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Abstract

Methods of machine learning (ML) are gradually complementing and sometimes even re-

placing methods of classical statistics in science. This raises the question whether ML faces

the same methodological problems as classical statistics. This paper sheds light on this

question by investigating a long-standing challenge to classical statistics: the reference class

problem (RCP). It arises whenever statistical evidence is applied to an individual object,

since the individual belongs to several reference classes and evidence might vary across

them. Thus, the problem consists in choosing a suitable reference class for the individual.

I argue that deep neural networks (DNNs) are able to overcome specific instantiations of

the RCP. Whereas the criteria of narrowness, reliability, and homogeneity, that have been

proposed to determine a suitable reference class, pose an inextricable tradeoff to classical

statistics, DNNs are able to satisfy them in some situations. On the one hand, they can

exploit the high dimensionality in big-data settings. I argue that this corresponds to the

criteria of narrowness and reliability. On the other hand, ML research indicates that DNNs

are generally not susceptible to overfitting. I argue that this property is related to a par-

ticular form of homogeneity. Taking both aspects together reveals that there are specific

settings in which DNNs can overcome the RCP.
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neural networks, big data.
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1 Introduction

Classical statistics can be considered the traditional workhorse of many disciplines, that,

as a consequence, has been studied by philosophers for a long time. Yet methods of

machine learning (ML) are gaining relevance in science. In particular, they are success-

fully employed in predictive tasks.1 This raises the question whether ML faces the same

methodological problems as classical statistics. This paper sheds light on this question by

investigating a long-standing challenge to classical statistics: the reference class problem

(RCP). Focusing on deep neural networks (DNNs), one of the most popular methods in

ML, I try to carefully carve out how they cope with the RCP. I will conclude that although

it remains a serious methodological challenge for them in many situations, some DNNs

are able to overcome specific instantiations of the RCP.

In general, the RCP arises whenever the objective probability of possessing a certain

property should be assigned to an individual. According to the frequentist account,

this probability should be based on an observed relative frequency.2 Yet an individual

belongs to different reference classes and relative frequencies may vary across these classes.

Consequently, it is unclear which reference class should be chosen to determine said single-

case probability. Apart from this probabilistic version of the problem, there is a version

that is structurally similar, yet not concerned with the rational determination of single-

case probabilities, but rather with the rational construction of predictions. The present

paper focuses on this predictive version of the RCP.3

For instance, consider William Smith who wants to predict whether he will be alive 15

years from now (Salmon 1989: 69).4 He belongs to different reference classes: the class of

40-year-old American males, the class of heavy cigarette-smoking individuals, and several

other classes. Clearly, the evidence for 15-year survival varies considerably between them.

It is therefore not straightforward to choose the class that should serve as a basis for

making the prediction. The example illustrates that the RCP is central to situations in

which statistical evidence is used to make a prediction for an individual case, even when

the prediction is not a probability, but rather a real number or a discrete classification.5

Consequently, it arises regularly within the framework of classical statistics, encompassing

a variety of fields such as evolutionary biology (Strevens 2016) or law (Colyvan et al. 2001,

Colyvan and Regan 2016).

1For one of the most recent breakthroughs, see Jumper et al. (2021).
2Hájek (2007) even argues that all common interpretations of probability face the RCP.
3In the following, I will therefore use the formulations ‘predictive RCP’ and ‘RCP’ interchangeably.
4This setting is distinct from the general RCP, since the prediction is not a probability, but a binary

classification.
5I follow Romeijn (2022) in taking statistical evidence to be observed instances sampled from an

underlying population, commonly organized into a dataset. For a formalized treatment in the context of
ML, see Section 3.1.
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An influential suggestion to solve the RCP is due to Reichenbach (1949). He pro-

poses to base one’s inferences on the reference class that is as narrow as possible while

also allowing compiling reliable statistics. The narrowness of a class increases with the

number of predicates that determine the class. Additionally, Salmon (1971) proposes to

counterbalance a strict preference for narrower reference classes with the requirement of

homogeneity. Briefly put, this means that the reference class should only be determined

by those predicates that are relevant for a particular prediction.

Several authors have thus interpreted the predictive RCP as a problem of statistical

model selection (Cheng 2009, Franklin 2010): the predicates that determine a reference

class can be expressed by the variables in a statistical model. Solving the RCP then

reduces to identifying the model with the ‘right’ set of variables. Clearly then, any

strategy that identifies one set of variables as the ‘right’ one ultimately needs to take into

account the criteria of narrowness, reliability, and homogeneity that make for a suitable

reference class.

However, in the context of classical statistics, existing strategies to approach the RCP

with model selection techniques pose an additional challenge instead of offering a remedy:

from a statistical point of view, there is a tradeoff between the narrowness of the class

considered and the reliability of the information that this class contains.6 A narrower

reference class will contain fewer observations. Thus, by an argument along the lines of

the law of large numbers, it will also have an inferior statistical reliability. Furthermore,

the combination of fewer observations and a higher number of predicates defining a narrow

reference class is problematic for another reason: expressing a narrow reference class by a

model with a high number of variables and fitting it to a low number of observations leads

to a situation in which the model can memorize the given data, but might predict new

observations rather poorly. Thus, inferences derived from information in that reference

class are likely susceptible to overfitting (Shalev-Shwartz and Ben-David 2016). For the

same reason, it is difficult to determine a homogeneous reference class using methods of

classical statistics: using a model with a high number of variables, thereby considering all

predictively relevant predicates, might lead to a homogeneous reference class, but also to

a low number of observations in that class and thus, ultimately, to the risk of overfitting.

With the rise of big data, rapidly growing computational resources and datasets, meth-

ods of ML are gradually complementing, sometimes even replacing methods of classical

statistics in science (Mjolsness and DeCoste 2001, Wheeler 2016). In this paper, I focus

on DNNs, one of the most popular ML methods. They are employed frequently and with

astonishing success in predictive tasks (LeCun et al. 2015, Goodfellow et al. 2016). DNNs

perform particularly well in settings involving so-called high-dimensional data, where the

number of features associated with each observation is very high, usually much higher

6This observation is also highlighted by Salmon (1971: 41).

3



than the overall sample size (Belkin et al. 2019). This particular field of application

serves as the starting point for my argumentation that proceeds in two steps.

First, I argue that the notion of ‘big data’ can be conceived along two perspectives.

A dataset might be large simply because of the number of observations it contains. But

the high dimensionality of many contemporary datasets adds a second perspective to

the understanding of big data. I show that the combination of both perspectives can be

connected to the notions of narrowness and reliability in the debate surrounding the RCP.

On the one hand, high dimensionality of a dataset and thus a high number of features

associated with each observation can be linked with the idea of a narrow reference class

that is defined by a high number of predicates. On the other hand, a high number of

observations can be interpreted as being related to the reliability of the information in a

dataset.

