Suppose that these kinds of division events can be ap-
proximated as occurring regularly over a characteristic
time scale ∆t. Suppose, moreover, that the unistochas-
tic dynamics is homogeneous in time, in the sense that
US(t+ ∆t← t) = US(∆t) for all times t. Then the sub-
ject system’s stochastic matrix after any integer number
n ≥ 1 of time steps ∆t is given by

ΓS(t = n∆t) =
(
ΓS
)n
, (89)

where

ΓSij ≡ |USij(∆t)|2. (90)

The stochastic dynamics therefore takes the form of a
discrete-time Markov chain (13). This analysis therefore
provides an explanation for the ubiquity of Markovian
stochastic dynamics in so many real-world cases.

X. DECOHERENCE

Had the environment not interacted with the subject
system, then the subject system’s density matrix ρS(t′)
at t′ > 0 would have generically been non-diagonal, in
accordance with the general definition (30):

ρS(t′) = US(t′)

∑
j

pj(0)Pj

US†(t′)
= US(t′)diag(. . . , pj(0), . . . )US†(t′).

 (91)

By contrast, suppose that the environment indeed in-
teracts with the subject system to produce a division
event (88) at t′. In that case, the standalone probability
pSi (t) for the subject system to occupy its ith configu-
ration at t > t′ is given by (82), which can be written
instead as

pSi (t) = tr(Piρ
S(t)), (92)

where

ρS(t) ≡ US(t← t′)ρS(t′)US†(t← t′), (93)

and where, in turn,

ρS(t′) ≡
∑
i′

pSi′(t
′)PSi′ = diag

(
. . . , pSi′(t

′), . . .
)
, (94)

which is diagonal.
On comparing the two expressions (91) and (94) for the

subject system’s density matrix ρ(t′) at t′, one sees that
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the interaction with the environment has effectively elim-
inated the off-diagonal entries, or coherences, in the sub-
ject system’s density matrix. This phenomenon is called
decoherence, and the foregoing analysis makes clear that
decoherence is nothing more than the unremarkable leak-
age of correlations into the environment when viewed
through the lens of the Hilbert-space formulation.

This analysis also sheds new light on the meaning of co-
herences in density matrices, as well as on superpositions
in state vectors, where superpositions are related to co-
herences in the case of a rank-one density matrix through
the formula ρi1i2(t) = Ψi1(t)Ψi2(t), in accordance with
(36). From the standpoint of this analysis, superpositions
and coherences are merely indications that one is catch-
ing a given system when it is in the midst of an indivisible
stochastic process, between division events, rather than
implying that the system is in ‘multiple states at once.’

These results may also help explain why the precise
connection between quantum theory and stochastic pro-
cesses remained unclear for so long. If one assumes a
Markov approximation, as is often the case in the litera-
ture on stochastic processes, then coherences and super-
position do not show up, meaning that density matrices
remain diagonal, state vectors remain trivial, and non-
trivial unistochastic dynamics cannot arise.

XI. ENTANGLEMENT

Consider next a composite system AB consisting of
a pair of subsystems A and B. Suppose that the two
subsystems do not interact from t = 0 up to some time
t′ > 0, but then begin interacting at t′.

For times t between 0 and t′, the composite system’s
stochastic matrix ΓAB(t) factorizes into the tensor prod-
uct of a stochastic matrix ΓA(t) for A and a stochastic
matrix ΓB(t) for B:

ΓAB(t) = ΓA(t)⊗ ΓB(t) for 0 ≤ t < t′. (95)

Starting at t = t′, however, the composite system’s
stochastic matrix ΓAB(t), which encodes cumulative sta-
tistical information, will fail to factorize between the two
subsystems, in the sense that

ΓAB(t) 6= ΓA(t)⊗ ΓB(t) for t > t′, (96)

for any possible stochastic matrices ΓA(t) and ΓB(t) that
properly capture the respective dynamics of the two sub-
systems. Even if the two subsystems have a notion of lo-
calizability in space, and are eventually placed at a large
separation distance at some time t > t′, the compos-
ite system’s stochastic matrix will still fail to factorize
between the two subsystems, thereby leading to the ap-
pearance of what looks like nonlocal stochastic dynamics

across that separation distance.15

However, if the composite system exhibits a division
event of the form (88) at some later time t′′ > t′, perhaps
due to interactions with the larger environment, then the
composite system’s stochastic matrix ΓAB(t) will divide
at t′′:

ΓAB(t) = ΓAB(t← t′′)ΓAB(t′′) for t > t′′ > t′. (97)

If the two subsystems A and B do not interact with
each other after t′, then the relative stochastic matrix
ΓAB(t← t′′) will factorize between them,

ΓAB(t← t′′) = ΓA(t← t′′)⊗ ΓB(t← t′′), (98)

so the two subsystems will cease exhibiting what had
looked like nonlocal stochastic dynamics.

This analysis precisely captures the quantum-theoretic
notion of entanglement. Systems that interact with each
other start to exhibit what appears to be a nonlocal kind
of stochastic dynamics, even if the systems are moved
far apart in physical space, but decoherence by the envi-
ronment effectively causes a breakdown in that apparent
dynamical nonlocality.

This stochastic picture of entanglement and nonlocal-
ity provides a new way to understand why they occur in
the first place. The indivisible nature of generic stochas-
tic dynamics could be viewed as a form of nonlocality in
time, which then leads to an apparent nonlocality across
space. A division event leads to an instantaneous restora-
tion of locality in time, which then leads to a momentary
restoration of manifest locality across space.

