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1 Introduction

Several physicists and philosophers have claimed that Einstein’s theory of
relativity favors an ontology of four-dimensional objects. Witness Sir Arthur
Eddington’s classic account of the explanatory role that these objects play:

[A]n observer on the earth sees and measures an oblong block; an
observer on another star contemplating the same block finds it to
be a cube. Shall we say that the oblong block is the real thing,
and that the other observer must correct his measures to make
allowance for his motion? All the appearances are accounted
for if the real object is the four-dimensional, and the observers
are merely measuring different three dimensional appearances or
sections; and it seems impossible to doubt that this is the true
explanation. (Eddington, 1920, p 181)

A suggestive picture, but what exactly is the argument from relativity the-
ory to the fundamentality of four-dimensional objects? According to Yuri
Balashov, “an object viewed as a 4d being is relativistically invariant in a
sense in which its 3d parts are not” (Balashov, 1999, p 659).1 In a similar
vein, Thomas Sattig claims that

. . . there is a permanent shape standing behind the different three-
dimensional shapes of the object, namely, an invariant four-dimensional

1Balashov’s claim is contested by Davidson (2013), who argues that four-dimensional
objects themselves fail to be relativistically invariant. Balashov (2014) and Calosi (2015)
argue, in turn, that Davidson’s reasoning is faulty.
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shape, rendering the various three-dimensional shapes different
perspectival representations of the single invariant shape. (Sat-
tig, 2015, p 220)

More recently, Thomas Hofweber and Marc Lange reassert that the real
things are four-dimensional:

The spacetime interval, as a frame-invariant fact, is the reality,
whereas the facts related by the coordinate transformations are
frame-dependent facts and hence are appearances of that reality.
(Hofweber and Lange, 2017, p 876)

These claims are based on a common idea: real things are invariant, while
what varies are mere appearances. In application to Einstein’s theory of
relativity, the claim is that four-dimensional things are invariant while three-
dimensional things are not.

I will argue that these claims misconstrue the situation in relativity the-
ory. In one sense of “invariant”, there are no invariant four-dimensional
objects. In another other sense of “invariant”, there are invariant four-
dimensional objects, but there are also invariant three-dimensional objects.
In neither case are four-dimensional objects invariant in some way that three-
dimensional objects are not.

To be fair, I suspect that these authors have another notion of invariance
in mind, a notion exemplified by the fact that the spacetime distance between
events can be decomposed in many different ways into spatial and temporal
components. While granting that the spacetime description is invariant in
this sense, I will question whether statements about the distances between
spacetime points explain the events that are observed. I will argue, instead,
that the best explanation for these events is typically just the other events
that precede them in time, in combination with the dynamical laws of motion.
As one particular instance of this kind of explanation, I argue that the best
explanation for “shape relativity” is that there are three-dimensional objects
that are in motion relative to three-dimensional observers.

2 Options for ontology

The question of concern in this paper is whether we can maintain the common
sense view that there are three-dimensional material objects that change over

2



time, or whether material objects should be conceived of as extended in time.
In the wake of the twentieth-century revival of metaphysics, there have been
several interesting arguments on both sides of this question. In this paper,
I will be concerned primarily with the question of whether the theory of
relativity adds some new data that is relevant to this debate. The going
view seems to be that, yes, relativity theory tips the balance in favor of
four-dimensional objects. My conclusion is that these arguments have been
overstated, and that there are in fact good reasons to favor an ontology of
three-dimensional objects.

It should be noted, though, that some interpreters of relativity theory
might claim that the entire debate is based on a false presupposition, viz. that
relativity theory tolerates an ontology of localized objects. For example, some
early interpreters of relativity theory argued that it supports an ontology
of “events”, which are represented by the intersections of the world-lines
of particles, even though the particles themselves are, strictly speaking, a
fiction.2 Other early interpreters of relativity theory claimed that it favors
an ontology of fields that are spread out through space.3

But are there any good arguments for these claims? Are there good
arguments that relativity theory does not tolerate an ontology of localized
material objects? I have not seen one. Those who argue that relativity
theory favors an ontology of point-events typically assume two false things:
(1) the verification criterion of meaning, and (2) that general covariance
entails that there is no determinate spacetime structure. As for those who
see relativity theory as favoring a field-theoretic ontology, it seems that their
preference is not based on an argument, but on a program to try to implement
the idea of local causality via field equations. In any case, while there are
no-go theorems for localized particles in relativistic quantum theories (see
Halvorson and Clifton, 2002), I have not seen any such theorems for classical
relativity theory.

I grant that relativity theory works nicely with fields and their hyperbolic
equations of motion. And, of course, there is an ontological program — en-
dorsed by Einstein — that would explain the appearance of localized objects
in terms of underlying fields. But I have yet to be convinced that the field-
theoretic point of view is forced upon us by relativity theory. In fact, in one

2e.g. Ernst Mach was a full-blown subjective idealist, and his disciple Joseph Petzoldt
believed that relativity theory seals the fate of the “mystical” concept of substance.

3Here I’m thinking primarily of Einstein.
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simple sense, it is trivially true that relativity theory is compatible with an
ontology of fundamental localized objects: the trajectory of a material object
can be described as a “world tube” in a relativistic spacetime. The situation
here is, once again, different from relativistic quantum theories, where there
is no mathematical object that could represent the trajectory of a localized
material object. I will take it for granted, then, that classical relativity the-
ory permits an ontology of objects that are localized in space. The remaining
question is whether these objects must be temporally extended.

3 Examples

A model of Einstein’s General Theory of Relativity is an n-dimensional man-
ifold M with metric tensor g. In this case, an n-dimensional material object
can be represented by a collection of timelike curves inM — i.e. a “spacetime
worm” that is bounded along spacelike hypersurfaces but that is unbounded
in timelike directions. Of course, familiar material objects have a finite lifes-
pan, but we can imagine them as stretched out indefinitely in time. Nothing
we say here depends on whether these worms have finite or infinite temporal
length.