Second, I argue that the particular functionality of some DNNs predestines them to

exploit settings involving big data. For methods of classical statistics and many ML

approaches, high-dimensional data involves the risk of overfitting. However, recent ML

research reveals that there are DNNs for which this risk is much less prevalent: in many

settings, they perfectly fit the training data, but also exhibit high predictive accuracy on

new inputs (Belkin et al. 2019, Berner et al. 2021: 17).7

I argue that this gives rise to a situation in which DNNs remedy particular instanti-

ations of the RCP, namely those involving high-dimensional or ‘big’ data. Their specific

functionality enables them to exploit high-dimensional data without incurring the risk of

overfitting which allows them to make predictions with high accuracy. I argue that this

is akin to an accurate inference from relevant and reliable information in a very narrow

reference class to previously unseen individuals.

The remainder of the paper is organized as follows: Section 2 introduces the RCP and

reviews criteria for the suitability of a reference class. Section 3 provides the necessary

background on ML and DNNs. Section 4 outlines existing strategies to solve the RCP that

rely on the framework of classical statistics and shows that they fail in some situations.

Section 5 argues that DNNs offer a remedy to specific cases of the RCP.

2 The Reference Class Problem

This section discusses the RCP. It carves out important distinctions that have been in-

troduced in the literature and their relevance for the present paper. Additionally, this

section outlines criteria for the suitability of a reference class.

7Note, that a very close fit to the training data alone does not necessarily lead to overfitting. The key
determinant is the gap between accuracy on training data and accuracy on new data (Goodfellow et al.
2016: 109). For details, see Section 3.1.
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2.1 The Problem

The RCP originates in the assignment of an objective probability to an individual object,

that is, a single-case probability. According to the frequentist account, this probability

should be based on an observed relative frequency. Yet an individual belongs to different

classes, so-called reference classes, and relative frequencies may vary across these classes.

Consequently, it is unclear which reference class should be chosen to determine the single-

case probability (Reichenbach 1949: 374, Venn 1876: 194). I will refer to this original

version of the problem as the probabilistic RCP. However, the treatment of the problem has

gradually become more fine-grained.8 The present paper focuses on the epistemological

RCP as it arises in the context of prediction.

The context of prediction was introduced as a specific instantiation of the RCP by

Fetzer (1977) and Salmon (1989). In this context, an individual should be assigned to a

suitable reference class so as to allow for an accurate prediction. To do so, all available

evidence relevant to the prediction at hand should be used.9

The epistemological RCP concerns situations in which a rational agent is dealing with

the question on which part of given statistical evidence they should base their inductive

inferences and decision-making (Hájek 2007). As illustrated using the case of William

Smith who tries to predict his 15-year survival, statistical evidence is relative to a par-

ticular reference class, the problem being that it is unclear which reference class is the

correct one.

To illustrate the specific instantiation of the RCP examined in this paper, consider

the widely discussed legal case United States v. Shonubi.10 The case is about Charles

Shonubi, a Nigerian citizen, who was apprehended on December 10, 1991 at New York’s

John F. Kennedy Airport (JFK), carrying 427.7 grams of heroin. The evidence gathered

during the subsequent trial revealed that Shonubi had made at least seven smuggling

trips between Nigeria and the United States prior to his detention. As a consequence,

sentencing guidelines required an estimate of the overall amount of heroin that Shonubi

imported during all eight of his trips (Tillers 2005: 34). It was also required that this

estimate be based on ‘specific evidence’. In response to both requirements, data of 117

Nigerian drug smugglers that were apprehended at JFK in the period between Shonubi’s

first and last known smuggling trip was analyzed. In particular, the amounts of heroin

8See, e.g., Fetzer (1977), Kyburg (1977, 1983), Salmon (1977), Thorn (2012, 2017, 2019), and Wall-
mann and Williamson (2017).

9Both Fetzer (1977) and Salmon (1989) distinguish the predictive RCP from the explanatory RCP.
In the latter, a known fact should be explained, for instance “John Jones’s rapid recovery from his strep
infection” (Salmon 1989: 69). In this context, the RCP is about determining a reference class that
is suitable to explain why the recovery happened, yet without using the recovery as part of the total
evidence to determine the reference class.

10See Cheng (2009), Colyvan et al. (2001), Colyvan and Regan (2016), Franklin (2010), and Tillers
(2005).
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found on these smugglers served as a basis for estimating the amount Shonubi carried

during his first seven trips. This estimated amount was subsequently added to the known

amount of 427.7 grams that resulted in the eighth trip (Colyvan et al. 2001: 169).

The case clearly involves a prediction problem, since the overall amount of heroin that

Shonubi carried during his first seven trips was unknown at the time of the trial. Fur-

thermore, the case is about predicting a quantity rather than a probability. So although

the case does not involve the probabilistic RCP, it certainly involves a structurally similar

problem: in order to predict the overall amount of heroin based on statistical evidence,

Shonubi had to be assigned to some reference class. Yet it also had to be determined what

constitutes ‘specific evidence’, that is, a suitable reference class in this particular situa-

tion. As several authors rightly point out, it is unclear why “Nigerian drug smugglers

apprehended at JFK during the given time period” was chosen as Shonubi’s reference

class rather than “all drug smugglers at JFK, all Nigerian smugglers regardless of airport,

or smugglers in general” (Cheng 2009: 2082). In fact, there is an indefinite number of

classes to which Shonubi could have been assigned. This includes apparently unsuspicious

classes such as the class of all airline passengers or the class of toll collectors at New York’s

George Washington Bridge which was Shonubi’s day job (Colyvan et al. 2001: 172).11

Each of them would have resulted in very different predictions for the overall amount of

heroin. Thus, when trying to make an individual prediction based on statistical evidence,

it is unclear which part of the evidence should have a bearing on the prediction. Put

differently, it is unclear which reference class to use to make the prediction. This is the

epistemological RCP as it arises in the context of prediction.

2.2 Criteria for a Suitable Reference Class

The previous section revealed that the RCP is about choosing a suitable reference class

when applying statistical evidence to an individual object. Consequently, a solution to

the RCP needs to spell out two things: first, a criterion for what constitutes a suitable

reference class and second, a method for actually finding that class. This section discusses

criteria for a suitable reference class. Strategies for actually finding it are outlined in

Section 4.

One influential proposal of a solution to the RCP is due to Reichenbach (1949). For

him, there are two criteria determining a suitable reference class: it should be as narrow as

possible while also allowing compiling reliable statistics (Reichenbach 1949: 374). What

is meant by narrow and reliable?

11Given the fact that Shonubi had smuggled drugs on a fixed number of occasions, some of the candidate
reference classes might appear not very meaningful. Yet this is precisely the point: there are many classes
to which an individual belongs in principle and the RCP consists in assigning it to the most suitable one.
For criteria determining a suitable reference class, see Section 2.2.
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On the predominant view, the concept of narrowness can be linked to the number

of predicates by which a class is determined. For instance, given data about the entire

population (no predicate) and data about males in that population (one predicate) when

predicting the amount of heroin in the case of Shonubi, one should opt for the more

specific data, thereby assigning Shonubi to the narrowest reference class possible that is

refined by the highest number of predicates. This seems intuitive. Additionally, Thorn

(2017) and Wallmann (2017) show that the preference for narrow reference classes can be

formally justified: choosing the narrowest reference class maximizes accuracy in the sense

that the difference between prediction and actual value will be minimal.