XII. EMERGEABLES

The preceding sections have shown that a model with
kinematics based on a classical configuration space and
dynamics based on a suitable stochastic process is ca-
pable of accounting for signature features of quantum
theory, like interference, decoherence, and entanglement.
In addition, the Hilbert-space side of the dictionary (26)
contains many expressions and equations that are identi-
cal to those found in quantum theory. However, an actual
quantum system also includes observables beyond those
like (32) that are diagonal in a single basis. Indeed, the
existence of noncommuting observables is another hall-
mark feature of quantum theory.

Remarkably, a stochastic system will generically con-
tain such observables as well. Specifically, Section XIII
will establish that these mathematical objects represent
candidate observables that naturally satisfy the usual

15 Questions about nonlocality will be addressed in detail in Sec-
tion XVIII.
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probabilistic rules of quantum theory, all without intro-
ducing any new fundamental axioms. In so doing, the
analysis ahead will demonstrate that the dictionary (26)
is not merely a tool for studying stochastic processes,
but defines a comprehensive stochastic-quantum corre-
spondence.

As motivation, let A be a time-independent (diagonal)
random variable (32), and consider the time derivative of
its Heisenberg-picture counterpart AH(t), as defined for
a generic time-evolution operator Θ(t) by (39):

dAH(t)

dt
=
∂Θ†(t)

∂t
AΘ(t) + Θ†(t)A

∂Θ(t)

∂t
. (99)

Evaluating this matrix in the limit t → 0 gives a self-
adjoint, generically non-diagonal N ×N matrix Ȧ at t =
0:

Ȧ ≡ lim
t→0

dAH(t)

dt
= Ȧ†. (100)

This matrix will not generally commute with the original
random variable A itself:

[A, Ȧ] 6= 0. (101)

However, the matrix Ȧ has physical uses. For example,

tr(Ȧρ(0)) = lim
t→0

d〈A(t)〉
dt

, (102)

which is a perfectly meaningful physical quantity, even
though the time derivative of an expectation value is not
necessarily the expectation value of something physical.

The matrix Ȧ therefore resembles a random variable in
some ways, but incorporates stochastic dynamics directly
into its definition (100), through the time-evolution op-
erator Θ(t), and does not have a transparent interpreta-
tion at the level of the system’s underlying configuration
space C. Instead, Ȧ is an emergent amalgam of kine-
matical and dynamical ingredients, so it will be called an
‘emergeable.’ This terminology is intended to contrast Ȧ
with the system’s genuine random variables, which could
be called ‘beables’ or ‘be-ables’, as coined in [35].

XIII. MEASUREMENTS

Consider now a composite system SDE consisting of
three subsystems that will be called a subject system S,
a measuring device D, and an environment E . One of the
goals ahead will be to identify the necessary criteria for a
subsystem like D to be regarded as a genuine measuring
device.

Focusing momentarily on the subject system, consider
a self-adjoint N × N matrix ÃS = ÃS†, which may or
may not be one of the subject system’s diagonal ran-

dom variables.16 As a concrete example, ÃS could be an
emergeable like (100).

By the spectral theorem, ÃS has a spectral decompo-
sition of the form

ÃS =
∑
α

ãαP̃
S
α , (103)

where ãα are the eigenvalues of ÃS and where P̃Sα are
its eigenprojectors. These eigenprojectors P̃Sα are not
generically diagonal, but they satisfy the analogues of
the mutual exclusivity condition (24),

P̃Sα P̃
S
α′ = δαα′ P̃Sα , (104)

and the completeness relation (25),∑
α

P̃Sα = 1
S , (105)

where 1
S is the identity matrix for the subject system.

These eigenprojectors therefore constitute a projection-
valued measure (PVM) of their own. Letting ẽα be the
corresponding orthonormal basis, one has

ẽ†αẽα′ = δαα′ , ẽαẽ
†
α = P̃α. (106)

If ÃS happens to be one of the subject system’s random
variables (32), then the eigenvalues ãα are the random
variable’s magnitudes and the eigenprojectors P̃Sα are the
configuration projectors (21). More generally, however,
the eigenvalues ãα and eigenprojectors P̃α do not yet have
an obvious physical meaning.

Suppose that the measuring device D has configura-
tions d(α) that can be labeled by the index α appearing
in the spectral decomposition (103), and, similarly, that
the environment E has configurations e(α) that can be
labeled by α. Generalizing (75), suppose, moreover, that
the composite system SDE evolves according to an over-
all unistochastic matrix

ΓSDEide,i0d0e0(t) = |USDEide,i0d0e0(t)|2. (107)

Generalizing (79) and letting ẽα′,i′ denote the i′th com-
ponent of the basis vector ẽα′ with respect to the con-
figuration basis ei′ , suppose that the three subsystems
interact up to a time t′ > 0 in such a way that they end
up with overall wave function

ΨSDEi′d′e′(t
′) =

∑
α′

Ψ̃Sα′(t′)ẽα′,i′δd′d(α′)δe′e(α′), (108)

and that, mirroring (77), the composite system’s rela-
tive time-evolution operator factorizes between the three

16 More generally, one could take ÃS to be a normal matrix, mean-
ing a matrix that commutes with its adjoint ÃS†.
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subsystems for later times t > t′:

USDE(t← t′) = US(t← t′)⊗ UD(t← t′)

⊗ UE(t← t′)

for t > t′.