For the most part, the issues of concern are adequately illustrated the
Special Theory of Relativity, where the flat Lorentzian manifold (M, g) can
be redescribed as a metric affine space of signature (1, n − 1). While we
are normally interested in the case of n = 4, it will often be convenient
to illustrate issues with n = 2 or n = 3. Nothing of decisive importance
for our discussion will hang on the exact dimension of space, although the
interesting phenomenon of “shape relativity” only arises when space has at
least two dimensions. In particular, when space is three-dimensional, then
shape properties such as “. . . is a cube” or “. . . is a sphere” are reference-frame
dependent.

Here and subsequently we adopt the notation of (Malament, 2009). Let
V be the n-dimensional inner-product space over R that underlies the affine
space M . As is typical, we use angle brackets to denote the inner product
on V , i.e. if u,w ∈ V , then ⟨u,w⟩ ∈ R. We let ∥u∥ = |⟨u, u⟩|2 be the norm
of the vector u ∈ V . Recall that a vector u ∈ V is said to be timelike if
⟨u, u⟩ > 0, spacelike if ⟨u, u⟩ < 0, and null if ⟨u, u⟩ = 0. Timelike vectors
u,w ∈ V are said to be co-oriented if ⟨u,w⟩ > 0. We arbitrarily choose one
of the two equivalence classes of co-oriented timelike vectors and designate
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Figure 1: The Life of Stick
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these vectors as future-oriented.
We use + ambiguously for addition on R, addition on V , and the map

that takes an element p ∈ M and a vector u ∈ V and returns another
element p + u ∈ M . For each p, q ∈ M , we let −→pq denote the unique vector
in V such that p + −→pq = q. For p, q ∈ M , we let d(p, q) = ∥−→pq∥, noting
that d fails to have some typical properties of a distance function; e.g. the
triangle inequality fails. For p ∈ M , we let I+(p) be the interior of the
forward lightcone at p, i.e. the set of q ∈M such that −→pq ∈ V is timelike and
future-oriented.

We will now look at two examples of the description of the motion of
objects in Minkowski spacetime. In both cases, we pay special attention to
these objects’ relations to observers who are moving relative to them.

3.1 Stick

Suppose that there is an observer, Alice, located at p ∈M , and whose four-
momentum is a unit vector u ∈ V . Let α be the line in M generated by the
vector u, and which represents Alice’s idealized worldline if she is supposed
always to exist. It is normally assumed (although the exact meaning of this
claim is disputed) that two events q, r ∈ M are “simultaneous for Alice”
just in case both lie in one of her hyperplanes of simultaneity, i.e. a subset
s + u⊥ ⊆ M where s lies on α. Here u⊥ is just the set of all vectors in V
orthogonal to u.
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Suppose that there is an infinitely thin stick, named “Stick”, in motion
relative to Alice. (I will subsequently ignore the dimensions of space that are
orthogonal to Stick; and I will speak of Stick as a three-dimensional object
even though it really is just one-dimensional.) We assume that every par-
ticle that composes Stick has the same state of inertial motion, represented
by the four-momentum vector w ∈ V . Suppose that Stick’s leftmost edge
intersects Alice’s trajectory at p (see Figure 1), and let q be the point where
the rightmost edge of the stick intersects the spacelike surface p + u⊥. The
bounding line of Stick on the left side is γ1 := {p + aw : a ∈ R} and the
bounding line of Stick on the right side is γ2 := {q + aw : a ∈ R}.

Suppose that Bob is an observer standing on the left hand side of stick
and with the same state of motion. Then at p, Bob’s simultaneity surface is
p + w⊥. Let r be the point where Bob’s simultaneity surface intersects the
right-hand extremity of Stick. Thus, it is typical to say that the line segment

L(p, r) = {p+ a−→pr : a ∈ [0, 1]},

represents Stick-for-Bob when he is located at p (although the intersection
of L(p, r) with the past lightcone of p is just p itself). Similarly, it is typical
to say that the line segment

LS(p, q) = {p+ a−→pq : a ∈ [0, 1]},

represents Stick-for-Alice when she is located at p.
Recall that the proper length of an object is the length of that object

in its own reference frame. Since we have assumed that Bob has the same
state of motion as Stick, the proper length of Stick is equal to the length of
its intersection with Bob’s simultaneity surface p+w⊥, i.e. the length of the
line segment L(p, r). Recall, moreover, that the proper length of an object
is longer than its length in any other reference frame. In the present case,
we have −→pq = −→pr− bw for some b > 0, and since −→pq and −→pr are spacelike, and
since ⟨v,−→pr⟩ = 0, it follows that ∥−→pq∥2 = ∥−→pr∥2−b2. Therefore, ∥−→pq∥ < ∥−→pr∥.

Both Balashov and Sattig say explicitly that four-dimensional objects
are invariant in a sense that three-dimensional objects are not. But what do
they mean by invariance? In order to make progress on this, let’s recall the
definition of a symmetry of Minkowski spacetime. If V is the n-dimensional
vector space on which M is based, then an isomorphism Φ : V → V is a
bijection that preserves the inner product. Recall that an automorphism of

6



Minkowski spacetime is an bijection φ :M →M such that hat

−−−−−→
φ(p)φ(q) = Φ(−→pq), ∀p, q ∈M,

for some fixed isomorphism Φ of V . The set P of all such automorphisms
is called the Poincaré group. (It is clear that these automorphisms form
a group under composition.) We say that φ ∈ P is a translation if the
corresponding vector space morphism Φ : V → V is the identity; in this
case, there is a unique vector u ∈ V such that φ(p) = p + u for all p ∈ M .
We say that φ ∈ P is a Lorentz transformation based at p ∈M just in case
φ(p) = p; in this case, φ(p+u) = p+Φ(u), for all u ∈ V . Among the Lorentz
transformations there are two special cases: pure boosts and pure rotations.
A pure rotation φ is characterized by the fact that the corresponding vector
space morphism Φ : V → V fixes a timelike vector u ∈ V .