However, there are at least two problems with the criterion of narrowness. First,

reference classes cannot “be totally ordered according to their narrowness” (Hájek 2007:

568). For instance, given data about the entire population and data about males, it is

straightforward to identify the narrowest reference class. Yet in a situation in which there

is only reliable data regarding males that weigh more than 80 kilograms and regarding

males with dark hair, this is not as straightforward. Obviously, each of the classes is

narrower than the class of all males, but there is no reliable information as to which of

them should be considered the narrowest reference class. Furthermore, it would be a

mistake to judge them as equally narrow simply because both classes are determined by

one further predicate (Hájek 2007: 569).12

Second, solely focusing on the criterion of narrowness implies that one should always

prefer evidence for singleton reference classes (Thorn 2012: 303).13 Thus, in the Shonubi

case, the overall amount of heroin should have been determined based on the reference

class containing only Charles Shunobi.14 This clearly misguided strategy illustrates what

might have been obvious from the outset: that a strict preference for narrow and hence

ultimately singleton reference classes is untenable.

Reichenbach (1949) seems to attenuate the strict preference for narrower reference

classes by additionally requiring reliable information: one should choose the narrowest

reference class that also contains reliable information. However, Reichenbach does not

further specify the concept of reliability. Hájek (2007: 568) even argues that it is a vague

concept per se that cannot be pinned down employing ideas of classical statistics such

as a sufficiently large sample size. I partially disagree with this observation. Although

there might be more to reliability than purely statistical aspects like a large sample,

the latter aspects are certainly an important part of it. This is due to the fact that

theoretical results that guarantee the reliability of statistical methods rely on precisely

12See Thorn (2019) for a discussion of the problem of partially overlapping reference classes.
13This is discussed as the “Problem of Uninformative Statistics” (Bacchus 1990, Pollock 1990).
14In fact, this approach was employed in an initial trial, predicting the overall amount by multiplying

the amount that Shonubi carried on his last trip by eight. Yet the judgment based on this prediction was
vacated due to a lack of “specific evidence” (Colyvan et al. 2001: 169).
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these aspects.15 Hájek (2007: 568) also notes that the meaning of reliability might in

fact be context-dependent and sensitive to pragmatic considerations. I agree with this

observation. However, it seems unproblematic as soon as the specific context is made

explicit. Here, the focus is on the RCP as it arises in the context of prediction. Thus it

is reasonable to argue that information is reliable to the extent that it leads to accurate

predictions.16

Apart from reliability, Salmon (1971, 1989) proposes homogeneity as another criterion

to counterbalance a strict preference for narrower reference classes. As mentioned above,

he argues that when concerned with prediction, one should exploit all available evidence.

Yet what is crucial to achieve homogeneity is the statistical relevance of the evidence,

which Salmon (1971: 42) defines as follows: when trying to predict the probability that

an individual has some property B based on an overall set of evidence A, another property

C is statistically relevant to B just in case P (B|A,C) ̸= P (B|A), that is, just in case

conditioning on A and C leads to another probability for the individual to have property

B than conditioning only on A.17 Thus, to determine a suitable reference class for a pre-

diction concerning property B, one should start by considering the broadest class A and

partition it in terms of all predicates C1, C2, . . . that are statistically relevant to the ques-

tion at hand; yet one should avoid partitioning the class in terms of statistically irrelevant

predicates, since this would reduce the available evidence with no good reason. According

to Salmon (1971: 43, 1989: 69), one should ultimately choose the broadest homogeneous

reference class. This is the class that is subdivided by a homogeneous partition, that is,

by a partition that includes all predicates that are known to be statistically relevant and

that does not include any statistically irrelevant predicates.18

While Salmon focuses on the prediction of probabilities and hence formulates the

notion of statistical relevance in terms of probabilities as well, Colyvan et al. (2001)

emphasize the importance of homogeneity even in settings like the case of Shonubi, where

the prediction to be made is not a probability, but rather a real number. They argue that

choosing the right reference class “is not just a question of specifying enough predicates to

be jointly satisfied so that the reference class in question contains very few (but non-zero)

members” (Colyvan et al. 2001: 172). Instead, the reference class should be homogeneous

in the sense that refining the partition by adding another predicate does not (significantly)

15For instance, the law of large numbers or the central limit theorem hold ‘in the limit’, that is, for
large samples.

16One might object that given this definition, it is impossible to assess the reliability of information
before making a prediction. One might also object that it is pointless to assess the reliability afterwards.
I will address both objections in Section 3.1 and show that they are unfounded in the context of ML.

17Woodward (2021) provides a concise overview of this and related definitions.
18Since the partition is in terms of all predicates that are known to be relevant, Salmon (1989: 69)

refers to ‘epistemic homogeneity’ which he distinguishes from ‘objective homogeneity’. This means that
it is in principle possible to refine a partition by adding further predicates, yet the relevant predicates to
do so are not epistemically accessible.
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change the predicted value. I will refer to this idea as predictive homogeneity. This

highlights that the formulation resembles Salmon’s definition of a homogeneous partition

in terms of statistical relevance. Yet it also highlights that the formulation is different

because it replaces the focus on changes in probabilities that is central to the definition

of statistical relevance by the more general focus on changes in predicted values.

Overall, the criterion of homogeneity complements the criterion of narrowness and can

be considered as a lower bound to it: while the criterion of narrowness requires choosing

a class that is determined by as many predicates as possible, the criterion of homogeneity

requires choosing a class that is determined only by those predicates that are relevant to

the question at hand.

In sum, the discussion reveals that Reichenbach’s proposal to solve the RCP is still

an important point of reference. The criterion of narrowness is intuitively plausible, yet

it requires a counterpart to avoid shortcomings like singleton reference classes. In the

context of prediction, both the criterion of reliability and the criterion of homogeneity

serve as such a counterpart.

3 Machine Learning and Deep Neural Networks

This section provides an overview of central aspects of ML and DNNs. Readers familiar

with the material may safely skip to Section 4.

3.1 Machine Learning

The main focus of ML is on the problem of generalization: how to make accurate predic-

tions for new instances based on empirical observations?19 In the following, I will focus

on the case of supervised learning. In this setting, there is an input space, X, an output

space, Y , and it is assumed that they are governed by an unknown functional relationship

f : X → Y . I will focus on a regression task in which X = Rd and Y = R.20

A set of training data, ⟨x1, y1⟩, . . . , ⟨xn, yn⟩ ∈ Rd×R, is essential to most ML tasks. A

concise way of capturing the data sampled from the input space is by means of a design

matrix X ∈ Rn×d. Here, n is the number of observations and d is the number of features

associated with each observation. Often, d is referred to as the dimension of the data.

In many applications involving texts, speech or images, the number of features d in a

dataset is high, in some cases even considerably higher than the number of observations,

such that d ≫ n. This issue is discussed under the headline of high-dimensional data.