 (109)

Then the composite system’s wave function for times t >
t′ after the interaction is

ΨSDEide (t) =
∑
i′,e′,d′

USDEide,i′d′e′(t← t′)ΨSDEi′d′e′(t
′)

=
∑
i′

∑
α′

USii′(t← t′)Ψ̃Sα′(t′)ẽα′,i′

× UDdd(α′)(t← t′)UEee(α′)(t← t′).


(110)

Invoking the Born rule (37), it follows that the joint prob-
abilities for t > t′ are given by

pSDEide (t) =
∣∣ΨSDEide (t)

∣∣2. (111)

Marginalizing over the configuration i of the subject sys-
tem as well as the configuration e of the environment, and
invoking the unitarity of both the subject system’s rela-
tive time-evolution operator US(t← t′) and the environ-
ment’s relative time-evolution operator UE(t← t′), one
obtains the standalone probabilities pDd (t) for the mea-
suring device alone for t > t′:

pDd (t) =
∑
i,e

pSDEide (t)

=
∑
i′1,i

′
2

∑
α′

1,α
′
2

UDdd(α′
1)

(t← t′)Ψ̃Sα′
1
(t′)ẽα′

1,i
′
1

× UDdd(α′
2)

(t← t′)Ψ̃Sα′
2
(t′)ẽα′

2,i
′
2

×
∑
i

USii′1
(t← t′)USii′2(t← t′)

×
∑
e

UEee(α′
1)

(t← t′)UEee(α′
2)

(t← t′)

=
∑
α′

|UDdd(α′)(t← t′)|2|Ψ̃Sα′(t′)|2.



(112)

In the limit t→ t′, the last line implies that

pDd(α′)(t
′) = |Ψ̃Sα′(t′)|2, (113)

so the measuring device has a probability |Ψ̃Sα′(t′)|2 of
ending up in its configuration d(α′), exactly as predicted
by textbook quantum theory. One can then naturally
define an expectation value 〈ÃS(t)〉 for ÃS as the usual
kind of statistical average:

〈ÃS(t)〉 ≡
∑
α

ãαp
D
d(α′)(t

′). (114)

This analysis establishes that as long as there exists a
form of unistochastic time evolution (107) for the com-
posite system SDE that arrives at the wave function

(108), the matrix ÃS represents a genuine observable,
in the sense that the time evolution (107) leads to the
measuring device ending up in the correct configuration
with the correct Born-rule probability.

For times t > t′ after the interaction, the last line
of (112) implies that t′ > 0 is a division event for the
measuring device:

ΓD(t) = ΓD(t← t′)ΓD(t′) for t > t′. (115)

Here the measuring device’s dynamics for times t > t′ is
given by the relative unistochastic matrix

ΓDdd(α′)(t← t′) ≡ |UDdd(α′)(t← t′)|2. (116)

By contrast, unless the observable ÃS happens to be
one of the subject system’s (diagonal) random variables
(32), the subject system does not experience a division
event at t′. Instead, the subject system remains mired
in indivisible time evolution at t′, with some stochasti-
cally evolving underlying configuration. Nonetheless, for
times t > t′, one can compute the standalone probability
pSi (t) for the subject system to be in its ith configura-
tion by marginalizing over the measuring device and the
environment:

pSi (t) =
∑
d,e

pSDEide (t)

=
∑
i′1,i

′
2

∑
α′

1,α
′
2

USii′1
(t← t′)Ψ̃Sα′

1
(t′)ẽα′

1,i
′
1

× USii′2(t← t′)Ψ̃Sα′
2
(t′)ẽα′

2,i
′
2

×
∑
d

UDdd(α′
1)

(t← t′)UDdd(α′
2)

(t← t′)

×
∑
e

UEee(α′
1)

(t← t′)UEee(α′
2)

(t← t′)

=
∑
α′

∑
i′1,i

′
2

USii′1
(t← t′)USii′2(t← t′)ẽα′,i′2

ẽα′,i′1


× |Ψ̃Sα′(t′)|2.


(117)

Recognizing |Ψ̃Sα′(t′)|2 from (113) as the probability
pDd(α′)(t

′) for the measuring device to end up in its con-

figuration d(α′) at t′ > 0, and recalling both the con-
figuration projectors PSi defined in (21) as well as the
eigenprojectors P̃Sα appearing in the spectral decompo-
sition (103) for ÃS , one can write (117) more succinctly
as

pSi (t) = tr(PSi ρ
S(t)). (118)

Here the subject system’s density matrix ρS(t) for t > t′

is given by

ρS(t) ≡ US(t← t′)

[∑
α′

pDd(α′)P
S
α′

]
US†(t← t′). (119)
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Hence, one can recast the expectation value (114) for ÃS

as

〈ÃS(t)〉 = tr(ÃSρS(t)), (120)

which precisely mirrors the formula (31) for the expecta-
tion value of a (diagonal) random variable.

Moreover, (117) yields a linear relationship between
the standalone probabilities pDd(α′)(t

′) for the measuring

device at t′ > 0 and the standalone probabilities pSi (t)
for the subject system at t > t′:

pSi (t) =
∑
α′

ΓSDi,d(α′)(t← t′)pDd(α′)(t
′). (121)

The entries ΓSDi,d(α′)(t← t′) of the hybrid relative stochas-
tic matrix appearing here are given explicitly by

ΓSDi,d(α′)(t← t′)

≡
∑
i′1,i

′
2

USii′1
(t← t′)USii′2(t← t′)ẽα′,i′2

ẽα′,i′1
.

