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Abstract 

The English language has adopted the word Tardis for something that looks simple from the 

outside but is much more complicated when inspected from the inside. The word comes from 

a BBC science fiction series, in which the Tardis is a machine for traveling in time and space, 

that looks like a phone booth from the outside. This paper claims that simulation models are a 

Tardis in a way that calls into question their transferability. The argument is developed taking 

Molecular Modeling and Simulation as an example. There, simulation models are force fields 

that describe the molecular interactions and that look like simple and highly modular 

mathematical expressions. To make them work, they contain parameters that are adjusted to 

match certain data. The role of these parameters and the way they are obtained is seriously 

under-appreciated. It is constitutive for the model and central for its applicability and 

performance. Hence, the model is more than it seems so that working with adjustable 

parameters deeply affects the ontology of simulation models. This is particularly crucial for the 

transferability of the models: the information on how a model was trained is like luggage the 

model must carry on its voyage. 

 

1 Introduction 

Simulation models often can be successfully transferred to unexpectedly different contexts. 

This observation has motivated a growing discussion about the role computational templates, 

and other aspects of simulation modeling, play in model transfer (see Humphreys 2019 for a 

starting point). This paper examines transferability, but looks at the matter from the opposite 

side, asking why and when transfer runs into problems. Our central claim is that predictive 

power of models as well as problems related to their transferability are linked by a common 

cause: the way how modelers employ adjustable parameters. Not only do these parameters 

play a major role in the modeling process, this role is seriously under-appreciated. 
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Models, such as those we study here, are based on relatively simple mathematical expressions 

that they can be written down in a few lines. From the outset, these expressions seem to be 

templates that are easily transferable to different applications. However, the picture changes 

when one moves to a finer level of analysis and accounts for the adjustable parameters these 

models contain. On this finer level, the models actually are much more complex entities and 

this affects how they can travel. The complexity of simulations has consistently been 

highlighted in the literature, with a special emphasis on black boxing and epistemic opacity. 

The present paper examines a class of cases where modelers work with parameters in a very 

open way, thus the terminology of black boxes and opacity does not seem appropriate. 

Philosophical terminology should reflect upon the difference that the level of examination 

makes. As a preliminary fix, we make use of popular culture. The English language has 

adopted a new word—Tardis—for something that looks simple from the outside but is much 

bigger and more complicated when inspecting it from the inside. The word comes from the 

BBC science fiction series Dr. Who, where a machine for traveling in time and space looks 

like a phone booth from the outside, but has spacious and complicated high-tech architecture 

on the inside. This paper shows in what sense molecular models are a Tardis. 

We focus our examination on molecular modeling and simulation (MMS). It is widely used 

in many different fields of science and its features are typical for simulation modeling in 

general. Furthermore, it is suited to explain our arguments also to readers that are not experts 

in the simulation technique. This is of special importance as our argument involves the 

(relatively) fine level of parameterization. MMS is essentially about modeling properties of 

materials, which is done following a two-step recipe. The first step models the interaction of 

particles on the atomistic level via classical mechanics, i.e., by interaction potentials or 

(equivalently) force fields that cover relevant forces (like the van der Waals force). The 

second step consists in simulating a system containing many particles that interact as 

prescribed by these forces. Hereby, the number of particles can vary between a few hundred 

or thousand to many millions. In the simulation, it is observed how this many-particle system 

behaves and from that information its properties are derived.1 

                                                
1 MMS is used here as an umbrella term that covers a family of approaches that differ mainly in the 
way the second step, the simulation, is carried out. Popular techniques are Molecular Dynamics (MD) 
and Monte Carlo (MC) simulations. Both are linked to a statistical physics or thermodynamics point 
of view. In contrast, Molecular Mechanics (MM) originated from chemistry. MM is much more 
oriented at the structure of single molecules. However, using MMS as an umbrella term allows us to 
dispense with these differences. 
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Two trends in MMS persist. The scope and precision of the simulation results improve 

permanently so that they often match data from precision measurements.2 This made MMS a 

popular tool in science and engineering— with applications ranging from studies of the 

strength of steel over the development of nanostructured adsorbents for more efficient gas 

cleaning to pharmaceutical research. At the same time, the community of users of the models 

is continuously increasing and so is the model traffic, to stay in the picture. Supposedly 

modular parts of one model are transferred to another, neighboring model – used and 

evaluated by another group. 

Here is our argument on MMS in a nutshell. From the mathematical perspective, the models 

are formulated as a sum of potential functions, representing different forces. However, all 

these functions contain adjustable parameters, that are fitted to obtain good descriptions of 

certain target properties. Hence, their inner workings crucially depend on the choice of the 

form and the specification of the values for these parameters. When the modelers adjust 

parameters so that the models make good predictions, they create two sorts of dependencies. 

Firstly, one adjusted potential function (describing a certain type of interaction) gets 

dependent on the adjusted form of the other potential functions (describing the other pertinent 

types of interactions). Secondly, the entire force field gets dependent on the data that were 

used for the training, including the type of material and the conditions for which it was 

studied. Consequently, when different groups of modelers transfer (parts of) models and add 

more adjustments, this creates complicated path dependencies. All these dependencies tend to 

make the parameterized model a large and holistic object that is less easy to transfer than the 

modular math model promises. In short, the model is a Tardis. 