It is commonly encountered in fields such as astronomy, climate science, economics or

genomics (Bühlmann and van de Geer 2011, Johnstone and Titterington 2009). The

19For a book-length treatment of the field see Shalev-Shwartz and Ben-David (2016), for a concise
overview see Jordan and Mitchell (2015).

20One might similarly consider a classification task, in which Y would be discrete.
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increasing prevalence of high-dimensional data is mainly driven by two factors: a dataset

can be inherently high-dimensional because a high number of features is available for

each observation. Yet a dataset can also become high-dimensional because researchers

are unsure about the functional relationship between available features. In this case,

they might construct a wide range of new features by interacting and transforming the

available ones (Belloni et al. 2014). The issue of high-dimensional data will come up again

in the discussion below. For the moment, note that the features included in a dataset are

somehow related to properties associated with the objects that constitute the observations

in the dataset. They might consequently provide a link to the analysis of the RCP.

Based on the set of training data, the goal in ML is to find a function h : Rd → R that

takes a new and previously unseen point x as input and predicts the corresponding label

y as accurately as possible. This is why it is also called a prediction rule. The function h

is usually chosen from a so-called hypothesis class H. This is a class of functions that is

predetermined by the developers or operators of an ML system. In most cases, empirical

risk minimization (ERM) or some variant guides the choice of the final prediction rule

h ∈ H. This means that the function h is chosen such that it minimizes the training

risk, that is, the average deviation between predicted labels, h(xi), i = 1, . . . , n, and true

labels, yi, in the training data. It is in this sense that the final prediction rule h should

be as accurate as possible: the goal is to get as close as possible to the labels generated

by the true but unknown underlying function f .

However, as mentioned above, the focus of ML is on generalization, that is, on predic-

tions for new observations. So there needs to be a link between ERM on training data and

generalization to unseen data. This link is established by the so-called i.i.d.-assumption

that all input-output pairs, ⟨x, y⟩, are independent from each other and drawn from the

identical but unknown probability distribution P over Rd×R (von Luxburg and Schölkopf

2011: 653). This allows to assess the performance of h on new input-output pairs sampled

independently from P , giving rise to the test risk. The goal of successful generalization is

then operationalized by the requirement that in addition to minimizing the training risk

(the goal of ERM), the gap between training and test risk should be minimized as well

(Goodfellow et al. 2016: 109). It is within this setting that the reliability of the data,

that is, whether it leads to accurate predictions, can be assessed to some extent before

making predictions for unseen observations: given the i.i.d.-assumption, the training data

is structurally similar to the test data which is why accurate predictions on the latter are

more likely given accurate predictions on the former.21

The relation between training and test risk and hence the ability to generalize is closely

21From a practical point of view, the i.i.d.-assumption may seem overly restrictive. However, it estab-
lishes the rationale for considering separate sets of training and test data and it allows to mathematically
study the relationship between training and test risk.
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linked to two central challenges in ML: underfitting and overfitting. Underfitting occurs

when a prediction rule is overly simplistic, lacks the capacity to capture the complexity

in the data and hence achieves poor accuracy on the training data. Overfitting occurs

when a prediction rule fits the training data very closely and achieves high accuracy on

the training data, thereby also fitting idiosyncrasies of the sample at hand that are not

relevant for future observations. This usually leads to poor generalization and hence to

a large gap between low training and high test risk. Just in case there is such a large

gap, a prediction rule is said to be subject to overfitting (Goodfellow et al. 2016: 110).

Consequently, a very close fit to the training data is not equivalent to overfitting, but

usually makes it more likely to occur.

Figure 1. Curves for training risk (dashed line) and test risk (solid line) depicting the
relationship between overfitting, underfitting, and the capacity of the hypothesis class H

(adapted from Belkin et al. 2019: 15850).

Whether a prediction rule tends to underfit or overfit is closely tied to the capacity

of the underlying hypothesis class. This is illustrated in Figure 1. A hypothesis class

with low capacity contains rather simplistic prediction rules that may struggle to fit the

training data and will be prone to underfitting. A hypothesis class with high capacity

contains highly complex prediction rules that may even fit random patterns in the training

data and will be prone to overfitting. Consequently, to balance over- and underfitting, it

is usually necessary to impose certain restrictions on the hypothesis class.

For instance, given that the structure of input and output data points towards a

linear relationship, one might restrict the hypothesis class such that it only contains linear

prediction rules.22 In this case, the hypothesis class would be given by all prediction rules

of the form h(x) = x1c1 + · · ·+ xdcd. Determining the final prediction rule would amount

22This type of restriction is discussed as inductive bias in the literature, but there are many other
techniques for restricting hypothesis classes (Goodfellow et al. 2016: Ch. 7, Shalev-Shwartz and Ben-
David 2016: Ch. 2.3).
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to determining the coefficients c1, . . . , cd. On the one hand, this restriction would lead

to at least an approximate fit between the final prediction rule and the training data,

thereby avoiding underfitting. On the other hand, the restriction would ensure that the

final prediction cannot fit the training data too closely, thereby avoiding overfitting.

3.2 Deep Neural Networks

DNNs are usually depicted as graphs consisting of nodes, the neurons, and edges transmit-

ting information between neurons.23 For simplicity, I focus on fully connected feedforward

networks in which the graph contains no cycles.24

More formally, a DNN can be described as a (directed and acyclic) graph, G = ⟨V,E⟩.
The set of neurons is denoted by V , the set of edges is denoted by E. Typically, a DNN is

structured in layers. If the DNN is fully connected, each node from one layer is connected

to each node from the next layer by one edge. A network’s number of layers is commonly

referred to as the depth of the network. DNNs contain a high number of layers which is

why they are called ‘deep’.

Data is processed through the network as follows: first, it enters the network at the

input layer. This layer contains one node per dimension of the input data. Then, the

data is transmitted to the next layer. An activation function that is associated with the

nodes in the network determines whether and in what form the data is processed from

one neuron to another. A weight function determines, for each edge, the importance of

the data passed on along that edge. Consequently, the input of a neuron consists of the

weighted sum of the transformed outputs of all nodes connected to it.25 Finally, for each

input x, the network produces an output y at the output layer.

In practical applications, developers or operators of a DNN usually predefine the ar-

chitecture of the network. It consists of a graph and an activation function. Thus, the

output labels that a network produces depend on the predefined architecture and on the

weights, w. Consequently, the learning process of a DNN amounts to finding the best

among all possible configurations of weights for a given architecture. In this context,

‘best’ means most accurate according to ERM. The most common method to minimize

the empirical risk of DNNs is the so-called stochastic gradient-descent (SGD) algorithm.

Its underlying rationale is to initialize the weights with random values, to update them

stepwise and to converge to that configuration of weights that leads to the lowest empirical

risk. This configuration is then used to compute new predictions y for previously unseen

23For an in-depth treatment of DNNs, see Goodfellow et al. (2016), for a philosophically motivated
introduction, see Buckner (2019).