 (122)

Because these matrix entries do not depend on the mea-
suring device’s standalone probabilities pDd(α′)(t

′), they
naturally define conditional probabilities for the subject
system to be in its ith configuration at the time t > t′

given that the measuring device is in its configuration
d(α′) at t′ > 0:

pSD(i, t|d(α′), t′) ≡ ΓSDi,d(α′)(t← t′). (123)

XIV. WAVE-FUNCTION COLLAPSE

Importantly, notice also that one can write the hybrid
stochastic matrix (122) in an overall form that resembles
the dictionary (26):

ΓSDi,d(α′)(t← t′)

= tr(US†(t← t′)PSi U(t← t′)P̃Sα ).

}
(124)

Rearranging the right-hand side gives the equation

ΓSDi,d(α′)(t← t′) = tr(PSi ρ
S|α′,t′(t)), (125)

with a ‘conditional’ density matrix ρS|α
′,t′(t) for the sub-

ject system at the time t > t′ naturally defined by time-
evolving the eigenprojector P̃Sα′ from t′ > 0 to t > t′:

ρS|α
′,t′(t) ≡ U(t← t′)P̃Sα′US†(t← t′). (126)

Thus, the calculation (117) reduces to the statement
that the standalone probabilities pSi (t) for the subject
system at t > t′ are given by

pSi (t) = tr(PSi ρ
S(t)), (127)

where the subject system’s density matrix ρS(t), which
was originally defined in (119), can equivalently be ex-
pressed as a probabilistic mixture of the conditional
density matrices ρS|α

′,t′(t) defined in (126), statistically
weighted by the measurement probabilities pDd(α′)(t

′):

ρS(t) ≡
∑
α′

ρS|α
′,t′(t)pDd(α′)(t

′). (128)

Taking stock of these results, one sees that to make fu-
ture predictions for t > t′ about the subject system, con-
ditioned on the measuring device’s result d(α′) at t′ > 0,
one effectively replaces the subject system’s density ma-
trix with the conditional density matrix ρS|α

′,t′(t), cor-
responding to a ‘collapsed’ state vector or wave function
defined as

ΨS|α
′,t′(t) ≡ U(t← t′)ẽα. (129)

By contrast, for an observer who does not know the spe-
cific measurement result d(α′), the correct density matrix
ρS(t) to use is the one defined in (128), which, again, con-
sists of an appropriate mixture of conditional or collapsed
density matrices probabilistically weighted over the mea-
surement results.

XV. THE MEASUREMENT PROBLEM

According to the foregoing analysis, measuring devices
are ordinary physical systems that carry out measure-
ments of observables, and then end up in final configu-
rations that reflect definite measurement outcomes, with
the probabilities for those various measurement outcomes
given by the Born rule. Hence, the picture of quantum
theory presented in this paper arguably has the resources
to solve the measurement problem.

The stochastic-quantum correspondence is also helpful
for understanding the measurement process in another
important way. Textbook treatments of quantum the-
ory typically regard measuring devices as metaphysical
primitives or posits, without providing clear principles
for deciding which kinds of systems merit being called
measuring devices and which do not. The approach taken
toward the measurement process in this paper not only
gives a candidate resolution of the measurement problem,
but also yields a natural set of criteria for defining what
counts as a good measuring device, without the need to
regard measuring devices as special among all other sys-
tems in any truly fundamental way.

Based on the approach in this paper, a good measuring
device should be a physical system with at least as many
configurations as possible outcomes for the observable to
be measured (at least up to the desired level of experi-
mental resolution), it should admit an overall form of dy-
namics that results in the correct final correlations, and
it should be in sufficiently strong contact with a noisy
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environment to generate a robust division event at the
conclusion of the measurement interaction. It is worth
noting that the first two of these three criteria would
be standard requirements for a measuring device even
without worrying about indivisible stochastic dynamics
or quantum theory.

XVI. SYMMETRIES

The stochastic-quantum correspondence developed in
this paper provides new ways to think about dynamical
symmetries in quantum theory. Going in the other direc-
tion, the stochastic-quantum correspondence also makes
it more straightforward to impose dynamical symmetries
systematically as constraints in the construction of the
dynamics for a given stochastic model.

Classically, any invertible transformation of a system’s
configurations i = 1, . . . , N is a permutation transforma-
tion of the configuration projectors (21):

Pi 7→ Pσ(i),

with {σ(1), . . . , σ(N)} = {1, . . . , N}.

}
(130)

More generally, a transformation between two PVMs
P1, . . . , PN and P̃1, . . . , P̃N is always a similarity trans-
formation of the form

Pi 7→ P̃i ≡ V †PiV, (131)

where V is some unitary operator.17 This similarity
transformation reduces to the configurational transfor-
mation (130) if and only if V is a permutation matrix.

The more general transformation (131) leaves the
stochastic dynamics invariant precisely if the right-hand
side of the stochastic-quantum dictionary (26) remains
unchanged:

tr(Θ†(t)P̃iΘ(t)P̃j) = tr(Θ†(t)PiΘ(t)Pj). (132)

This condition is equivalent to the statement that

tr(Θ̃†(t)PiΘ̃(t)Pj) = tr(Θ†(t)PiΘ(t)Pj), (133)

where

Θ̃(t) ≡ VΘ(t)V †. (134)

17 Proof: Let e1, . . . , eN be the orthonormal configuration basis

(28), with e†i ej = δij and eie
†
i = Pi, and let ẽ1, . . . , ẽN be an or-

thonormal basis related to the new projectors P̃i in the analogous

way, with ẽ†i ẽj = δij and ẽiẽ
†
i = P̃i. Then the N × N matrix

defined by V ≡
∑
i eiẽ

†
i is unitary and satisfies V †PiV = P̃i.