The paper proceeds in four steps. The first step gives a primer to molecular modeling—

without any technicalities beyond a description of how a simple potential might look like. 

The pivotal point of molecular modeling is the extra versatility that is added by adjustable 

parameters. Adjusting parameters, it is argued, takes many factors into account 

simultaneously: numerical approximation, compensation for missing details, and inaccuracies 

of assumptions about the relevant forces, among others. This versatility through 

                                                
2 It is the success in matching data that we call the predictive power of a model. However, we are well 
aware that this use of the term prediction can be debated. In particular, the good fit can be a result of 
overfitting to the data at hand so that the promised predictive power is small or nil in other cases. 
Thus, what we call predictive power is shorthand for potential predictive power. 
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parameterization is an extension of the classical (pre-computer-simulation) paradigm. 

Without this extension, one could hardly obtain good predictions. 

The second step provides a brief account of the methodology of simulation modeling, with a 

particular focus on a feedback loop during the modeling process. Employing adjustable 

parameters thrives on this feedback loop. Hence simulation modeling fosters the significance 

of adjustable parameters. 

The third step brings together MMS and simulation methodology. On the level of forces, 

everything is supposedly modular, for instance, the van der Waals force and the electric force 

caused by dipole moments of particles can be captured in separate and additive modules. 

However, things are different on the level of modeling practice because parameter adjustment 

renders these modules interdependent. The data used for the adjustment create further 

dependencies. This provides the core of our argument why models created by MMS are a 

Tardis. 

In the fourth step, we enrich the picture by studying the social organization of the field and 

argue that the travel patterns of software changed. In a phase up to around 1990, researchers 

travelled to hardware and to expertise in software. After this time, the pattern inverted. Now 

software travels to the researchers who become users of software packages. We argue that 

this regime change in social organization brought under scrutiny the transferability of models, 

fostering our claim that models have become hard-to-specify, holistic objects. 

The conclusion wraps up what to learn from the MMS case study and the Tardis argument. 

What travels? Not the elegant mathematical formulation of the model. Such kind of 

theoretical model does not make the predictions. In fact, adjustable parameters (and how their 

values are specified) have to be included. In sum, the ontology of simulation models differs 

profoundly from that of theoretical mathematical models. Furthermore, we argue, questioning 

transferability means challenging reproducibility—a topic that calls for substantial further 

research. Finally, the investigation sheds new light on the rationale of mathematization, 

reflecting a tension between the universality vs. particularity of the world. 

 

2 Molecular Modeling and Simulation 

Molecular modeling elaborates on the basic idea that macroscopic behavior of matter results 

from the interaction of small particles. Since Greek atomism, this idea found varying 

expressions, often characteristic of the scientific state of the art. According to Laplace, to 
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name one influential example, the physical dynamics of the universe can be fully predicted if 

only one knows the starting conditions and is able to integrate over all interactions between 

the particles, i.e. one is able to solve (integrate) the Newtonian equations for all particles of 

the universe simultaneously. Of course, he was fully aware that the necessary mathematical 

capabilities were beyond the reach of human beings, but called for a superhuman power, the 

so-called Laplacian demon. 

Molecular interactions emerged as subjects of scientific theory later in the 19th century when 

scholars like Boltzmann (1844-1906), Maxwell (1831-1879), and Gibbs (1839-1903) framed 

statistical thermodynamics. In a way, this theory re-formulates the mathematical problem, 

replacing the gigantic number of molecular interactions by statistical summary. Importantly, 

this theory is able to interpret measurable, macroscopic values as statistical functions of (then 

unobservable) particles and their interactions. 

The space for molecular modeling was further defined when in the early 20th century 

quantum theory made it clear that the interaction of smaller entities, like electrons forming a 

bond, cannot be described by classical forces. However, the quantum theoretical treatment of 

systems with many molecules remains largely intractable even with the computational power 

that is available today. Molecular modeling occupies the space in between (sub-)atomistic 

quantum mechanics and continuum mechanics where the discrete nature of the molecules can 

be neglected. The recipe remained surprisingly stable: one models the interaction of the 

particles via classical forces and then computes the resulting behavior by numerically solving 

a large number of differential equations. In a way, MMS employs the computer to emulate 

the Laplacian demon. 

Let us start a more detailed discussion by considering a simple case: the molecular modeling 

of argon. The argon atoms are spherical and the only relevant forces between them are those 

resulting from repulsion and dispersive attraction.3 In principle, all argon atoms in a many-

particle system interact, but modeling this turns out to be basically infeasible. A common 

simplification is to assume that the interactions in the system can be represented by pair-

interactions, i.e. that it is sufficient to consider only interactions between two partners (which 

are then assumed to be independent of what the other atoms do). 