24Although there is a large variety of DNNs, many authors focus on fully connected feedforward net-
works, because their mathematical treatment is more convenient (Berner et al. 2021).

25Often a bias, which can be conceived as the intercept of a linear equation, is added to the weighted
sum.
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observations x.26

4 Statistical Strategies to Solve the Reference Class Problem

Section 2.2 discussed three important criteria for a suitable reference class: narrowness,

reliability, and homogeneity. However, little has been said about strategies to find the

reference class for which these criteria are fulfilled. In particular, while it might be

straightforward to determine a narrowest reference class, it is unclear how to discern

relevant from irrelevant evidence and hence how to establish predictive homogeneity of

a reference class. As mentioned above, several authors have interpreted the RCP as a

problem of statistical model selection, which is why they try to address this issue within

the framework of classical statistics.

For instance, Cheng (2009) argues that the predicates that determine a reference class

can be expressed by the variables in a statistical model. So in a linear model of the form

h(x) = x1c1+ · · ·+xdcd, the variables x1, . . . , xd are taken to be predicates that determine

a reference class, while h(x) would be a prediction based on these variables. Thus, in the

case of Shonubi, x1 might encode ‘age’, x2 might encode ‘citizenship’ and h(x) might

encode the overall quantity of heroin predicted based on the variables included in the

model.27

Given this setup, choosing the right reference class for making a prediction reduces

to identifying the model with the right set of variables. With respect to the reference

class, the criteria of narrowness, reliability, and homogeneity are constitutive for what

is ‘right’. With respect to the set of variables, the model should be selected such that

it avoids under- and overfitting (Cheng 2009: 2095). As mentioned above, the latter is

closely related to a model’s complexity and thus, given the model’s overall structure (i.e.,

a linear function, a specific architecture, etc.), to the number of variables it contains: the

model should include enough variables to avoid underfitting; yet it should also contain

only relevant variables to avoid overfitting. Consequently, when framing the RCP as

a problem of statistical model selection, there is a close connection between the goal of

avoiding under- and overfitting and the goal of choosing a reference class that is as narrow

as possible while also being homogeneous.

When interpreting the RCP as a problem of statistical model selection, it seems

straightforward to solve it using model selection methods.28 Accordingly, Cheng (2009)

26For a non-technical yet detailed discussion of the learning process of DNNs and its philosophical
ramifications, see Buchholz and Raidl (forthcoming).

27I am using the terms ‘variable’ and ‘feature’ interchangeably. The former is commonly used in
classical statistics, the latter in ML, but their meaning is the same.

28Clearly, in that case, ‘solving the RCP’ does not amount to determining the provably correct reference
class, but rather to finding a well-justified and potentially correct solution. The same holds for the DNN
case below.
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argues that statistical measures like the Akaike Information Criterion (AIC) should be

employed to determine the right reference class. The AIC evaluates a statistical model

by measuring the model’s fit to the evidence as well as its complexity.29 Thus, it evalu-

ates how well the model balances over- and underfitting. Both poor fit to the evidence

and high complexity of the model lead to higher values of the AIC. If, instead, a model

achieves a considerably close fit to the evidence while being relatively simple, the AIC has

a small value. Consequently, the best model is the one that minimizes the AIC. According

to Cheng (2009: 2094), this also solves the RCP, for the variables of the best model in

terms of the AIC determine the best reference class in a given situation.

A related approach is proposed by Franklin (2010). He also frames the RCP as a

problem of statistical model selection. Yet contrary to Cheng, he suggests using feature

selection methods to solve the problem. These methods are commonly used as follows:

first, a complex model is specified that contains as many variables as possible given the

available data. Next, the model is fitted to the data using a feature selection method

that retains relevant variables in the model, while weighting irrelevant variables less or

even discarding them altogether.30 This leads to a fitted model that contains the relevant

variables and in which the weights for irrelevant variables are small or even zero. According

to Franklin, the variables that are identified as relevant by the feature selection method

determine the right reference class in a given situation.

There are certainly many aspects about both approaches that require further discus-

sion. Yet there is one general issue that affects both of them. In fact, it even invalidates

them as a remedy to the RCP in many situations. Both Cheng (2009) and Franklin (2010)

develop their proposals using the case of Shonubi as their point of departure. The discus-

sion above revealed that all reference classes considered in this case were determined by a

rather low number of predicates. This means that statistical models applied to the case

will have a rather low number of predictively relevant variables, thereby avoiding over-

and presumably also underfitting.

However, suppose the proposed strategies were applied to a setting involving high-

dimensional data. In this case, a wide range of variables would be predictively relevant.

Additionally, due to the high-dimensional setting, the sample size would be relatively low

compared to the number of features associated with each observation. Thus, this situa-

tion embraces two scenarios, both of which would be problematic from the perspective

of classical statistics: on the one hand, a statistical model could exploit all predictively

relevant variables. This would correspond to a reference class that is both narrow and

predictively homogeneous. However, it would also lead to overfitting, since a model in-

29The fit to the evidence is usually measured by the maximum of the model’s likelihood function, L̂,
and complexity by the model’s number of parameters, p, such that AIC = − ln(L̂) + 2p (Akaike 1974).
For a thorough philosophical discussion of the AIC, see Forster and Sober (1994).

30For a detailed survey of feature selection methods, see Hastie et al. (2009: Ch. 3.3 and 3.4).
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cluding a large number of variables would be flexible enough to fit idiosyncrasies of the

relatively small sample. Consequently, the information in the reference class would not

be reliable in the sense that it gives rise to accurate predictions. On the other hand,

employing the AIC or feature selection methods would lead to a model that is sufficiently

simple to avoid overfitting. Yet this would prevent many predictively relevant variables

from entering the model, thereby leading to a reference class that is neither narrow nor

predictively homogeneous.31

Overall, the example reveals that there are situations in which it is not possible to

simultaneously achieve all desiderata for a suitable reference class within the framework

of classical statistics. Consequently, proposals to solve the RCP using methods of classical

statistics often fall short of doing so, because they cannot escape the fundamental tradeoff

between overfitting and underfitting that is particularly challenging in the context of high-

dimensional data.

5 The Argument

The previous sections examined the RCP and central ideas of ML separately. To answer

the guiding question of this text, both subjects have to be taken together: how, if at all,

are DNNs suited to deal with the RCP? In this section, I argue that there are situations

in which DNNs remedy specific instantiations of the RCP. By clearly demarcating these

situations, my argumentation also allows to distinguish the latter from situations in which

the RCP remains the intricate methodological problem as which it is known.

5.1 ‘Big Data’ Is Related to Narrowness and Reliability

DNNs gained their relevance mainly from what Wheeler (2016) refers to as “the era of

big data”. Thus, as a first step, it is worth analyzing what ‘big data’ actually means.