Going the other way, if V is a unitary N × N matrix, then the
N × N matrices defined for i = 1, . . . , N by P̃i ≡ V †PiV are
guaranteed to constitute a PVM. QED

Re-expressing both sides of the equivalent condition (133)
in terms of squared absolute values, as in (17), one sees
that (134) is a dynamical symmetry precisely if

|Θ̃ij(t)|2 = |Θij(t)|2. (135)

It follows immediately that Θ̃(t) can differ from Θ(t)
by at most a Schur-Hadamard gauge transformation (42),
meaning that a necessary and sufficient condition for a
unitary matrix V to give a dynamical symmetry is that

VΘ(t)V † = Θ(t)�

e
iθ11(t) eiθ12(t)

eiθ21(t)
. . .

eiθNN (t)

. (136)

As special cases, this condition includes unitary dynam-
ical symmetries,

VΘ(t)V † = Θ(t), (137)

as well as anti-unitary dynamical symmetries,

VΘ(t)V † = Θ(t). (138)

Note that if one redefines V 7→ V , which is still uni-
tary, then one can re-express (138) in the somewhat more
conventional form

V KΘ(t)KV † = Θ(t). (139)

Here K denotes the operation of complex conjugation, so
that K2 = 1 and KXK = X for any N ×N matrix X.
The composite operator V K as a whole is then said to be
an anti-unitary operator. Anti-unitary operators play an
important role in describing time-reversal symmetries.18

If Θ(t) = U(t) is unitary, then VΘ(t)V † will likewise
be unitary. In that case, if V is continuously connected to
the identity 1 by some smooth parameter, with a corre-
sponding self-adjoint generator G = G†, then Noether’s
theorem then easily follows as the statement that the ex-
pectation value 〈G(t)〉 of that generator is constant in
time:

〈G(t)〉 = tr(GU(t)ρ(0)U†(t)) = 〈G(0)〉. (140)

XVII. DILATIONS

In most textbook treatments of quantum theory, a
quantum system is axiomatically defined as a particular

18 Intriguingly, becauseK anticommutes with i, meaning thatKi =
−iK, the four mathematical objects 1, i, K, and iK satisfy−i2 =
K2 = (iK)2 = iK(iK) = 1, and therefore define a Clifford
algebra isomorphic to the pseudo-quaternions [36]. In a sense,
then, the Hilbert spaces of quantum systems are actually defined
not over the complex numbers, but over the pseudo-quaternions.
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Hilbert space together with a preferred set of self-adjoint
operators designated as observables with predetermined
physical meanings, along with a particular Hamiltonian
to define the system’s time evolution.19 From that point
of view, modifying a system’s Hilbert-space formulation
in any nontrivial way would necessarily mean fundamen-
tally modifying the system itself.

From the alternative point of view developed in this
paper, by contrast, a Hilbert-space formulation is merely
a collection of mathematical tools for constructing the
dynamics of a given stochastic system. The system it-
self is ultimately defined by a configuration space and
a dynamical law that stand apart from any arbitrary
choice of Hilbert-space formulation. As a consequence,
one is free to modify a system’s Hilbert-space formula-
tion as needed, much like changing from one gauge choice
to another in a gauge theory, or like adding physically
meaningless variables to the Lagrangian formulation of a
deterministic classical system.

With this motivation in place, recall again the basic
stochastic-quantum dictionary (26):

Γij(t) = tr(Θ†(t)PiΘ(t)Pj). (141)

The Hilbert-space formulation expressed by the right-
hand side can be manipulated for convenience, provided
that the left-hand side of the dictionary remains un-
changed.

In particular, for an integer D ≥ 2, one can freely en-
large, or dilate, the Hilbert-space formulation to a larger
dimension ND by the following dilation transformation:

Θ(t) 7→ Θ(t)⊗ 1
I ,

Pi(t) 7→ Pi(t)⊗ 1
I ,

Pj(t) 7→ Pj(t)⊗ P Iγ .

 (142)

Here 1I is the D×D identity matrix on a new ‘internal’
Hilbert space HI , and P I1 , . . . , P

I
D collectively form any

PVM on that internal Hilbert space satisfying the usual
conditions of mutual exclusivity,

P Iγ P
I
γ′ = δγγ′P Iγ , (143)

and completeness,

D∑
γ=1

P Iγ = 1
I . (144)

It is then a mathematical identity that one can rewrite
the stochastic-quantum dictionary as

Γij(t) = tr
(
trI
([

Θ†(t)⊗ 1
I][Pi ⊗ 1

I]
×
[
Θ(t)⊗ 1

I][Pj ⊗ P Iγ ])),
}

(145)

19 In some circumstances, it may turn out to be more convenient to
define a quantum system by a formal C*-algebra of observables
alone, without picking a specific Hilbert-space representation.

with a second trace over the internal Hilbert space HI .
The choice of value for the label γ here is immaterial, with
different choices of γ related by gauge transformations.