In the description we have just given of Poincaré transformations, there
are no coordinates in sight, and so there is no question about “active” versus
“passive” transformations. There is also no sense in which these Poincaré
transformations represent dynamical processes. For example, a translation
φ(p) = p + u doesn’t represent God or anyone else moving the universe in
the u direction. So what exactly is the significance of Poincaré symmetry?
We should keep this question in mind when we run into claims to the effect
that invariance is a necessary condition for reality.

One practical function of Poincaré symmetry is enabling an observer to
translate descriptions that are true in another observer’s context to descrip-
tions that are true in his context. For example, suppose that Alice is located
at p, and that Bob is located at q = φ(p) = p+ u. Suppose, moreover, that
Alice describes an object C as located at w ∈ V from her location, and as
having four-momentum vector v ∈ V . (For those of us with the God’s eye
view of Minkowski spacetime, we would say that C is located at p+w ∈M .)
Then Bob can translate Alice’s description via the pullback map φ∗ : V → V
that is defined by

φ∗(w) = w +−→qp,

on position vectors, and that is the identity on four-momentum vectors.4 In
particular, Bob describes C as located at φ∗(w) = w +−→qp.

4It’s overkill to call this a “pullback” map in SR, where the manifold is flat. But in
GR, the pullback is non-trivial and is typically path-dependent.
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The translation from one context to another is more interesting in the case
where the two contexts are related by a Lorentz boost. (But the temptation
is stronger here to think of the symmetry as involving an actual change, i.e.
as a process by which one changes velocity.) Let φ :M →M be the Lorentz
boost based at p ∈ M that takes Alice’s four-momentum vector u to Bob’s
four-momentum vector w, i.e. φ is generated by an isomorphism Φ : V → V
such that Φ(u) = w and Φ(u2) = w2, where u2 and w2 are unit vectors in u

⊥

and w⊥ respectively. There is a sense in which this Lorentz transformation
converts Bob’s description of Stick to Alice’s, but we should disambiguate
two different roles the Lorentz transformation plays.

In the typical way of speaking, Stick-for-Bob is the intersection of S with
Bob’s simultaneity hypersurface:

Sb = S ∩ (p+ w⊥) = L(p, r).

Similarly, Stick-for-Alice is the intersection of S with her simultaneity hyper-
surface:

Sa = S ∩ (p+ u⊥) = L(p, q).

While φ maps Alice’s simultaneity surface to Bob’s, it does not map the
four-dimensional object S to itself, and so φ(Sa) ̸= Sb. In fact, we shouldn’t
have expected φ to map Sa to Sb, since φ preserves lengths, while Sb is longer
than Sa.

There is another sense, however, in which the Lorentz transformation
does map Sa to Sb. Any set Γ of timelike lines in M determines “initial
data” on the hypersurface p + w⊥, viz. positions (points of intersection)
and a velocities (angles of incidence). The transformation φ then defines a
“semantic” function φ∗ that takes the initial data on Bob’s hypersurface to
the corresponding initial data on Alice’s hypersurface. Let Tha(Γ) be the
set of sentences of Euclidean geometry that are made true by the points of
intersection of Γ with Alice’s hypersurface. Then φ determines a translation
from Alice’s theory Tha(Γ) to Bob’s theory Thb(Γ). In fact, it can be shown
that this translation is an equivalence in a precise sense. In other words, a
Lorentz transformation determines an equivalence between the description
in Alice’s frame of reference and the description in Bob’s frame of reference.

One might worry that the translation from Alice’s description to Bob’s
cannot be an equivalence since it takes the statement “Stick’s length is ℓa”
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to a statement “Stick’s length is ℓb”, where ℓb ̸= ℓa. But theoretical equiv-
alences do not necessarily preserve assignments of numbers. For example,
the conversion from Celsius to Fahrenheit takes the statement “the freezing
point is zero degrees” to “the freezing point is thirty two degrees.” It does
follow, however, that the equivalence between Alice’s description and Bob’s
is not a full Euclidean equivalence. This point will become even more clear
in the next example, where we see that this translation does not preserve the
predicate “. . . is an equilateral triangle”.

We are left with the puzzle of how the geometrical objects Sa, Sb and S
are supposed to represent objects in the physical world. Each of Sa and Sb is
spacelike and connected, and so satisfies the minimal requirement for repre-
senting a common-sense material object. But the standard way of speaking
about these things would have us say that Sa and Sb represent the same stick.
How can that be when these regions overlap in a single point p, and when the
events that compose Sa and Sb might have different properties? E.g. if the
stick is composed of LED lights that change color, then a point in Sb might
be red while its “counterpart” in Sa is blue. (By the “counterpart” s′ ∈ Sa

of s ∈ Sb I mean the point of intersection of {s+λw : λ ∈ R} with Sa. Since
s is in the timelike future of s′, unless s = p = s′, the character of the event s
can differ from, and be dynamically explained by, the character of the event
s′.) The four-dimensionalist cuts the Gordian knot by saying that Sa and Sb

do not represent material objects, but appearances of the four-dimensional
object S.

What might Alice and Bob themselves say about the relation between Sa

and Sb? The first question is whether Alice should grant that Sb represents a
material object and whether Bob should grant that Sa represents a material
object. Or should Alice be willing to say that Sb represents a “material
object for Bob”, while it does not represent a “material object for Alice”?
Or could Alice say that Sb is just a different representation of the material
object she represents as Sa? In fact, there is a prior question that needs to
be considered: should Alice consider Sa to represent a material object? Of
course, the four-dimensionalist answers no to all of these questions. But there
is also a reason why a three-dimensionalist might deny that Alice should take
Sa to represent a material object — in particular, if the three-dimensionalist
maintains that the “object in itself” lives in its own frame of reference (so to
speak).