First, the sheer number of observations in many contemporary datasets is vast. While

classical statistics is often concerned with assessing the significance and precision of infer-

ences made from a restricted sample, “we are now routinely handling population datasets

directly or sample sizes so immense [. . . ] that they behave like population data” (Wheeler

2016: 330). Given this observation and the common assumption that “[t]he larger the

sample gets, the more likely it is to reflect more accurately the distribution and labeling

used to generate it” (Shalev-Shwartz and Ben-David 2016: 38), considerations regarding

the reliability of inferences in classical statistics do not, or at least to a far lesser extent,

31One might object that selecting variables to determine a reference class does not make sense in the
case of high-dimensional data, where variables encode, e.g., the color of singular pixels in images. I will
address this objection in Section 5.1.
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carry over to applications of ML.32 Here, the representativeness of a given sample for the

entire population is much more likely based on the size of the sample.

Second, many datasets nowadays belong to the high-dimensional setting outlined

above. Thus, in addition to a large number of observations, each observation is asso-

ciated with a—possibly much higher—number of features (Bühlmann and van de Geer

2011). This is interesting from the perspective of the RCP, where a reference class gets

narrower with any further predicate that is added to its definition. Consequently, when

framing the RCP as a problem of statistical model selection, high-dimensional datasets

give rise to very narrow reference classes.33

Before proceeding, let me address two potential objections to this interpretation of

features in a dataset as predicates that determine a reference class. First, consider the

example of a dataset consisting of images. Images are usually stored in a dataset such

that for each pixel in the image, there is one feature in the dataset giving the color of the

pixel as a numeric value. Suppose further that the goal is image classification, that is,

to determine a suitable reference class or, equivalently, to find a statistical model based

on the given data that allows to correctly classify future images. Clearly then, selecting

features that give the color of singular pixels seems to be something entirely different from

selecting a feature such as ‘age’ in the case of Shonubi: one might object that features

giving the color of pixels do not have an immediately obvious meaning and that, as a

consequence, such features give rise to reference classes that do not have an immediately

obvious meaning either.34 This would call into question the strategy of approaching

the RCP as a problem of statistical model selection in such settings. However, in the

context of prediction, it is not the goal to investigate reference classes themselves or the

predicates by which they are determined. Instead, the goal is to identify those features

that determine a reference class for making accurate predictions. Thus, the criterion of

predictive relevance alone is discerning suitable from unsuitable features in this context.

Whether or not the features and the reference class they determine have an immediately

obvious meaning is less important.35

32In this context, reliability is to be understood solely in its relation to the data and to the sample
size in particular. This is not to say that ML methods are per se more reliable than methods of classical
statistics. Additionally, reliability needs to be distinguished from mathematically proven properties, e.g.,
statistical guarantees for the performance of a method. While the latter do not (yet) exist for some
ML methods, said methods nevertheless work reliably in many situations—what is missing is a definite
explanation for why this is the case (Berner et al. 2021: 17).

33One might question whether this leads to reference classes that do not contain enough observations to
draw reliable inferences. However, in high-dimensional datasets, the number of observations is only low
relative to the number of dimensions, but usually not in absolute terms (Belloni et al. 2014: 29). While
this is nevertheless problematic from the perspective of classical statistics, I will argue in Section 5.2 that
it is less problematic for DNNs.

34One could perhaps go so far as to say that they have no human-graspable meaning at all.
35This is why it is crucial to distinguish the goal of prediction treated in this paper from the goal of

explanation. The latter clearly requires the predicates determining a reference class to have a human-
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Second, one might object that when interested in the predicates that determine a

reference class, what is relevant are not features in the dataset, but rather the values

taken on by the features. For instance, in a demographic dataset, the predicate ‘age’ will

be satisfied for each observation and hence irrelevant to determine a reference class. What

is relevant is the value of ‘age’ for each individual in the dataset. This objection can be

addressed by constructing a binary variable for each value taken on by a feature like ‘age’,

leading to a dataset that contains features like ‘age30’ that equal one if an individual is 30

years old and zero otherwise. These can be interpreted as useful predicates to determine

reference classes.

To summarize: in this section I argued that ‘big data’ can be conceived along two

perspectives. They provide a promising basis to approach the RCP employing DNNs

because they address both components of Reichenbach’s proposal: to choose a reference

class that is narrow and for which reliable statistics are available. What remains is the

problem of over- and underfitting when trying to determine predictively relevant features.

5.2 Deep Neural Networks Can Exploit High-dimensional Data

We have seen above that strategies to solve the RCP with classical model selection tech-

niques fail in applications involving high-dimensional data. On the one hand, statistical

models could include a high number of variables in such situations. In this way they would

fulfill the requirement of narrowness, but they would also overfit the information in the

reference class which would prevent them from predicting accurately. On the other hand,

statistical models could include a low number of variables. This would prevent them from

overfitting, yet it would also prevent the choice of a predictively homogeneous reference

class, since not all predictively relevant variables would be part of the model.

Contrary to this observation, recent results reveal that some DNNs possess a remark-

able feature: they perform particularly well on high-dimensional data (Berner et al. 2021:

19, Neyshabur et al. 2017: 5947). In this setting, they are able to interpolate, that is,

to exactly fit the training data, thereby achieving zero training error (Belkin et al. 2019:

15849). Given the preceding discussion of central ideas in ML, one might take this behav-

ior as an indication for overfitting and a poor ability to generalize. However, as several

authors show, DNNs possess a high ability to generalize to previously unseen data (Belkin

et al. 2019, Zhang et al. 2017). This seems peculiar as it is at odds with the standard

framework of ML, especially regarding its treatment of the under- versus overfitting prob-

lem. It is also at odds with the conventional wisdom presented in standard textbooks

that “a model with zero training error is overfit to the training data and will typically

generalize poorly” (Hastie et al. 2009: 221).

graspable meaning.
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Thus, apparently, the case of DNNs is not appropriately captured by the depiction

in Figure 1 where an algorithm’s predictive ability diminishes with increasing capacity

of the underlying hypothesis class. As a consequence, Belkin et al. (2019) propose and

empirically confirm an alternative framework that combines the traditional context of

under- and overfitting—the ‘classical’ regime as they call it—with the specific behavior

of some DNNs—the ‘modern’ interpolating regime. The main feature of their framework

is what the authors refer to as the double-descent risk curve depicted in Figure 2. It

corresponds to the classical U-shaped curve depicted in Figure 1 above, as long as an

algorithm’s capacity is below the so-called interpolation threshold. This threshold marks

the point beyond which an algorithm interpolates the training data. While prediction

rules obtained directly at the threshold generally exhibit a high test risk indicating a low

predictive accuracy, Belkin et al. (2019: 15850) “show that increasing the function class

capacity beyond this point leads to decreasing risk, typically going below the risk achieved

at the sweet spot in the ‘classical’ regime.” This means that large DNNs with a complex

architecture involving many layers and incorporating a high number of features as inputs

are suited particularly well for any kind of prediction task.

Figure 2. Curves for training risk (dashed line) and test risk (solid line) depicting the
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the ‘classical’
regime) together with the observed behavior from the ‘modern’ interpolating regime,
separated by the interpolation threshold (adapted from Belkin et al. 2019: 15850).