                                                
3 This attractive force is also called the van der Waals force. 
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However, what is the adequate mathematical form of the pair potential?4 Finding suitable 

forms is far from trivial, even for the simple example of argon that is considered here, the 

ansatz can be formulated in various ways; but all of them contain parameters that have to be 

fitted to data. The most popular ansatz for doing this is the Lennard-Jones potential, named 

after the pioneer of computational chemistry, Sir Lennard-Jones (1894-1954) and is given in 

Equation (1). This potential consists in the superposition of two exponential terms, the one 

(with the exponent m) controls how quickly the repulsive force rises when bringing two 

particles closely together, the other term (with the exponent n) expresses how quickly the 

attracting force decreases with increasing distance between the particles (r denotes the 

distance between them). 

 

  푉(푟) = 4휖[(??)
? − (??)

?]       (1) 

 

Lennard-Jones proposed the exponents m = 12 for the repulsive term and n = 6 for the 

attractive term as adequate choices (Lennard-Jones 1931). Basically, he chose n = 6 because 

Fritz London (1930) had calculated this exponent from quantum theoretical considerations. 

Given this choice, m = 12 (2*6) is simply convenient when using logarithmic tables for 

computation.5 Having made these choices, the Lennard-Jones (12,6) potential has two 

remaining adjustable parameters (ε and σ), see figure 1. The parameter σ in the repulsive term 

can be considered as the diameter of the particle and the parameter 휖 in the attractive term 

describes the strength of the attractive interactions. These parameters have physical meaning, 

but this meaning is not independent from the parameterization scheme. The parameter values 

are fitted to thermodynamic data for argon, more precisely: they are chosen according to the 

overall fit to training data. The ansatz only becomes a model of argon by fitting its 

                                                
4 Usually, the potential energy is modeled and the force is obtained by derivation. Hence the pair 
potential gives the force acting between these pairs. 
5 Rowlinson (2002) provides a wealth of original literature on the development. 
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parameters to data for argon. Consequently, the resulting numbers will depend on the choice 

of that data and the way the fit is carried out. 

Figure 1. Graph of the Lennard-Jones potential function: Intermolecular potential energy  as a 
function of the distance of a pair of particles. The graph shows the“ potential well”, i.e., a 
favored distance between two particles where attracting and repelling forces are in balance. 
As the particles also have kinetic energy and are not locked in this position, they move 
continuously, which is known as Brownian motion. 
 

In MMS, potentials are used like building blocks. There are different model building blocks 

that are put together to create a model of a complex structure. Lennard-Jones put together just 

two blocks to create his famous model, one for repulsion and one for dispersion. Add a 

dipole, and you will get another, more complex model, known as the Stockmayer potential, 

which has three parameters (σ, ε and the dipole moment). It is also common to combine 

several Lennard-Jones sites to describe chain-like molecules. However, for modeling more 

complex molecules, other types of interactions may become important. In general, one 

distinguishes between intermolecular interactions (between different molecules) and 

intramolecular interactions between the atoms inside a molecule, e.g., different types of 

vibration such as stretching, bending, or torsion. All these interactions are usually described 

by their potential energy, i.e., described by a potential.  

 V =  Vintra + Vinter         (2) 

  Vintra = Vstretching + Vbending + Vtorsion + … 

  Vinter = Vrepulsion + Vattraction 

   Vattraction = VvanderWaals + Vpolar + VH-Bond + … 

The different contributions are then simply summed up—building the force field—to yield 

the total potential energy of the system. Being the sum of potentials, the force field looks 
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perfectly modular and promises the transferability of building blocks.6 However, important 

for our discussion, for each of the different contributions there are contribution-specific 

adjustable parameters. 

Once the potential is defined, the potential energy of the system can be calculated for any 

configuration of the particles, the forces acting on the particles and the resulting motion can 

be simulated. The main task of the simulation is to generate a sufficient number7 of 

representative configurations of the system to enable a meaningful determination of average 

properties. Such properties then can be compared to measurable macroscopic properties. 

 

3 Adjustable Parameters - the Wild Card of Simulation 

This section briefly recapitulates that simulation modeling is adding additional steps to the 

modeling process that make the relationship between simulated and target entities even more 

indirect. A feedback loop in the modeling process enables adjusting parameters, which play a 

key role.8 

In the present account, the term model is used in the sense of a mathematical model that aims 

to describe certain aspects of physical reality, in particular measurable properties of a 

material like, e.g., density or viscosity. This model—think of a particular force field—is 

considered to be embedded in some kind of theory (here: thermodynamics, among others) 

that provides a frame not only for the modeling but also for carrying out physical experiments 

                                                
6 These building blocks can be categorized in different ways. For instance, as a reviewer pointed out, 
van der Waals attraction between non-bonded atoms of the same molecule might count as 
intermolecular interaction. Our argument is independent of the precise categorization. 
7 There are several ways to generate the large number of representative configurations of the system 
that are needed for a meaningful averaging: two main routes can be distinguished: the deterministic 
route, which follows the ideas of Laplace, and the stochastic route. The most widely used techniques 
are Molecular Dynamics (MD) simulations in the former group and Monte-Carlo (MC) simulations in 
the latter. 
8 We follow Hasse and Lenhard (2017) who unfold a more detailed account of parameterization as 
“boon and bane”. In general, the role of adjustable parameters is seriously under-examined in 
philosophy of science. Notable exceptions include Parker (2014) who focuses on the unavoidably 
incomplete representation in the context of climate modeling; Vincenti (1990) who identifies working 
with parameterization as a key element of engineering epistemology (though he is not arguing about 
computer models); and Kieseppä (1997) who argues about uses of parameters in statistics.  
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whose outcomes can be compared with those of the model. Figure 2 gives an overview of the 

picture on which the following discussion is based.9 

 

 

Figure 2: Schema of simulation modeling, including a feedback loop. From Hasse and 

Lenhard (2017). 