One can equivalently write the dilated form of the dic-
tionary in block-matrix form as

Γij(t) = trI

(
[Θij(t)]

I†
[Θij(t)]

I
P Iγ

)
. (146)

Here [Θij(t)]
I

is a diagonal D × D matrix consisting of
repeated copies of the specific entry Θij(t) (for fixed i, j)
along the diagonal,

[Θij(t)]
I ≡ Θij(t)1

I , (147)

and the adjoint operation † in (146) acts on this D ×
D block matrix [Θij(t)]

I
, so it does not transpose the

indices i and j on the N ×N matrix Θij(t) itself,

[Θij(t)]
I† ≡ [Θij(t)]

I
. (148)

In this dilated version of the Hilbert-space formula-
tion, the Schur-Hadamard gauge transformation (42) is
enhanced to the following local-in-time gauge transfor-
mation, which has not yet been described in the litera-
ture:

[Θij(t)]
I 7→ V I(ij)(t)[Θij(t)]

I
. (149)

Here V I(ij)(t) are a set of N2 unitary D × D matrices,
where each such unitary matrix as a whole is labeled by
a specific pair (ij) of configuration labels:

V I†(ij)(t) = (V I(ij)(t))
−1. (150)

The gauge transformations (149) will not generally pre-
serve the factorization Θ(t) ⊗ 1

I appearing in (145), so
they motivate considering more general ND×ND time-
evolution operators Θ̃(t), in terms of which the dilated
dictionary (145) takes the form

Γij(t) = tr
(

trI

(
Θ̃†(t)

[
Pi ⊗ 1

I]Θ̃(t)
[
Pj ⊗ P Iγ

]))
.

(151)
Any ND×ND matrix Θ̃(t) appearing on the right-hand
side of this dictionary is guaranteed to lead to a valid
stochastic matrix Γij(t) on the left-hand side, so working
with a dilated Hilbert-space formulation essentially pro-
vides a larger ‘canvas’ for designing stochastic matrices.

As a simple example of a dilation for the case D = 2,
one can formally eliminate the complex numbers from a
quantum system’s Hilbert space [37]. Specifically, by in-
creasing the system’s Hilbert-space dimension from N to
2N , one can replace the imaginary unit i ≡

√
−1 with

the real-valued 2 × 2 matrix
(
0 −1
1 0

)
, with the enhanced

version (149) of the Schur-Hadamard gauge transforma-
tion now consisting of two-dimensional rotations of the
internal Hilbert space HI . One can then represent the
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complex-conjugation operator K appearing in (139) as
the 2 × 2 matrix ( 0 1

1 0 ). The result is that all unitary
and anti-unitary operators become 2N × 2N orthogonal
matrices. One cost in using this ‘real’ representation,
however, is that the Hilbert spaces of composite systems
do not factorize as neatly into Hilbert spaces for their
constituent subsystems.20

As a somewhat more significant application of dila-
tions, recall that any stochastic matrix Γij(t) has a Kraus
decomposition (48):

Γij(t) =

N∑
β=1

tr(K†β(t)PiKβ(t)Pj). (152)

The Stinespring dilation theorem [38] then guarantees
that by an appropriate dilation to a larger Hilbert space
if necessary, one can express Γij(t) in terms of a unitary

time-evolution operator Ũ(t):

Γij(t) = tr
(

trI

(
Ũ†(t)

[
Pi ⊗ 1

I]Ũ(t)
[
Pj ⊗ P Iγ

]))
.

(153)
This fact makes clear the inevitability of unitary time
evolution in quantum theory.21

As another application, a dilated Hilbert-space formu-
lation can make it possible to introduce new kinds of
emergeables. Some of these emergeables may be observ-
ables that can yield definite results in measurement pro-
cesses, along the lines of Section XIII, despite not having
a direct meaning at the level of the system’s underlying
configuration space. In this way, a stochastically evolv-
ing system based on a classical configuration space can
easily accommodate emergent observables that model all
kinds of quantum-theoretic phenomena. Indeed, obtain-
ing a unitary time-evolution operator for a given system
may require dilating the Hilbert space in just this way,
as in (153).

20 Without increasing the dimension N of a system’s Hilbert space,
one could instead attempt to limit the appearance of the com-
plex numbers in a system’s Hilbert-space formulation by using
the original Schur-Hadamard gauge transformation (42) to make
all the entries of the system’s time-evolution operator Θ(t) real-
valued. In this alternative approach, however, a unistochastic
matrix Γ(t) may not be expressible in terms of a unitary or or-
thogonal time-evolution operator, and the complex numbers will
generally still be needed anyway to define various observables.

21 From the starting assumptions presented here, one can sketch
the following proof: Given N × N Kraus matrices Kβ(t), with

β = 1, . . . , N , define an N3 × N2 matrix Ṽ (t) according to
Ṽ(iβm)(jl)(t) ≡ Kβ,ij(t)δlm, treating (iβm) as the first index

of Ṽ (t) and treating (jl) as its second index. One can show that
this matrix satisfies Ṽ †(t)Ṽ (t) = 1N2×N2 , so it defines a partial

isometry, which can always be extended to a unitaryN3×N3 ma-
trix Ũ(iβm)(jγ)(t) by adding N3−N2 additional columns that are

mutually orthogonal with each other and with the previous N2

columns already in Ṽ (t), where the new index γ runs through N2

possible values. The last step is to show that Ũ(t) satisfies (153),
whose right-hand side reduces to

∑
β,m |Ũ(iβm)(jγ)(t)|2. QED

An important example of this last application is intrin-
sic spin. To introduce spin as an emergeable, one merely
dilates the Hilbert space to ND dimensions, introduces
a D-dimensional representation of SO(3) for the internal
Hilbert space, and then requires that the dilated time-
evolution operator has the appropriate form of rotation
symmetry.