Many insights about the generalization ability of DNNs rely on empirical studies con-

ducted with specific network architectures, but there is theoretical progress for some

aspects of the problem (Zhang et al. 2021).36 Perhaps most importantly, recent analyses

of the SGD algorithm revealed that the algorithm exhibits a behavior of implicit regular-

ization (Neyshabur et al. 2015, Poggio et al. 2020: Theorem 4). Mathematically, this

means that the final configuration of weights to which the algorithm converges has a small

36For instance, Arora et al. (2019) focus on two-layer networks and Soudry et al. (2018) focus on
networks with linear activation functions to derive theoretical results. Recent theoretical progress with
significantly weakened assumptions is also made by Holzmüller (2021).
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norm.37 With respect to the structure of a DNN, a small norm corresponds to a final

configuration of weights or, equivalently, to a final prediction rule that is relatively simple.

In particular, this means that many weights within the network will have a small value

and that some of them will even be assigned a value of zero. So after the learning process,

a DNN might locally ‘look’ considerably simpler than its initial architecture, since several

input features might not be processed to the next layer and the flow of information along

edges might be muted at various points in the network.

The observation of implicit regularization can be considered as one possible expla-

nation for the astonishing generalization ability of DNNs.38 In a way, it also allows to

reconcile the behavior of DNNs with conventional statistical wisdom: just as in other

methods of classical statistics and ML, accuracy and simplicity need to be balanced in

DNNs as well. What remains surprising, however, is that this balance is struck automati-

cally by the SGD algorithm and without being enforced at some point during the learning

process. While statistical measures like the AIC explicitly incorporate the tradeoff be-

tween accuracy and simplicity as the objective of model selection, the SGD algorithm

operates solely with the objective of maximizing accuracy—yet implicitly restricts the

complexity of the final network as well.

In sum, recent ML research reveals that highly complex DNNs are often not sus-

ceptible to overfitting, because they achieve both a low training and a low test error.39

Consequently, when framing the RCP as a problem of statistical model selection, they

seem superior to methods of classical statistics in determining reference classes that are

both narrow and predictively homogeneous. I will carve out this last step of my argument

in the next section.

5.3 The Deep Neural Network Approach to the Reference Class Problem

According to the discussion above, a solution to the predictive RCP needs to propose a

method that identifies relevant predicates so as to achieve accurate predictions. Framing

the RCP as a model selection problem, this means that the method should find the

predictively relevant features to be included in the final model.

When approaching the RCP using DNNs, everything starts with input data in a design

matrix, X ∈ Rn×d. The dimension d indicates the number of features associated with

37A norm is a function that takes the elements of a vector as inputs and outputs a non-negative number.
It can be interpreted as the ‘size’ of the vector (Goodfellow et al. 2016: 37).

38Other explanations focusing on some kind of simplicity bias of the SGD algorithm are put forward,
e.g., by Huh et al. (2021), Razin and Cohen (2020) or Valle Pérez et al. (2019). Shwartz-Ziv and Tishby
(2017) try to provide an information-theoretic explanation. For a philosophical discussion of the latter,
see Räz (2022).

39This is even the case for noisy training data (Berner et al. 2021: 18). The generalization performance
only disappears for data that is entirely random and hence contains no learnable structure at all (Zhang
et al. 2017, 2021).
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each observation, xi, i = 1, . . . , n, so each observation might be interpreted as possessing

d different properties or characteristics. We have seen that there are DNNs which perform

best in high-dimensional settings and that the “era of big data” regularly brings about

datasets that belong to precisely this setting. Consequently, it is reasonable to focus on

cases where d ≫ n. The task of image classification is an excellent example for such

cases, since storing images in a dataset often gives rise to a setting in which the number

of pixels in each image, corresponding to the number of features, is larger than the number

of stored images, corresponding to the number of observations. Additionally, DNNs are

considered the state-of-the-art method to perform image classification (Berner et al. 2021:

2).

The discussion above revealed that a reference class gets narrower with each predicate

that is added to its definition. It also revealed that features in a dataset can be interpreted

as predicates that determine a reference class. Taking these aspects together, one can

conclude that given high-dimensional input data, a DNN starts a prediction exercise

like image classification with the narrowest reference class possible that is defined by

a high number of features.40 Thus, this very first step is in line with Reichenbach’s

recommendation to use information for the narrowest reference class available. It is also in

line with Franklin’s (2010) feature-selection approach according to which one should start

the process of finding a suitable reference class by considering the model that contains the

highest number of variables. However, there have to be safeguards that counterbalance a

strict preference for narrow reference classes and prevent overfitting.

When trying to determine a suitable reference class, the criterion of predictive ho-

mogeneity introduced above can be seen as a counterpart to the criterion of narrowness.

Recall that a reference class is predictively homogeneous just in case it is determined by

all and only those features that are predictively relevant (see Section 2.2). In the context

of DNNs, predictive relevance is assessed via ERM: given the training data, the SGD

algorithm chooses all weights within the network such that the empirical risk is mini-

mized. As long as the empirical risk is not minimal, the algorithm proceeds by altering

the weights to get closer to the minimum. Once the minimum is reached, the algorithm

terminates. Put differently, the algorithm only converges to the minimum and terminates

once everything predictively relevant is taken into account and appropriately weighted,

since otherwise, the empirical risk could be decreased even further.41 We have seen that

very complex DNNs often achieve perfect accuracy and hence zero empirical risk in the

40‘Narrowest . . . possible’ is to be understood relative to the available d-dimensional data, since I am
concerned with the problem of finding a suitable reference class based on given statistical evidence rather
than with the problem of determining whether additional evidence is required.

41In principle, it is possible that the SGD algorithm only converges to a local minimum (Goodfellow
et al. 2016: 281). However, in the case of highly complex networks, convergence to a global minimum is
particularly likely to occur (Li et al. 2018, Poggio et al. 2020: 30044, Vidal et al. 2017: 2).
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training sample as well as a high ability to generalize to new data. In the context of the

RCP, this means that such DNNs are able to exploit the large number of features in the

data to an extent that allows them to make accurate predictions on both the training

and the test data.42 For instance, in the example of image classification, DNNs are highly

successful in selecting and appropriately weighting those features that correspond to the

pixels that are crucial for classifying new images (Huh et al. 2021, Krizhevsky et al.

2012). Consequently, it is reasonable to assume that DNNs operating within the ERM

paradigm take into account all predictively relevant features during their learning process.

However, we have seen that a reference class is predictively homogeneous just in case

it is determined by all and only those features that are predictively relevant. Maximizing

accuracy alone is therefore insufficient, because apart from all relevant features, the most

accurate model might also include irrelevant features. Furthermore, maximizing accuracy

alone involves the risk of overfitting. Above, I discussed how classical model selection

techniques try to address this issue and fail to consider all predictively relevant features

in high-dimensional settings. DNNs are different in this respect. The previous section

revealed the central role of implicit regularization that takes place in the determination

of a network’s weights. In addition to maximizing accuracy, the SGD algorithm generally

yields a final prediction rule that is simple in the sense that the network’s weights have a

small norm. This means that some weights are assigned a high value, since the associated

input is considered to be of high predictive relevance for the output, but others are assigned

a low value—maybe even zero—, since the associated input is considered less relevant—or

not relevant at all—for the output. Put bluntly, irrelevant features are downweighted or

eliminated to achieve a simple configuration of weights.