I will say one more thing to illustrate this suggestion, and I will come back
to it in the final section. If the stick is actually an object, and not just a
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collection of accidentally co-moving particles, then we might suppose that its
particles are interacting with each other and so synchronized in some general
sense.5 Suppose, for example, that the particles in the stick are correlated
so that they change color simultaneously in their common reference frame.
Then, in its own reference frame, the stick will consist of a collection of
particles with the same color. But Sa represents an assemblage of particles
with different colors, and so it lacks the cohesion that Stick has in its own
reference frame. We can even imagine a case where Stick is a creature that
is alive only if all of the lights show the same color. In that case, Stick is
alive in its own reference frame, but not in Alice’s!

A more realistic description might have that the explanation that the
stick is a cohesive unity is that there are various forces between the particles
that compose it. The question then is whether these inter-particle forces
pick out, in some sense, the reference frame of the stick. I don’t pretend to
answer that question here, but I simply want to point out that there might
be physical reasons for treating some slicing of a four-dimensional tube into
three-dimensional sections as privileged over other slicings of that tube.

3.2 Triangle

Now consider a set of three parallel timelike lines γ1, γ2, γ3. In other words,
the three lines are generated by a common tangent vector w ∈ V . For the
sake of visualization, imagine that each of these three lines represents the
trajectory of a blue light. Thus, at each time, an observer will see three
blue lights forming a triangle. Let Σ ⊆ M be some spacelike hypersurface
in the foliation determined by w, and for each i = 1, 2, 3, let pi be the
intersection of γi with Σ. Suppose that the points are equidistant from each
other so that they form an equilateral triangle. Let p be the barycenter of
the points p1, p2, p3, and suppose that Bob is on a trajectory that remains on
this barycenter through time. Since Σ is also a simultaneity hypersurface for
Bob, it would be typical to say that the three lights appear to Bob to form

5I offer no criterion here for objecthood, and I take no stand on the question of mere-
ological universalism. I do suspect, however, that we normally have good reasons —
sometimes grounded in basic physics — for calling some collections of particles (or some
excitations of fields) as “material objects” while denying others that title. For example,
one reason I call my iPhone an object is because its macroscopic parts maintain relatively
stable spatial relations to each other. In contrast, the mereological sum of my water bottle
and iPhone tends to change its spatial configuration in rather unpredicable ways.
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an equilateral triangle.
Now suppose that Alice also passes through point p, but suppose that

her four-momentum vector u is tilted towards the midpoint between p2 and
p3. For example, we could take u = w + a(−−→p1p2 + −−→p1p3) for some a ∈ (0, 1).
For i = 1, 2, 3, let p′i be the intersection of γi with q + v⊥. It’s easy to see
then that d(p′2, p

′
3) = d(p2, p3), but due to Lorentz contraction,

d(p′1, p
′
2) = d(p′1, p

′
3) < d(p1, p2) = d(p1, p3).

In other words, Alice doesn’t see an equilateral triangle, but a triangle with
one side longer than the other to. To make a sharper point of it: the sentence
“there is an equilateral triangle” is true in Bob’s frame of reference but false
in Alice’s frame of reference.

Now let S be the set of all points in M that are in the convex hull of the
lines γ1, γ2, γ3, i.e. the area swept out by the triangle ⟨p1, p2, p3⟩ over time.
Let Sa be the intersection of S with Alice’s simultaneity surface at p, and let
Sb be the intersection of S with Bob’s simultaneity surface p + w⊥. Let φ :
M →M be the Lorentz transformation determined by the orthogonal map Φ
that transforms Alice’s context (p, u) to Bob’s context (p, w). This example
displays all the same issues as the previous example, but now with the added
complication that there is “shape relativity”. While the intersection of S with
Bob’s hypersurface is an equilateral triangle, the intersection of S with Alice’s
hypersurface is not equilateral. Thus, while φ implements an “equivalence”
between Alice’s descriptions and Bob’s, it’s not an equivalence that preserves
everything we might have assumed to be intrinsic to the relevant objects.
For a real-life example, an object might be a three-dimensional sphere in one
observer’s reference frame, but not a sphere in another observer’s reference
frame. What’s more, neither of these observers can, in general, lay claim to
having a preferred description of the object “in itself”.

The four-dimensionalist has a neat solution to this puzzle: the object in
itself is the four-dimensional extended thing, and various observers can refer
their varying three-dimensional appearances to this invariant four-dimensional
thing. But in what sense exactly is it invariant? In the next section, I show
that the four-dimensional object is not invariant in the sense of being un-
moved by Lorentz transformations.
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4 No object unmoved

In this section we show that no non-trivial subset of Minkowski spacetime is
Lorentz invariant, and a fortiori, no four-dimensional objects are Lorentz in-
variant. This result shows that if “relativistically invariant” means “unmoved
by Lorentz transformations”, then there are no relativistically invariant four-
dimensional objects.

We begin with a couple of lemmas that establish (the well-known fact)
that the Lorentz group acts transitively on Minkowski spacetime.

Lemma 1. Let p ∈ M , let m ∈ R, and let Hm be the forward hyperbola at
distance m from p:

Ha = I+(p) ∩ {q ∈M : d(p, q) = m}.

Then for any q, r ∈ Hm, there is a Lorentz transformation Λ based at p such
that Λq = r.