 

We want to point toward a simple but momentous loop in simulation modeling. Models are 

usually imperfect and can get better through modification. Simulation modeling turns this 

caveat into an advantage by using this loop extensively. 

According to our schema, researchers start with a quantity xreal they want to model, like the 

density or viscosity of argon. The corresponding entity in the model is xmod. They might now 

choose to use the LJ (12, 6) model for this purpose. By this, we accept the host of simplifying 

assumptions on which that model is based. The parameters ε and σ are a priori unknown. For 

determining the property of interest x (say viscosity), they need to carry out molecular 

simulations: The model is implemented on a computer and simulations are carried out. This 

involves many more choices, such as the selection of a simulation method (MD or MC). 

These simulations then yield a quantity xsim that can be compared eventually to the results of 

experimental studies xexp. In general, neither xreal nor xmod can be known; only the 

                                                
9 Figure 2 is a version of a not uncommon account, for instance agreeing with R. I. G. Hughes ’DDI 
account (1997), though enriched for simulation modeling. The philosophy of simulation has examined 
extensively the stretch in between xmod and xsim (cf. Winsberg 2019 for an entry point into this 
discussion). 
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corresponding properties xexp and xsim are known and can be compared. There is no direct 

access to xreal or xmod.10 

There are two types of experiment in play. One from “below” that is the experiment in the 

classical sense and provides measured values; the other from “above” that provides simulated 

values. The latter are often called computer experiments or numerical experiments. However, 

we prefer using the term “simulation experiment” (or briefly just simulation) here. Such 

experiments are used to investigate the behavior of models. Importantly, relevant properties 

of simulation models can be known only through simulation experiments. They play a 

fundamental role in MMS, because most properties x of interest are unobservable otherwise. 

The adjustment of parameters is of fundamental importance to our example. The adjustment 

of ε and σ requires iterated loops of comparison and modification. The assigned values 

determine the model’s identity. Else, the LJ model does not describe argon. 

Not all model parameters need to be adjusted in the control loop shown in Figure 1, it is 

common to set some of them a priori. Consider the Lennard-Jones potential (Equation 1) as 

an example. It has four parameters: m, n, σ, and ε. Two of them were set a priori by Lennard-

Jones; n = 6 was set on physical grounds, whereas m = 12 was set on entirely pragmatic 

grounds, as explained above. In fact, it is known from quantum chemistry that m = 12 is a 

poor choice for describing repulsive interactions. Despite this, the Lennard-Jones (12, 6) 

potential has become the by far most popular molecular model building block and the choice 

m = 12 has survived, long after the pragmatic reasons for this choice have become obsolete. 

How can this be? 

The answer highlights the compensating role of adjustable parameters. In the practical 

application, the physical flaws of this choice are compensated by the fact that the parameters 

ε and σ are fitted to data in the feedback loop. By this very procedure, the parameter 

adjustment compensates for all kinds of imperfections in the model (including mistakes), 

such as neglecting many-particle interactions, or simplifications made in the derivation of the 

                                                
10 Cf. Edwards (2010) on the “model-laden data”, and the now classic volume on “Models as 
Mediators” (Morgan and Morrison 1999). The second variety (“from below” in Figure 2) is the 
experiment in the classical sense. When comparing simulations to their target system, such classical 
experiments will usually provide the data to compare with. However, the situation becomes 
complicated in an interesting way because of the growing influence of simulation on these 
experiments—and thus on measurement (cf. Morrison 2009, 2014; Tal 2013). This is underpinned by 
the fact that researchers in MMS begin using hybrid data sets, composed of experimental and 
simulation data for developing models (cf. Forte et al. 2019). 
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ansatz for describing the pair-interactions, or, finally but not exhaustively: “With judicious 

parameterization, the electronic system is implicitly taken into account.” (Bowen and 

Allinger 1991, p.82). 

That adjustable parameters compensate for all sorts of factors is of central importance to our 

paper. Finding values so that the model (more or less) fits to existing results indirectly deals 

with these unknowns. Parameterization schemes are architectures guiding actions of this type. 

They can be considered as a sort of formal construction that is used intentionally to deal with 

missing knowledge and the inaccuracies of existing knowledge. The force field is designed to 

contain parameters that can be adjusted over the course of further development. Hence, 

parameterization schemes supply flexibility to a model. 