We can now combine both insights. First, within the framework of ERM and assuming

that a global minimum for the empirical risk was reached, the final prediction rule is

the one that maximizes accuracy and hence includes all predictively relevant features

(otherwise the risk could be decreased further by including additional features). Second,

given maximal accuracy, the final prediction rule is also the simplest solution and hence

only includes predictively relevant features due to the simplicity bias of SGD.43 Taking

both aspects together reveals that the combination of ERM and the simplicity bias of

SGD seems to identify all and only those features that are predictively relevant, thereby

42This is in line with the aforementioned formal justification of choosing narrow reference classes since
they maximize predictive accuracy (Thorn 2017, Wallmann 2017).

43Huh et al. (2021) explore this combination of accurate predictions and simplicity bias for the example
of image classification.
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giving rise to a predictively homogeneous reference class.44,45

So in sum, the learning process of DNNs is governed by ERM, leading to the consid-

eration of all predictively relevant features and to maximal accuracy. However, it is also

governed by a bias towards simple solutions, leading to the consideration of predictively

relevant features only, thereby preventing overfitting. Thus, in situations involving big

data, the specific functionality of DNNs allows them to exploit data for very narrow yet

predictively homogeneous reference classes and to incorporate the relevant information

in a combination of weights that maximizes predictive accuracy. This is why DNNs are

suited to deal with the RCP as it arises in the context of prediction. Contrary to methods

of classical statistics, they might offer a remedy to it in these situations.

Clearly, there is a flipside to the latter reasoning: by illustrating how DNNs can offer a

remedy to the RCP in some very specific situations, it also suggests that in many others,

DNNs fare no better than methods of classical statistics.

First, I emphasized that the concept of predictive homogeneity crucially depends on

the minimization of the empirical risk. Yet I also pointed out that, sometimes, the SGD

algorithm might fail to achieve this minimization and converge to a local instead of a

global minimum of the loss function (see Fn. 41). Consequently, predictive homogeneity

cannot be achieved in these situations and neither do they give rise to a suitable reference

class of features.

Second, we have seen that the criterion of reliability is crucial for determining a suit-

able reference class. Above, I explicitly tied reliability to characteristics of the data, in

particular to the sample size (see Fn. 32). On the one hand, this seems to be very much in

the spirit of Reichenbach’s (1949) requirement to compile reliable statistics. On the other

hand, one might question whether this is sufficient or whether reliability should also be an

explicit requirement for the method that does the compiling. This question is particularly

pressing in the case of DNNs, since several network architectures have been shown to lack

robustness and to be easily fooled by slight perturbations of the input data.46 Tying

reliability to the data, however, the above reasoning rests on the assumption that DNNs

indeed work reliably and thus only applies to situations in which this really is the case.

44This observation does not even presuppose implicit regularization, but only some kind of simplicity
bias of the SGD algorithm. For instance, Räz (2022) recently argued on information-theoretic grounds
that DNNs achieve homogeneous partitions of the input data by getting rid of irrelevant information
during the learning process. However, he characterizes these partitions as very complex and hence rejects
them as not useful, since his focus is on explaining DNNs rather than on using DNNs for predictions
(Räz 2022: 28).

45As pointed out, e.g., by Buckner (2018: 5362), DNNs generate increasingly abstract representations
of the input features across their layers. However, assessing whether these representations might have a
bearing on the RCP is beyond the scope of this paper.

46This is perhaps most evident in adversarial examples (Szegedy et al., 2015). They can mislead DNNs
that only consist of linear components, while DNNs that also include non-linear components seem to be
less vulnerable (Goodfellow et al., 2015).
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6 Conclusion

This paper set out to answer the question whether ML faces the same methodological

problems as classical statistics. I tried to shed light on this question by investigating the

RCP, a long-standing challenge to classical statistics. Albeit originating as a problem

of (frequentist) probability theory, the RCP also concerns the more general question as

to how statistical evidence should have a bearing on individual cases. My focus in this

paper was on cases in which a reference class should be chosen so as to allow for accurate

predictions, that is, on the epistemological RCP as it arises in the context of prediction.

I argued that one particular method of ML, namely DNNs, are sometimes able to over-

come the RCP in settings involving high-dimensional data. First, the high dimensionality

of the data can be linked to the concepts of narrowness (via a high number of features) and

reliability (via a high number of observations), both of which were proposed as criteria for

a suitable reference class by Reichenbach (1949). Second, the particular functionality of

DNNs predestines them to exploit high-dimensional settings. Due to the SGD algorithm’s

behavior of implicit regularization, they are less susceptible to overfitting. Consequently,

they can select a narrow reference class consisting of a high number of features that is

also predictively homogeneous in the sense that it only includes features that are relevant

to make accurate predictions.

In sum, I conclude that contrary to methods of classical statistics, DNNs can offer a

remedy to the RCP in settings involving high-dimensional data. However, and this is just

as important a conclusion, there are also many settings in which DNNs cannot provide

such a remedy—and in which, consequently, the RCP remains a serious methodological

challenge.
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In G. Hofer-Szabó and L. Wroński (Eds.), Making it Formally Explicit. Cham: Springer,

pp. 61–81.

Wheeler, G. 2016. Machine Epistemology and Big Data. In L. McIntyre and A. Rosenberg

(Eds.), The Routledge Companion to Philosophy of Social Science. London: Routledge,

pp. 321–329.

Woodward, J. 2021. Scientific Explanation In E.N. Zalta (Ed.), The Stanford Ency-

clopedia of Philosophy, https://plato.stanford.edu/archives/spr2021/entries/

scientific-explanation/.

Zhang, C., S. Bengio, M. Hardt, B. Recht, and O. Vinyals. 2017. Understanding Deep

Learning Requires Rethinking Generalization. International Conference on Learning

Representations .

Zhang, C., S. Bengio, M. Hardt, B. Recht, and O. Vinyals. 2021. Understanding

Deep Learning (Still) Requires Rethinking Generalization. Communications of the

ACM 64 (3): 107–115.

28

https://arxiv.org/abs/1712.04741
https://plato.stanford.edu/archives/spr2021/entries/scientific-explanation/
https://plato.stanford.edu/archives/spr2021/entries/scientific-explanation/

	Introduction
	The Reference Class Problem
	The Problem
	Criteria for a Suitable Reference Class

	Machine Learning and Deep Neural Networks
	Machine Learning
	Deep Neural Networks

	Statistical Strategies to Solve the Reference Class Problem
	The Argument
	`Big Data' Is Related to Narrowness and Reliability
	Deep Neural Networks Can Exploit High-dimensional Data
	The Deep Neural Network Approach to the Reference Class Problem

	Conclusion