Proof. We show first that if u,w ∈ V are co-oriented timelike vectors such
that ∥u∥ = ∥w∥ = 1, then there is an isomorphism Φ : V → V such that
Φ(u) = w. Indeed, u⊥ has an orthonormal basis {u2, . . . , un} of spacelike
vectors, and w⊥ has an orthonormal basis {w2, . . . , wn} of spacelike vectors.
The map Φ may be defined by setting Φ(u) = w and Φ(ui) = wi, for i =
2, . . . , n, and then extending linearly.

Now let q, r ∈ Hm, that is, ∥−→pq∥ = ∥−→pr∥ = m. Thus, u ≡ m−1−→pq and
w ≡ m−1−→pr are co-oriented timelike vectors. By the argument above, there
is an isomorphism Φ : V → V such that Φ(u) = w. Define the Lorentz
transformation φ :M →M by setting φ(p+ v) = p+Φ(v), for all v ∈ V . It
then follows that

φ(q) = φ(p+−→pq) = p+ Φ(−→pr) = p+mw = r.

Lemma 2. For any two points p, q ∈ M , there is a Lorentz transformation
Λ such that Λp = q.

Sketch of proof. Let p, q ∈ M . We show that there are Lorentz transforma-
tions Λ1 and Λ2 such that Λ1p = Λ2q. The result then follows for Λ = Λ−1

2 Λ1.
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Consider first the case that p and q are spacelike related. In this case, we
let Λ2 be the identity. Now let w be a past-oriented timelike vector that is
orthogonal to −→pq and such that ∥w∥ = ∥−→pq∥. If we let s = p+ 1

2
−→pq +w, then

−→ps = w + 1
2
−→pq, −→qs = w − 1

2
−→pq.

Since ⟨−→pq, w⟩ = 0, it follows that

⟨−→ps,−→ps⟩ = ⟨−→qs,−→qs⟩ = ∥w∥2 − 1
4
∥−→pq∥2 > 0.

Thus, p and q are in the forward lightcone of s, and at the same distance. It
follows from Lemma 1 that there is a Lorentz boost Λ1 based at s such that
Λ1p = q.

Now consider the general case. For any p, q ∈M , there is an r ∈M that
is spacelike related to both p and q. By the first part of this proof, there are
Lorentz transformations Λ1 and Λ2 such that Λ1p = r and Λ2q = r.

The previous lemma entails that no non-trivial subsets of Minkowski
spacetime are invariant under all Lorentz boosts.

Proposition 3. Let M be Minkowski spacetime and let O ⊆ M . If O is
invariant under Lorentz transformations then either O =M or O = ∅.

Proof. Suppose that O is invariant and non-empty. Let p ∈ O. Now let q
be an arbitrary element in M . By the previous lemma, there is a Lorentz
transformation Λ such that Λp = q. Since O is invariant, q ∈ O. Since q was
arbitrary, it follows that O =M .

The observant reader might note that there are non-trivial subsets of
Minkowski spacetime that are invariant under all Lorentz transformations
based at some particular point s ∈ M . For example, the forward hyperbola
Hm is invariant under Lorentz transformations based at s. Similarly, if we
imagine a rod of finite length in the spacelike complement of s, and allow
it to be uniformly accelerated both forwards and backwards in time, then
the resulting subset S is invariant under Lorentz boosts based at s. But
these facts should hardly be of comfort to the four-dimensionalist, since (a)
these contrived subsets do not represent typical material objects, and more
importantly, (b) if using invariance to detect “reality”, there is no reason
to restrict to Lorentz transformations based at some particular point. If
invariance is to be used as a criterion of reality, then it should be invariance
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with respect to all of the relevant symmetries. In fact, the symmetry group
of Minkowski spacetime is actually the Poincaré group, which includes not
only Lorentz transformations but also translations; and it’s obvious that only
trivial subsets of Minkowski spacetime are left invariant by all translations.
Therefore, if invariance means “unmoved by symmetries” then there are no
invariant subsets of Minkowski spacetime.

5 Embarras de richesse

I have shown that four-dimensional shapes are not relativistically invariant
— if by “relativistically invariant” we mean “unmoved by Lorentz transfor-
mations”. However, I could be accused of missing the point. “X is relativis-
tically invariant” isn’t supposed to mean that “X is unmoved by Lorentz
transformations” but that “X is described in a Lorentz-invariant fashion”.
Let me explain.

Consider first the simpler case of Euclidean-invariant shapes. For exam-
ple, a sphere S of radius 1 can be described by the equation:

S = {a⃗ ∈ R3 : ∥a⃗∥ = 1},

where ∥a⃗∥ is the length of the vector a⃗. Of course, S is not invariant in the
sense of “unmoved by Euclidean symmetries”. For example, if v⃗ ̸= 0 then
the translation T (x⃗) = x⃗ + v⃗, for all x⃗ ∈ R3, does not leave S invariant.
Similarly, a Euclidean rotation based at (1, 0, 0) moves S from its original
place.

But the fact that S is moved by Euclidean transformations does not con-
tradict the fact that S is a “geometric object” in Euclidean space. What do
we mean by this? Intuitively, we can imagine two people, say Alice and Bob,
who describe things in Euclidean space using different coordinate systems
— for example, Alice might use Cartesian coordinates while Bob uses polar
coordinates. Or Alice and Bob might set the origin in different places. How-
ever, regardless of the coordinate systems they use, and regardless of which
coordinates they use to describe the sphere S, Alice and Bob can agree on
the sentence “there is a sphere of radius 1”. It is this claim that is invariant
between Alice and Bob’s descriptions of the contents of space.

Here is one way that we can make that idea precise. The predicate “X is
a sphere of radius ℓ” can be regimented as follows:

ϕ(X) ≡ ∃a⃗ ∈ R3, ∀⃗b ∈ R3
(⃗
b ∈ X ↔ ∥⃗b− a⃗∥ ≤ ℓ

)
.
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This definition shows that ϕ is a Euclidean-invariant property:

For any Euclidean transformation T , ϕ(X) iff ϕ(TX).