What makes this parameterization issue so endemic and, in a sense, unavoidable? In general, 

any mathematical model presents an idealized version of a real-world target system. There is 

always greater abundance in the target system than in its mathematical model. Hence, there 

may be both known and unknown properties of the target system that should be, but have not 

been, included in the model. Even if all relevant inner workings of a target system were 

completely known, it might still be prohibitive to account for them explicitly as existing 

theories might be so complex that they would make the model intractable. Adjustable 

parameters are of prime importance in this context. They make it possible to use simplified 

but tractable models. Such models may be related only loosely to the target object and may 

be obvious over-simplifications. But leaving open some parameters in such models and using 

them for compensation can make the models work. This approach is at the core of MMS. 

 

4 Tardis - holism and transferability 

Based on the examination of MMS and simulation methodology, we are now equipped to 

detail the argument about transferability. We claim that models in MMS are a Tardis. In this 

context, we use the metaphor Tardis for characterizing simulation models, especially when 

they are exchanged between groups. The Tardis made it from a charming idea in a science 

fiction series into the Oxford English Dictionary (OED). It is an acronym for  

“Time And Relative Dimensions In Space”—the name in the science-fiction BBC 

television series Doctor Who (first broadcast in 1963) of a time machine outwardly 

resembling a police telephone box, yet inwardly much larger. In similative use, 
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especially as the type of something with a larger capacity than its outward appearance 

suggests, or with more to it than appears at first glance.” (OED, cited after Wikipedia) 

In short, the Tardis is a device for traveling that looks simple from the outside, but is 

anything but simple on closer inspection. Let us now establish the analogy to MMS. From the 

outside, models in MMS work with a mathematically well-defined and modular (additive) 

force field (see equation (2)). However, the mathematically clean appearance is deceptive. On 

the inside, things are more complicated.  

We want to highlight two reasons why models in MMS are a Tardis. Both arise from 

parameterization. Firstly, after parameter adjustment, the components of the force field build 

a network with complex interdependencies, hence the mathematical descriptions of the 

individual types of forces or potentials are not modular, although the forces themselves are 

additive. Secondly, the adjusted parameters are conditional on data and the adjustment 

strategy. Thus, the force field becomes a holistic entity, much larger than the “outward 

appearance suggests”. In the following, we unpack the argument. 

We distinguish two different types of parameter adjustments. Type 1 is adjusted a priori, i.e., 

before the simulation modeling feedback loop starts. An example is the exponent n = 6 of the 

attractive part of the Lennard-Jones potential. After different proposals had been made in the 

1920s, Lennard-Jones settled with n = 6 in 1931, following London who had derived from 

quantum theoretical calculation that the attractive force decays with this exponent (Lennard-

Jones 1931, London 1930, see Rowlinson 2004 for much historical and technical detail). 

Thus, there is a good physical reason for choosing n = 6. However, the form of the LJ 

potential does not coincide with quantum theory, but rather is a mathematically feasible form 

that is good and adaptable enough. In other words, the physical interpretation of the 

parameter n is strong, but not determining the potential. Moreover, type 1 parameters do not 

necessarily have a strong physical interpretation. While physical theory can provide good 

reasons, computational feasibility can, too. The pragmatically chosen exponent m = 12 in the 

LJ potential illustrates the case. 

Type 2 parameters are adjusted in the loop, i.e. in the light of how the model behaves against 

the background of data.11 This type might also have some physical interpretation—as once 

again the LJ potential illustrates. The parameters ε and σ are related to the strength of the 

                                                
11 The borders between parameters that are set a priori and parameters that are adjusted in the 
feedback loop are often blurred. Sometimes parameters are fixed after some initial trials, while for 
other parameters the feedback loop is continued. 
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attractive interaction, respectively the particle diameter. However, this relationship is 

indirect, mediated by the form of the model. The long-range behavior of the attractive force is 

governed by the exponent n, and the parameters ε and σ balance all other aspects, like the 

(in)adequacy of the restriction to pairwise interactions. Since the performance of the entire 

potential is evaluated, the evaluation may not reveal much about the contribution of 

individual terms.  

The Stockmayer potential, mentioned above, provides further illustration. It models the 

dipole moment via a third parameter. However, when all three parameters are assigned over 

the feedback loop, their values reflect a balance over very different factors, including all 

kinds of modeling inadequacies. Consequently, the assignment of the dipole parameter—

notwithstanding its physical interpretation—does not give a value for the dipole 

independently from the other adjusted parameters. Only the fully specified force field, with 

all parameter values assigned, matches the data in a meaningful way. Thus, over the course of 

parameter adjustments in the feedback loop, the model becomes a holistic entity. 

Implicitly, the second reason for the Tardis was already involved. On the modeling side, 

parameters are adjusted. This process presupposes a benchmark against which the adjustment 

is evaluated and which is guiding further modification. Such benchmark includes a training 

set of data and a strategy of adjustment, including optimization criteria and the order in which 

adjustments are made. The data side is very relevant for transfer. Transferability can refer to 

using the model for making predictions for the same material and the same property, but 

different conditions as in the training data. This can be very challenging, when the conditions 

deviate extremely from those of the training data. Transferability can also refer to making 

predictions for the same material, but a property that was not included in the training set. This 

is no less challenging. Success after transfer is a litmus test for the physical content of the 

model—however indirectly mediated through parameter adjustments. There is no common 

standard that regulates which data to take. Furthermore, parameterization results depend on 

the strategy of adjustment, the optimization method, including the setting of boundary 

conditions, and more.12 All these specifics matter and, moreover, are mutually 

interdependent. This interdependency is tantamount to models being a Tardis. 