XVIII. NONLOCALITY

This paper has shown that systems with classical
configuration spaces and indivisible stochastic dynamics
have Hilbert-space representations and can replicate the
usual mathematical formalism and empirical predictions
of quantum theory.

The classical configurations in this new picture for
quantum theory essentially play the role of hidden vari-
ables. The term ‘hidden variables’ immediately raises
questions about the potential invocation of nonlocal dy-
namics, the study of which has motivated famous papers
like [39] and has led to the development of a number of
important theorems [35, 40–42].

Before assessing the implications of these theorems for
the picture described in this paper, it will be important to
note that these theorems do not rule out the possibility of
hidden variables altogether. Nor do these theorems imply
that introducing hidden variables would necessarily make
quantum theory any more dynamically nonlocal than it
already is.

Being mindful of those caveats, there is ample reason to
probe the question of nonlocal dynamics in the approach
to quantum theory taken in this paper. After all, looking
back at the discussion of entanglement in Section XI, a
pair of systems that interact at some time will generically
exhibit what look like nonlocal stochastic dynamics after
that time, at least until the later occurrence of a division
event due to decoherence by an external system.

In what follows, it will be important to be keep in mind
the distinction between deterministic hidden-variables
theories and stochastic hidden-variables theories.

Bell’s original nonlocality theorem, as formulated and
proved in [40], only addressed the case of a deterministic
hidden-variables theory. Specifically, Bell showed that if
one assumes that a theory’s hidden variables uniquely de-
termine measurement outcomes, and if one also assumes
that local measurement results should not depend on the
settings of faraway measuring devices, then one arrives
at an inequality that is expressly violated by quantum
theory.

There seemed to be just two available options in re-
sponse to this nonlocality theorem. One could either ac-
cept a theory of nonlocal deterministic hidden variables,
or deny the existence of deterministic hidden variables
and thereby avoid having to introduce any dynamical
nonlocality into quantum theory.
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However, for a hidden-variables theory based on
stochastic dynamics rather than deterministic dynamics,
the question of dynamical nonlocality becomes murkier.
The generalization to stochastic dynamics means that
one needs to rely on more abstract, statistical conditions
for establishing whether the theory’s hidden variables be-
have in a dynamically local manner.

The most frequently cited statistical locality criterion
for stochastic hidden-variables theories was formulated
by Bell later on [35, 43, 44]. That statistical locality
criterion is a statement about how rich a theory’s hidden
variables should be in order for the theory to qualify as
dynamically local.

To formulate this statistical locality criterion, start by
considering the case of a measurement outcome x based
on local measurement settings a, and a far-separated
measurement outcome y based on local measurement
settings b. Then suppose that the joint probabilities
p(x, y|a, b) for the measurement results x and y, con-
ditioned on the measurement settings a and b, show a
statistical correlation. Bell argued that in order for the
theory in question to be considered dynamically local,
the theory should contain enough hidden variables to ac-
count for the statistical correlation in the following pre-
cise sense: if one conditions on all the hidden variables λ
in the past light cone of the two measurements, then the
joint probabilities should factorize according to

p(x, y|a, b, λ) = p(x, a|λ)p(y, b|λ). (154)

Bell’s statistical locality criterion is precisely the con-
dition that the theory in question should have enough
hidden variables to ensure that the factorization (154) is
always possible. Based on this statistical locality crite-
rion, which should hold even in cases of ‘one-shot’ mea-
surements in which certain measurement outcomes can
be assigned a probability of 1 [42], one can again derive
predictions that are violated by quantum theory, just as
in the case of a deterministic hidden-variables theory.

However, this statistical locality criterion is broader
than the conditions Bell studied in his earlier work on
deterministic hidden-variables theories in [40]. Bell’s sta-
tistical locality condition is so broad, in fact, that Bell
used it to argue that textbook quantum theory is itself
dynamically nonlocal [35, 45].

To understand why, observe that textbook quantum
theory is committed to the existence of measurement set-
tings and definite measurement outcomes that end up be-
having precisely as a (highly incomplete) set of stochas-
tically evolving hidden variables. In other words, al-
though textbook quantum theory is not a deterministic
hidden-variables theory, it is, in fact, a stochastic hidden-
variables theory.

The stochastic-quantum correspondence makes these
commitments by textbook quantum theory manifest. In-
deed, one can regard textbook quantum theory as the
insistence that for any measurement set-up consisting of

a subject system S, a measuring device D, and an envi-
ronment E , as laid out in Section XIII, the configurations
of D are to be treated as hidden variables (that is, as be-
ables), whereas the configurations of S and E are to be
regarded merely as emergeables.

This seemingly arbitrary division of the world into
measuring devices, which truly have underlying config-
urations, and all other systems, which do not, leads di-
rectly to all the usual mysteries about the measurement
process according to textbook quantum theory. What, in
the end, determines whether a given system counts as a
measuring device, and therefore merits having underlying
configurations?