In other words, while TX does not typically occupy the same region of R3

as X did, it is guaranteed that TX and X have exactly the same geometric
properties. The result here is an instance of the well-known fact that ex-
plicitly definable properties (i.e. those definable via the syntax of a theory)
are implicitly definable (i.e. invariant under symmetries of the models of the
theory).

So now let us return to the case of interest: the role of invariance in
Minkowski spacetime. We have seen that there are no interesting invari-
ant objects in the sense of subsets X of M such that ΛX = X for each
Lorentz transformation Λ. But now we can see that “ΛX = X” is not what
the four-dimensionalist intended by saying that four-dimensional objects are
invariant. What he meant is something like the following:

(R) Reality is what can be described, in a Lorentz-invariant way,
as happening inside Minkowski spacetime.

What’s more, the four-dimensionalist correctly points out that four-dimensional
configurations can be described in a Lorentz invariant way. For example, let
ϕ(X) be the predicate “X is a timelike line”. While no timelike line is left
unmoved by all Lorentz transformations, the property ϕ is invariant in the
sense that ϕ(X) iff ϕ(ΛX) for all Lorentz transformations Λ.

We could now go on producing descriptions of happenings in Minkowski
spacetime that are invariant under all Lorentz transformations. For example,
we could formulate a predicate ψ(X) which means that X is a spacetime
worm. Or we could formulate a relation θ(X, Y ) which means that X and Y
are timelike lines that intersect in one point. If we carried on in this fashion,
then we could produce a set Γ of sentences that describes, in an invariant
fashion, what is going on in Minkowski spacetime. Is this not a vindication
of the four-dimensionalist’s intuition?

Not yet. The first problem is that almost every subset of Minkowski
spacetime represents a geometric object in this sense — i.e. is definable up
to Poincaré transformation by some predicate of the language of Minkowski
geometry. To see the point, consider again the Euclidean case. Being an open
sphere is definable, as is being an open disc (of dimension two), and being
an open interval (of dimension one). If we start taking conjunctions and
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disjunctions, and describing the distance relationship between the centers of
the spheres (or discs or intervals), then we can describe arbitrarily complex
shapes in an invariant fashion. In fact, the procedure I’m suggesting would
basically reconstruct the Borel hierarchy, permitting the definition of more
and more complex types of subsets of R3.

An analogous procedure can be carried out in Minkowski spacetime, show-
ing that arbitrarily complex subsets are definable. But here there is a more
particular problem for the four-dimensionalist: these definable subsets are
not exclusively four-dimensional, not even the most simply definable of them.
Consider, for example, the predicate:

X is a spacelike stick of length ℓ

which picks out a class of three-dimensional objects. To see that this pred-
icate has a simple formulation in the language of Minkowski geometry, note
that it can be paraphrased as:

There is a timelike vector u such that X is a line segment of
spacetime length ℓ contained in u⊥.

Each clause here has a simple definition in terms of the spacetime metric, e.g.,
“u is timelike” means that ⟨u, u⟩ > 0. If we use β(X) to denote this predicate,
then β(X) is invariant in the sense that for each Poincaré transformation T ,
β(X) iff β(TX). It follows that “x is a three-dimensional spacelike stick” is a
geometric property of no less integrity than “x is a four-dimensional spacelike
worm”. Similarly, the geometric properties of three-dimensional objects are
invariant in the same sense that the geometric properties of four-dimensional
objects are invariant. If there is a sense in which four-dimensional objects
are invariant but three-dimensional objects are not, then it must be some-
thing different than being describable by (invariant) predicates of Minkowski
geometry.

6 Decomposing

I have been playing devil’s advocate to the four-dimensionalists’ claim of
invariance, but I must admit that they do invoke an interesting feature of
the relativistic spacetime description. In particular, suppose that Alice and
Bob are two observers in relative motion to each other, and suppose that p
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and q are distinct events (e.g. the flashing of two light bulbs). As is well-
known from various Einsteinian thought-experiments, Alice and Bob might
make different judgments about the temporal lag between p and q. For
example, Alice might judge that p occurs before q, while Bob might judge
that p and q occur simultaneously. What’s more, if Alice and Bob agree
that the speed of light is c in both of their reference frames, then they will
also come to different conclusions about the distance between p and q. In
particular, Bob will judge that p and q are further apart in space than Alice
judges them to be. (But take note here: Alice might take exception to the
claim that there is a spatial distance between p and q. I return to this point
below.) Nonetheless, if Alice and Bob apply the recipe for computing the
spacetime interval between p and q in terms of their temporal and spatial
differences, then they will derive the same number. i.e. the spacetime interval
is an “invariant” of their descriptions. Does this not mean, as Hofweber
and Lange claim, that “the spacetime distance between p and q is ℓ” is a
fundamental fact, and that claims about the spatial and temporal distances
between p and q are derivative facts?

Let’s write t(x, p, q) for the temporal distance between p and q relative to
observer x, and s(x, p, q) for the spatial distance between p and q relative to x.
Since the temporal and spatial distances depend only on an observer’s state
of motion, i.e. her four-velocity vector u ∈ V , we can take x to range over
unit vectors in V . The precise definitions of temporal and spatial distance
are then given by:

t(u, p, q) = ∥Pu(
−→pq)|, s(u, p, q) = ∥Pu⊥(−→pq)∥,

where Pu : V → V is the projection onto u, and Pu⊥ is the projection
onto the spacelike subspace u⊥. Since u is timelike, u⊥ is spacelike, and a
straightforward calculation yields

d(p, q) = ∥−→pq∥ =
√
t(x, p, q)2 − s(x, p, q)2. (1)

This last equation is just a version of the Pythagorean theorem: the length
of a vector squared is the sum of the squares of the lengths of its components.
The nuance here is that the vector −→pq can be decomposed in different ways
into a sum of timelike and spacelike vectors.