                                                
12 One anonymous reviewer aptly pointed out that the initial assignment of a parameter value might 
affect the outcome, too. Furthermore, a host of different considerations, from empirical results to 
theoretical calculations, can lead to this value assignment – fostering our argument. 
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What does this imply for model transfer? The Tardis argument does not claim that traveling 

is impossible, rather it is more onerous than anticipated. Model transfer does not only involve 

the basic math expression. Beyond the force field, it involves the parameterization scheme, 

and all parameter values. Furthermore, transfer involves the specification of the training data 

and of the parameterization strategy—up to the test strategy, assuming that testing does not 

work with the training data.  All this baggage is unpleasant and tedious to address in 

scientific publications, which misleads many authors to neglect the topic. Researchers who 

transfer an MMS model usually “buy a pig in a poke”. Practitioners have noticed that the 

transferability of their models is in danger. Here is one example from molecular mechanics: 

“This set of potential functions, called the force field, contains adjustable parameters 

that are optimized to obtain the best fit of calculated and experimental properties of 

the molecules, such as geometries, conformational energies, heats of formation, or 

other properties. The assumption is always made in molecular mechanics that 

corresponding parameters and force constants may be transferred from one molecule 

to another. In other words, these quantities are evaluated for a set of simple 

compounds, and thereafter the values are fixed and can be used for other similar 

compounds. It is not possible to prove that this is a valid assumption.” (Burkert and 

Allinger 1982, p. 3-4) 

Our argument is well in line with this diagnosis. With growing success of MM a decade later, 

the problem was not solved but had aggravated: 

“In general, parameters are not transferable from one force field to another because of 

the different forms of equations that have been used and because of parameter 

“correlation” within a force field. That is, when one is carrying out parameterization, 

if one makes some kind of error, or arbitrary decision, regarding one parameter, other 

parameters in the force field adjust to minimize any error that would be caused.” 

(Bowen and Allinger 1991, p. 92/93) 

This finding is not restricted to molecular mechanics, not even to MMS. It is endemic in 

many simulation models (cf. Hasse and Lenhard 2017). What Bowen and Allinger describe 

points toward what we called holism. While it poses a threat to transferability, it is hard to 
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avoid because it is rooted in the feedback loop for parameter adjustments, on which much of 

the success of simulation is built.13 

The Tardis affects the ontology of models. The difficulty in transfer brings up the question of 

what it is that is (or should be) transferred. What travels is not the elegant mathematical 

formulation of the model, at least it should not travel alone. In fact, adjustable parameters 

(and how their values are specified) have to be included. In other words, the ontology of 

simulation models differs profoundly from that of theoretical mathematical models. The 

former can attain predictions, but are much bigger entities. 

Let us briefly reflect upon the (dis)advantages of using the term Tardis. First of all, it 

originated from popular culture and, consequently, its import into philosophy of science 

cannot make reference to already existing uses. Furthermore, the more established terms of 

black box and epistemic opacity seem to make Tardis dispensable. However, this is not the 

case because the existing terminology does not fit well. Black boxes originated from 

electrical engineering, meaning a functional unit whose input-output behavior is specified 

while the internal workings remain unknown. It is indeed an important aspect of simulations 

that software is often inaccessible to users (see section 5 below). However, our argument 

about parameters creating relationships between different modules (thereby undercutting 

modularity) speaks against the character as a “box”. It is not about containment, but about 

non-containment. Furthermore, the color black in the black-box terminology signals 

inaccessibility.14 Indeed, epistemic opacity is an intensely debated feature of simulation. 15 In 

recent work, Beisbart (2021) provides an overview and advocates a broad understanding of 

epistemic opacity that centers on inaccessibility. However, our argument about adjustable 

parameters focused on a level where these parameters are very accessible. Hence, the Tardis 

                                                
13 There is a small but relevant discussion on issues related to holism in the newer philosophy of 
science. Wimsatt (2007) has discussed the related issue of “generative entrenchment”. Lenhard and 
Winsberg (2010) show the relevance of holism in the context of the validation of simulation models. 
Lenhard (2018) argues simulation modeling has a tendency to erode modularity. 
14 Alternatively, it can signal that access is dispensable as long as the box works as specified. We do 
not enter into this discussion. There is rich literature on black boxes and their relevance outside 
electrical engineering, see Wiener (1948) on cybernetics, or the investigation into types of boxes that 
Boumans (2006) provides. 
15 Here is a sample of works that shows how rich and diverse the discussion is. Humphreys (2004) 
coined the term and later reaffirmed epistemic opacity as a feature that makes simulation novel 
(2009). Lenhard (2019) places it in the history of mathematical modeling. Durán and Formanek 
(2018) discuss its consequences regarding trust in simulations, while Kaminski and Schneider 
(forthcoming) discern different types of opacity. See Beisbart (2021) for more references. 
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problem is not congruent with the inaccessibility feature of black boxes and epistemic 

opacity. 

