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Abstract

The e-value or epistemic value, ev(H), measures the statistical significance of H, a hypothesis about

the parameter θ of a Bayesian model. The e-value is obtained by a probability-possibility transfor-
mation of the model’s posterior measure, p(θ), and can, in turn, be used to define the FBST or Full

Bayesian Significance Test. This article investigates the relation of this novel approach to more stan-

dard probability-possibility transformations. In particular, we show how and why the e-value focus
on or conforms with s(θ) = p(θ)/r(θ), the model’s surprise function relative to the reference density

r(θ), while it keeps itself consistent with the model’s posterior probability measure. In addition, we

investigate traditional objections raised in decision theoretic Bayesian statistics against measures of
significance engendered by probability-possibility transformations.

Keywords: Bayesian models; Belief calculi transformations; Complex hypotheses; Epistemic values;
Possibilistic and probabilistic reasoning; Significance tests; Surprise function; Truth function.

Shackle [51] interpreted the possibility of an event as the absence of
surprise felt when it occurs... The possibilistic interpretation of histograms
may be carried out in several ways, at first glance, at least... It is supposed

that the events [are] sufficient in order to equalize frequencies and probabilities.
Didier Dubois and Henri Prade [19, p.177].

1 Introduction

This paper compares the concept of statistical significance of sharp (precise) hy-
potheses in three schools of statistical thinking, namely: (1) Frequentist or classical
statistics; (2) Decision theoretic Bayesian statistics; (3) Bayesian statistics based on
the epistemological framework of cognitive constructivism. Closely related topics are
discussed in Stern [61].
The first goal of this article is to clarify some formal aspects and emphasize the role

played by possibility theory and probability-possibility transformations. The basic
reference for possibility theory used in this article is Dubois and Prade [19]. This
pioneering article is direct, intuitive and concise, covering however all the pertinent
concepts.
The second goal of this article is to explain some traditional objections raised in

decision theoretic Bayesian statistics against measures of statistical significance en-
gendered by probability-possibility transformations. We identify and analyze four
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major (perceived) obstacles, namely: (1) Technical difficulties in obtaining invariant
procedures. (2) Endorsement of nuisance parameter elimination procedures. (3) De-
cision theoretic rejection of an optimal point (constrained maximum-a-posteriori or
maximum-likelihood) as a legitimate representative of a composite hypothesis. (4)
Traditional understandings of significance tests as coverage (or not) of a point hy-
pothesis by a credibility interval of prescribed size.
In order to fulfill the aforementioned goals, this paper is organized as follows: Sec-

tion 2 presents a short review and establishes the language concerning statistical
models. Section 3 reviews the basic concepts of possibility theory and, strictly within
this framework, defines the epistemic value of hypotheses H, ev(H), that, in turn, is
used to define the FBST, the Full Bayesian Significance Test. The FBST is a novel
theory of statistical significance developed within the epistemological framework of
cognitive constructivism. For a general review of the FBST stressing the connections
with logic and other aspects relevant to the scope of this article, see Borges and Stern
[8]. Section 4 explains the role played in the FBST by the reference density and the
surprise function, and how they are used to achieve the fundamental property of in-
variance in the resulting measure of significance. In contrast, this section reviews Box
and Tiao [9] arguments for forfeiting general invariance in significance tests. Section
5 presents the frequentist p-value and discusses its pseudo-possibilitic characteristics.
Section 5 also discusses the traditional rationale for nuisance parameter elimination
procedures. Section 6 presents Bayes factors, the probability all-the-way decision
theoretic solution for hypothesis test. Section 6 also reviews some decision theoretic
arguments against the use of logic rules of possibilistic compositionality in statistical
procedures. Section 7 discusses Lindley’s method, an approach for testing hypotheses
based on their coverage (or not) by credibility intervals of prescribed size. Lindley’s
method is a probabilistic-possibilistic compromise approach that can be regarded as a
precursor for the FBST. Section 7 also discusses traditional requirements on credibility
regions used by Lindley’s method, like topological connectivity, or on the underlying
probability distribution, like unimodality and monotonicity. Section 8 presents our
final remarks and directions for further research.

2 Bayesian and Frequentist Statistical Models

A standard model of (parametric) Bayesian statistics concerns an observed (vector)
random variable, x, that has a sampling distribution with a specified functional form,
p(x | θ), indexed by the (vector) parameter θ. This same functional form, regarded
as a function of the free variable θ with a fixed argument x, is the model’s likelihood
function.
In frequentist or classical statistics, θ should be taken as a ‘fixed but unknown quan-

tity’. Hence, in the frequentist framework, one is allowed to use probability calculus in
the sample space, but strictly forbidden to do so in the parameter space, that is, x is
to be considered as a random variable, while θ is not to be regarded as random in any
way. Further consequences of the frequentist prohibition of probabilistic statements
on parameters are examined in Section 6.
In the Bayesian context, the parameter θ is regarded as a latent (non-observed)

random variable. Accordingly, the same formalism, namely, probability as an abstract
belief calculus, is used to express credibility or (un)certainty in both the sample and
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the parameter space. Consequently, the joint probability distribution, p(x, θ), should
summarize all the information available in a statistical model, see Wechsler et al.
[63]. Following the rules of probability calculus, the model’s joint distribution of
x and θ can be factorized either as the likelihood function of the parameter given
the observation times the prior distribution on θ, or as the posterior density of the
parameter times the observation’s marginal density,

p(x, θ) = p(x | θ)p(θ) = p(θ |x)p(x) .