Hofweber and Lange would have us think of the spatial and temporal
distances between p and q as “appearances relative to a subject (and her
state of motion)” while the spacetime interval between p and q is an absolute
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fact that explains the various appearances. This description is, however, a
bit misleading — and we should ask whether a more accurate description
destroys the force of Hofweber and Lange’s argument. First of all, in what
sense is a spatial distance between p and q an “appearance”? Consider the
case of Alice, with velocity vector u such that q lies in the future of p+ u⊥,
which means that p will enter Alice’s past lightcone before q does. Thus,
Alice does not think of p and q as separated in space (at a time), and there
is no sense in which she “sees” p and q as lying at some distance from each
other.

Of course, we could imagine that Alice lays out a ruler, that p leaves a
mark on the ruler, and that q later happens at distance s(u, p, q) from where
p happened. In this case, Alice might want to explain why q occurred at this
place on the ruler. But would Alice be satisfied by the explanation that q
has a certain spacetime distance from p? It strikes me that Alice would not
be satisfied with such an explanation, which has the flavor of other fatalist
explanations of the form: “it was destined to be that way from all eternity.”
What we see here is that the perceptual analogy — invoked by Balashov,
Hofweber, and Lange — breaks down. The appearance of a static visual form
can often be explained by appeal to some complex physical object or state of
affairs that produces — via dynamical equations of motion — that form. But
in the relativistic case, it is not a static visual form that is to be explained;
it is a constellation of events happening in different places and at different
times. If Alice wants to know why the light flash coincided with a certain
location on the ruler, then I suspect she would not find it informative to be
told that the event and ruler occupy such and such places in the spacetime
manifold. I suspect that Alice would prefer to have a dynamical explanation
of what processes occurred in the past and that led to the light being placed
where it was and to its flashing at the time it did.

This last point reveals a further ambiguity in Hofweber and Lange’s ar-
gument: what is it that is to be explained, and who is requesting the expla-
nation? I see two possibilities here. The first possibility is that Alice wants
an explanation of why events occurred where and when they did. As dis-
cussed above, I think that Alice would be wholly unsatisfied to be told that
these events occurred where and when they did because that is where they
are in spacetime. (At the very least, this explanation is dangerously close to
being circular.) The second possibility is that we (Hofweber, Lange, myself,
other philosophers) want an explanation of why Alice’s measures of spatial
and temporal distances are systematically coordinated with those of other
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observers. Upon reflection, it seems obvious that it is this fact — viz. the
coordination between different measures of spatial and temporal distance —
that Hofweber and Lange want to be explained, and that they fault Fine’s
fragmentalism for not being able to explain.

Here we reach some deep philosophical waters. It is no longer a first-order
question of how some physical phenomenon is to be explained, but a higher-
order question of how to explain that there is a systematic coordination
between different (correct) descriptions of reality. At present, I will leave
open the possibility — advocated by Hofweber and Lange — that relativity
theory does, in fact, provide an “absolute conception of reality” that explains
the various frame-dependent conceptions. I do want to point out, however,
that one can grant the validity of Inference to the Best Explanation (IBE)
for physical phenomena, while denying the unrestricted call for an Aufhebung
of correct descriptions in some higher and more objective description of the
underlying reality.6

For example, a German-English dictionary provides a set of rules — we
might say “transformation laws” — that allows us to translate correct Ger-
man descriptions to correct English descriptions. (I’m setting aside Quinean
worries that there is no such thing as a correct translation.) Let’s call these
rules the “Laurenz transformations”. Now, I take it that it would sound odd
to ask for a theory of the world that explains the Laurenz transformations.
At the very least, it would display a kind of cultural chauvinism if, for ex-
ample, a French linguist offered an explanation (in French of course!) of the
nature of English and German speakers, and their relations to the world, and
from which the Laurenz transformations can be derived. Or to put the mat-
ter in more serious terms, to assume that the Laurenz transformations can
be justified by appeal to a more fundamental theory is to assume a solution
to the good old-fashioned categorio-centric predicament: that we can find
an absolute description of the world that explains the relations between the
relative descriptions.

If we don’t demand that translations between natural languages be justi-
fied by appeal to some language-neutral theory then why should we demand

6Ted Sider seems to endorse the demand for Aufhebung : “To support a claim of equiv-
alence between a pair of theories, stated in a pair of languages . . . we brought in a third
language, a language in which mass is described in a unit-free way. . . . This third, more
fundamental, language gave us a perspective on the fundamental facts, a perspective from
which the first two theories could be seen as getting at the very same facts.” (Sider, 2020,
p 187).
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that translations between frame-relative descriptions be justified by appeal
to some frame-neutral theory?

7 Three-dimensional explanations

I have suggested that Hofweber and Lange want primarily to explain the
systematic relations between correct descriptions. Balashov, in contrast,
places more emphasis on explaining the systematic relations between three-
dimensional appearances over time. His explanation, of course, is that the
sequence of three-dimensional appearances witnessed by one observer are the
successive sections of a single four-dimensional object. I have one criticism
of the proposed explanation, and I then offer an alternative explanation —
both of the succession of appearances, and of the systematic relations be-
tween correct descriptions.

Four-dimensional objects have one notable defect qua explanatia: they
are timeless, and so they neither move nor change. They do not act upon
other physical objects, at least in any normal sense of the word, nor are they
acted upon by other physical objects. As such, four-dimensional objects fail
Einstein’s own test for objecthood: if x is an object, then x can potentially
interact with other objects.7 So in what sense could four-dimensional objects
explain phenomena?

In the sorts of explanations we are familiar with from everyday life, ex-
planans and explanandum stand in spatiotemporal relations to each other,
and are connected to each other by laws of action and reaction. What’s more,
standard invocations of IBE move between events and entities of roughly the
same ontological kind. For example, if I find a mess in the kitchen upon ar-
riving home, then I might infer that my son arrived home early from school.
That’s because my son moves and applies forces to things, resulting in certain
characteristic physical changes.