Both terms are certainly relevant to the problem how models that appear modular on one 

level, but are holistic on a finer level do (not) transfer. We see the present paper as a step that 

first diagnoses the problem with the help of an examination that runs deep enough to capture 

the finer level where modularity and transferability are questioned. For this goal, it seemed 

advisable to keep it simple and use a fresh and accessible terminology. 

 

5 Software and travel patterns 

In this fourth step, we add an argument from the role of software that fosters our claim on 

transferability. That software is an important part of simulation is a no-brainer. Nevertheless, 

investigations into how software and coding practices influence modeling are still rare 

exceptions. The work of Wieber and Hocquet is one16: 

“Our claim is that parameterization issues are a source of epistemic opacity and that 

this opacity is entangled in methods and software alike. Models and software must be 

addressed together to understand the epistemological tensions at stake.” (2020, p. 4/5) 

This is well in line with our stance. The investigation of model transfer has to take into 

account that models are linked to software and computers. Software exerts influence in two 

directions. It works like a gate through which researchers can access computational power. At 

the same time, existing software packages inform researchers about what research projects 

might be feasible. Software, like hardware by the way, provides opportunities and sets 

limitations. These are not only a technical issue, but also a matter of social organization.  

We focus on a major transformation that, we claim, happened in the 1990s and divides 

between what we call the old and the new regime. Notably, both regimes differ in the travel 

pattern of software. Furthermore, we claim, this pattern affects transferability. Again, MMS 

serves as our example. 

In the old regime, users were also masters. Not that every single researcher was an expert in 

theory and software development simultaneously. Rather, research projects that used the 

computer were typically conducted by a group that covered this expertise. Software was 

                                                
16 Two more exceptions that highlight the social dimension of networked computational infrastructure 
are  Hocquet and Wieber (2021) and Saam et al. (forthcoming). 
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developed for special tasks, often oriented at specific modeling tasks. Moreover, knowledge 

about the model, the access to a computer, especially a very fast one, and the knowledge 

about the software that ran on this computer, remained in close proximity. A striking example 

is the almost exclusive access that military-funded physics projects enjoyed for about two 

decades after the second world war. MMS, among other simulation approaches, originated 

from in this context.17 However, what we call the old regime is relevant also for everyday 

practices that are only accidentally mentioned in publications. One example is Martin 

Neumann, who conducted a project in MMS at the University of Vienna, but had to realize 

that he needed more computing power than the local computers provided. Therefore, he 

collaborated with researchers from Edinburgh who had access to a distributed array processor 

(DAP), a type of parallel computer.  

“The simulations reported in this paper have been performed on the ICL DAP 

installed at the Edinburgh Regional Computing Centre. They have been made 

possible through a study visit award granted by the Royal Society, London, and a 

travel grant from the Österreichische Akademie der Wissenschaften.” (Neumann et al. 

1984, p. 113) 

This accidental find illustrates that researchers travelled to the places where they had access 

to high performance computing power and, at the same time, access to the local expertise of 

how to utilize this computing power for their modeling task. Another piece of evidence about 

the old regime is that standard books on theory of MMS also include discussions of 

numerical recipes, like for instance Allen and Tildesley (1987), reflecting the interests of 

their readership. 

In the new regime, users do not have to be—and commonly are not—masters. Allinger and 

colleagues were pioneers in software development for general use in MM—the MM1, MM2, 

and MM3 packages for molecular mechanics. They foresaw that the success of these software 

packages would likely start a new era in which users and developers become distinct (Burkert 

and Allinger 1982). What Allinger predicted for MM early on happened in all fields of MMS 

(and beyond). The range of users grew far beyond the group of experts on molecular theory. 

In a striking way, this can be gathered from simple counts of published papers in this field. 

They virtually explode around the 1990s. Figure 3 displays what happened in the field of 

                                                
17 For a historical sketches of MC and MD, see Battimelli (2020). For MM, the history looks 
different. 
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molecular dynamics (MD) and that the upswing is virtually in parallel with the electronic 

structure method DFT (outside the family of MMS). The turn that happened around the 1990s 

seems to happen in a variety of computational methods. 

From the 1990s onwards, the travel patterns change. Now, there is a networked infrastructure 

and a quickly growing resource of software packages that are made by experts for users that 

are non-experts. In short, the software travels, not the researchers. In their review of 

molecular dynamics in engineering, Maginn and Elliott observe: 

“There are probably hundreds of MD codes used and developed in research groups all 

over the world. A noticeable shift has occurred, however, toward research groups 

becoming users of a few well-established MD codes instead of developers of their 

own local codes. This is perhaps inevitable and follows the trend of the electronic 

structure community.” (Maginn and Elliott 2010, p. 3065, emphasis original) 

 

Figure 3. The relative share of papers on molecular dynamics, resp. density functional theory, 
in all papers appearing in the databank Scopus. In absolute numbers, publications per year 
went up from below hundred in 1975 to nearly 20,000 in 2020, both MD and DFT. MD 
shows an additional “tooth” around 1995-2010.
 