More relevant to the present discussion is that be-
cause textbook quantum theory includes stochastic hid-
den variables for measuring devices, and because those
stochastic hidden variables are insufficient to ensure the
factorization property (154), the nonlocality theorems
that employ Bell’s statistical locality criterion imply that
textbook quantum theory is itself dynamically nonlocal.
Hence, there is no real cost to upgrading the configura-
tions of S and E to being hidden variables on an equal
footing with the configurations of D. These additional
hidden variables do not lead to the factorization property
(154) either, but they also do not lead to any trouble for
the no-communication theorem [46, 47], which precludes
using quantum theory to send controllable signals faster
than light.

The main conclusion of this analysis is that if one takes
Bell’s statistical locality criterion seriously, then text-
book quantum theory is already dynamically nonlocal,
so adding some additional hidden variables to the theory
will not ultimately make that dynamical nonlocality any
worse. If one instead disputes Bell’s statistical locality
criterion, then it cannot be used to argue that the picture
of quantum theory presented in this paper is dynamically
nonlocal. Either way, the approach taken toward quan-
tum theory in this paper is no more or less dynamically
nonlocal than textbook quantum theory already is.

A number of other important no-go theorems have
been proved over the years, like von Neumann’s early
no-go theorem [9], the Kochen-Specker theorem [48], the
Pusey-Barrett-Rudolph theorem [49], and Myrvold’s no-
go theorem [50]. These theorems either assume that all
observables are true random variables (that is, beables)
that exist at the level of the given system’s configura-
tion space, or they assume that measurements are pas-
sive operations that merely reveal pre-existing values of
observables without altering the behavior of measured
systems in the process, or they assume the existence of
additional probability formulas. Because the picture of
quantum theory introduced in this paper refrains from
making any of these assumptions, it is consistent with
these theorems.
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XIX. DISCUSSION

This paper has shown that one can replicate the math-
ematical formalism and predictions of quantum theory
using a physical model based on classical kinematics
and stochastic dynamics, and therefore naturally sug-
gests a new interpretation of quantum theory grounded
in the theory of stochastic processes. According to this
highly adaptable ‘stochastic-process interpretation,’ sys-
tems have underlying physical configurations in configu-
ration spaces at all times, and their dynamics is no more
or less nonlocal than the dynamics of textbook quantum
theory.

From this perspective, density matrices, wave func-
tions, and other appurtenances of Hilbert spaces, while
highly useful, are merely gauge variables and should not
be assigned direct physical meanings or treated as though
they directly represent physical objects, any more than
a Lagrangian or a Hamilton’s principal function directly
describe physical objects. Superposition is then not a lit-
eral smearing of physical objects, but is merely a math-
ematical artifact of catching a system in the middle of
an indivisible stochastic process, as represented using
a Hilbert-space formulation and wave functions. More-
over, from this standpoint, ‘canonical quantization’ need
not be regarded as the promotion of classical observables
to non-commuting operators by fiat, but can be imple-
mented (when mathematically feasible) simply by gener-
alizing a classical system’s dynamics from being deter-
ministic to being stochastic, with all the exotic features
of quantum theory then emerging automatically.

This approach to quantum theory therefore shares
some features with the de Broglie-Bohm formulation, or
Bohmian mechanics [51–53]. However, in contrast to
the stochastic-process interpretation, Bohmian mechan-
ics employs deterministic dynamics, and features a guid-
ing equation that fundamentally breaks Lorentz invari-
ance by singling out a preferred foliation of spacetime into
spacelike hypersurfaces. The stochastic-process interpre-
tation instead takes seriously what experiments strongly
suggest—that the dynamics of quantum theory is inde-
terministic.

In contrast with the Everett interpretation [54, 55],
the stochastic-process interpretation assumes that quan-
tum systems, like classical systems, have definite config-
urations in configuration spaces, and does not attempt
to derive probability from non-probabilistic assumptions
or grapple with fundamental aspects of personal iden-
tity in a universe continuously branching into large num-
bers of parallel worlds. The approach in this paper is
therefore more modest, metaphysically speaking, than
the Everett interpretation. The Everett interpretation
arguably exhibits a manifest notion of dynamical local-
ity at a level of description that transcends its individual
world-branches [56], but because each individual world-

branch looks no more or less nonlocal than the world
according to textbook quantum theory or the stochastic-
process interpretation, it is not clear what concrete ben-
efits the Everett interpretation’s dynamical locality truly
provide.

Unlike stochastic-collapse theories [57, 58], the
stochastic-process interpretation does not entail any fun-
damental violations of unitarity, nor does it require intro-
ducing any new constants of nature to specify dynamical-
collapse rates.

The stochastic-process interpretation shares some fea-
tures with the modal interpretations [59–61], including
an insistence that systems always have definite config-
urations of some kind at every moment in time, while
treating at least some forms of probability in a law-like,
objective way. In particular, like the minimal modal
interpretation [62], the stochastic-process interpretation
uses conditional probabilities in a central way. One dif-
ference between the stochastic-process interpretation and
most of the modal interpretations, however, is the insis-
tence by the stochastic-process interpretation that the
definite configuration of a given system is an element of
a classical-looking configuration space, rather than cor-
responding more abstractly to an element of a Hilbert
space. The stochastic-process interpretation also avoids
some of the ontological instabilities that are a serious
challenge for most of the modal interpretations [63].

Looking forward, it would be interesting to see
what implications the stochastic-quantum correspon-
dence could have for both phenomenological stochastic
systems, like those in biology or finance, as well as for fu-
ture work in fundamental physics, like quantum gravity.
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