Now, analytic philosophers have not been shy to extend IBE so that it
licenses inferences to entities of a more transcendent kind from phenomena
of more mundane kind. Consider, for example, the infamous indispensabil-
ity argument to the effect that the success of science (or, to make it more
mundane, the technological applicability of science) is best explained by the

7Apparently it is such a criterion that led Einstein to believe that Special Relativity
is inadequate, and must be replaced by a theory in which the metric of spacetime can be
acted upon by physical objects. See e.g. (Brown and Pooley, 2006).
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existence of numbers, sets, and other Platonic entities. I won’t take issue
here with these kinds of transcendental arguments; but it doesn’t seem to
me that Balashov intends the IBE to four-dimensional entities to be of this
kind. It seems, instead, that Balashov intends the inference from phenom-
ena to four-dimensional objects to be an ordinary scientific inference, like
the inference to the existence of Neptune to explain deviations in the orbit
of Uranus. But in that case, the non-dynamical nature of four-dimensional
objects makes it unclear how these objects are supposed to “explain” the
appearances. They cannot cause the appearances in the same way that a
flagpole causes a shadow, since there is no dynamical process by which they
cast “shadows” on three-dimensional hyperplanes.

But let us grant that we need some explanation for why a single object
can appear different ways in different reference frames — or, to be more
accurate, why a single object admits of different correct descriptions relative
to different reference frames.8 If the four-dimensionalist explanation were
the only one on offer, then it would be the best explanation — no matter
how much it stretches the concept of explanation. However, there is a three-
dimensionalist explanation of the appearances in various reference frames (at
least for inertial objects): the intrinsic properties of an object are those that
it has in its own rest frame, and these properties explain those it appears
to have in other reference frames. (I am tempted always to put “appears”
in scare quotes, because it is not the visual appearance that needs to be
explained, but why a certain description of the object is correct.)

One might worry that it is blatantly arbitrary to prefer the description of
an object in its own reference frame. But there are at least two reasons why
that description is privileged — an external reason and an internal reason.
The external reason is that the description of an object X relative to its
own reference frame is not viciously relative. Since X is the thing to be
described, we do not add a further layer of subjectivity by saying that X
should be described in the context that is (objectively) picked out by its
own physical state.9 The internal reason is that the description of X relative

8Here I part ways with Carlo Rovelli’s claim that one lesson of relativity theory is that
objects do not have intrinsic properties (see Rovelli, 1996; Rovelli, 2022). Rovelli claims
that “x has property ϕ relative to frame F” is fundamental, and I take it that he would
simply refuse the demand of Balashov et al. to explain these relative properties in terms
of the intrinsic properties of objects. (Note, however, that for Rovelli, a frame of reference
is just another physical object, and so his relativism is more ontic than epistemic.).

9While no object is absolutely at rest, every object is at rest relative to itself.
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to its own reference frame is the unique “maximizing” description of X in
the following sense: the dimensions of X are maximized in its own reference
frame. To take a simple example, let X be a cube whose sides have proper
length 1, i.e. length in the reference frame of X. The volume of X in its
own reference frame is 1; but in any other reference frame, one or more of
the sides of the cube will be contracted, and it will be correctly described
as a cube with volume less than 1. Thus, there is an asymmetry between
an object’s size in its own reference frame and its size in any other reference
frame: it achieves its maximum value in its own reference frame, and we can
consider its shape in any other reference frame to be a “compressed image”
of this maximally extended shape.

I’m not saying that I have an apriori reason for thinking that the in-
trinsic properties of a three-dimensional object are those that maximize its
dimensions. The important point is just that the shape of an object in its
own reference frame — i.e. its “proper shape” — can ground explanations
of its shape in any other reference frame. What’s more, the inference from
the shape of X in its own reference frame to the shape of X in some other
reference frame is a standard dynamical explanation (possibly in the spirit
of Lorentz). To the question “why does X appears as it does in frame F?”
we answer “because X has certain properties in its rest frame, and because
it is moving relative to F”. The reason that X appears “as it is in itself” in
its own reference frame is because it is not moving relative to its own frame.
I leave for another occasion the question of whether Lorentz contraction is
properly dynamical — in the sense of involving forces and genuine physical
contractions — or whether it should be thought of as a merely relational
change between the object and a frame of reference.

There is also the question of whether this kind of explanation generalizes
to the General Theory of Relativity, where there is no longer a notion of
inertial objects that determine (global) inertial reference frames. While the
typical approach of analytic philosophers has been to double down on the
hunt for absolute realities (represented by coordinate-free, or geometric, ob-
jects), I would suggest that objects’ intrinsic properties are those that they
have in their own local reference frames. But we are now getting to a place
where the physics is extremely complex, and the answers to these questions
can make a crucial difference for how one tries to build the next theory.
Further discussion of these issues will have to wait for another occasion.
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8 Conclusion

There seems almost to be a consensus among philosophers and physicists
that relativity theory pushes us away from the common sense view of three-
dimensional objects changing in time, and towards an ontology of four-
dimensional, eternal objects. When philosophers have tried to give rigorous
arguments for this intuitive idea, then they have frequently appealed to a
notion of relativistic invariance. But they have been less than fully clear on
what “invariance” means. I have tried to clarify the notion, and this clarifi-
cation shows that it does not do the work that it has been supposed to do.
As best I can tell, relativity theory does not favor the view that reality, at
the fundamental level, consists of four-dimensional objects. Relativity theory
does offer lessons about the nature of material objects, or — to put it in the
formal mode — about how we should describe these objects. But we have
more work to do to understand what these lessons are.

Acknowledgments: Thanks to David Malament for Lemma 2 and its proof.
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