Additionally, the growing need for expert knowledge on parallel computer architectures 

contributes to the re-organization of expertise: “As a result, the drive to abandon locally 

developed serial codes in favor of highly optimized parallel codes developed elsewhere 

became great.” (Maginn and Elliott 2010, p. 3065) Overall, the new regime is characterized 
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by practitioners that are users rather than developers of software. While there is ample supply 

of software packages, user-friendliness—one does not have to know the details—distances 

the users from the models. Thus, the vastly increased usability and uptake of software goes 

hand in hand with increasing opacity for its users. 

We argue that this regime change brought under scrutiny the transferability of models. 

Results should be invariant under exchange of software packages (as long as conditions are 

kept constant). But is this the case? Answering this question calls for an empirical 

investigation of research practice. There are first attempts in the community to start this kind 

of investigation. Loeffler and colleagues, for instance, examine whether a number of popular 

molecular simulation software packages (AMBER, CHARMM, GROMACS, and SOMD) 

give consistent calculations of free energy changes. They are clear that this kind of project is 

just about to start: 

“In particular, we need to ensure reproducibility of free energy results among 

computer codes. To the best of our knowledge this has not been systematically tested 

yet for a set of different MD packages. However, there have been some recent efforts 

to test energy reproducibility across packages—a necessary but not sufficient 

prerequisite. Another study went further and also compared liquid densities across 

packages, revealing a variety of issues.“18 (Loeffler et al. 2018, p. 5569) 

Thus, reproducibility works as an indicator for transferability. Loeffler et al. go on: 

“Nevertheless, it is critical that free energy changes computed with different 

simulation software should be reproducible within statistical error, as this otherwise 

limits the transferability of potential energy functions and the relevance of properties 

computed from a molecular simulation to a given package. This is especially 

important as the community increasingly combines or swaps different simulation 

packages within workflows aimed at addressing challenging scientific problems.” 

(ibid., emphasis added) 

Thus, the community is starting to recognize the problem. The difficulties to inspect the code, 

control for the behavior of users, and create a well-defined workflow all play together. There 

is not yet a consensus about the direction in which a solution is supposed to be found. Some 

                                                
18 Here, Loeffler et al. refer to the earlier study of Schappals et al. (2017) that pioneered the issue of 
reproducibility in molecular simulation. It reports on a round robin study that identified to a number 
of factors from simulation modeling that work against reproducibility. 
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advocate a rigorous standardization. “The Simulation Foundry (SF) is a modular workflow 

for the automated creation of molecular modeling (MM) data.” (Gygli and Pleiss 2020, p. 

1922) Uniquely determining the workflow should guarantee replicability. However, such 

standardization approach is more eluding than tackling the problem of transferability because 

it does not address eroded modularity nor dependency from data. Any strategy that tries to 

overcome the problem of reproducibility will likely have work with a clear picture of what it 

is that is transferred. In current practice, publications often do not address how researchers 

dealt with parameters, parameterization schemes, or the options of software suites. As a rule 

of thumb, the higher the quality of a journal paper, the more information it contains about 

handling of parameters. However, providing full detail – including arcane information like 

about the compiler version – arguably is neither practical nor desirable. The connection to 

reproducibility makes transferability especially relevant. 

 

6 Conclusion 

The paper has identified and analyzed factors that impede a model’s transferability. From a 

methodological and epistemological point of view, the models in MMS are large holistic 

entities because the dependency on data and the parameterization process is complicated. 

Additionally, the way development and use of software is socially organized contributes to, 

or aggravates, the problem of transferability. Overall, transferability poses a characteristic 

problem for simulation modeling because parameterization is a key factor that works toward 

conflicting goals. The use of adjustable parameters is key for predictive success but, at the 

same time, also for creating the Tardis problem of transferability. Our findings arguably hold 

for a far wider class of simulation models than the family of MMS. Since the use of 

parameterization is typical for large parts of applied science and engineering (see Vincenti 

1990 for a classic study), the dilemma between prediction and transferability might be even 

more general. 

Our investigation into simulation modeling took a much more application oriented viewpoint 

and looked at how mathematics works as an instrument in MMS. The result is without doubt 

horrible for a fan of abstract structures. Models are a Tardis, i.e., behind the elegant outside is 

lurking a complicated inside. Even worse, these complications are hard to get rid of because 

parameterizations are not a mere nuisance, but also the keys to applicability. This is a 

warning for the lover of clarity and elegance. The superhuman computational capabilities of 
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the computer have been welcomed as a promising surrogate for the superhuman powers of 

Laplace’s demon. Making computational power do work via simulation models creates a 

situation where the models themselves pose problems of complexity and opacity. 19 At the 

same time, our analysis harbors an insight on the metaphysical level, namely about the 

tension between universality and particularity or, rather, how computational science deals 

with this tension. Mathematized theories of great generality are surely an exquisite 

achievement of science. However, these theories do not make predictions in concrete 

situations and contexts. The world is a dappled world (as Cartwright (1999) put it) whose 

particularity cannot be adequately captured by general theories. Our point is that such 

position is not directed against mathematization. Quite on the contrary, the study of 

mathematized and computerized modeling reveals this tension. Models work because, on 

closer inspection, they are a Tardis20. 
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