The prior probability distribution p0(θ) represents the initial information available
about the parameter. In this setting, a predictive distribution for the observed random
variable, x, is represented by a mixture (or superposition) of stochastic processes, all
of them with the functional form of the sampling distribution, according to the prior
mixing (or weights) distribution,

p(x) =

∫
Θ

p(x | θ)p0(θ)dθ .

If we now observe a single event, x, it follows from the factorizations of the joint
distribution above that the posterior probability distribution of θ, representing the
available information about the parameter after the observation, is given by

p1(θ) ∝ p(x | θ)p0(θ) .

The subscript n in pn(θ) counts the number of observed events. In order to replace
the ‘proportional to’ symbol, ∝, by an equality, =, it is necessary to divide the right
hand site by the normalization constant, c1 =

∫
Θ
p(x | θ)p0(θ)dθ.

This is Bayes rule - the basic learning mechanism of Bayesian statistics, giving
the (inverse) probability of the parameter given the data. Computing normalization
constants is often difficult or cumbersome. Hence, especially in large models, it is
customary to work with unnormalized densities or potentials as long as possible, com-
puting normalization constants only at the very end (if ever). It is interesting to
observe that the joint distribution function, taken with fixed x and free argument θ,
is a potential for the posterior distribution.
Bayesian learning is a recursive process, where the posterior distribution after a

learning step becomes the prior distribution for the next step. Assuming that the
observations are c.i.i.d., conditionally (on the parameter) independent and identically
distributed, the posterior distribution after n observations, x(1), . . . , x(n), becomes,

pn(θ) ∝ p(x(n) | θ)pn−1(θ) ∝
∏n

i=1
p(x(i) | θ)p0(θ) .

Whenever possible, it is very convenient to use a conjugate prior, that is, a mixing
distribution whose functional form is invariant by the Bayes operation in the statistical
model at hand, see Castillo et al. [1] and [12, Sec.13.8].
The ‘beginnings and the endings’ of the Bayesian learning process also need further

discussion, that is, we should present some rationale for choosing the prior distribution
used to start the learning process, and some convergence theorems for the posterior
as the number observations increases. In order to do so, we must access and measure
the information content of a (posterior) distribution. Stern [60] gives a short review
explaining why and how the concept of entropy is the key that unlocks the mysteries
related to the problems at hand.
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Statistical Hypotheses
A statistical hypothesis, H, (sometimes called the null hypothesis) states that the
parameter θ of a statistical model lies in the hypothesis set, ΘH . For the sake of
simplicity, we may, from now on, use a relaxed notation, writing H instead of ΘH .
The hypothesis set is usually defined by inequality and equality constraints given by
vector functions, g = [g1(θ), g2(θ), . . . , gl(θ)]

′ and h = [h1(θ), h2(θ), . . . , hk(θ)]
′, in the

parameter space,

H : θ ∈ ΘH , ΘH = {θ ∈ Θ | g(θ) ≤ 0, h(θ) = 0} .

Throughout this paper we assume these vector constraints are regular and non-
degenerate, that is, that they nowhere imply a singularity in (the algebraic sub-
manifold) H ⊆ Θ. Hence, the dimension of the hypothesis is specified by the number
of equality constraints. We use the following notation: t = dim(Θ), is the dimension
of the parameter space; k, the codimension of H, counts the scalar equations con-
straining H; dim(H) = h = t− k, the dimension of H, counts the degrees of freedom
of a particle moving on H. We are particularly interested in sharp or precise hypothe-
ses, i.e., those in which dim(H) < dim(Θ), that is, k > 0. A point-hypothesis has
dimension zero, that is, the hypothesis set is a singleton, H = {θ0}. Throughout this
article we assume, whenever necessary, appropriate topological and analytical regu-
larity conditions, like continuity, differentiability and the existence of unconstrained
or constrained maximal arguments.

3 ev(H) - A Probability-Possibility Transformation

The first goal of this section is to define ev(H), the e-value or epistemic value of
an hypothesis H ⊆ Θ, given a Bayesian statistical model as described in the last
section, with posterior density pn(θ) and reference density r(θ). For a few interesting
applications illustrating the use of e-values and the FBST to practical problems, see
Diniz et al. [16], Lauretto et al. [32], Irony et al. [25], Johnson et al. [26], Pereira
and Stern [43], Pereira et al. [44], Rifo and Torres [47] and Rodrigues [48].
The surprise function, s(θ), indicates the change of the posterior probability den-

sity, pn(θ), relative to a reference density, r(θ), representing an initial situation of
minimum-information, see Section 4. The ‘hat’ and ‘star’ superscripts indicate un-
constrained and constrained maximal arguments and supremal surprise values, as
follows:

s(θ) =
pn(θ)

r(θ)
,

ŝ = supθ∈Θ s(θ) , θ̂ = argmaxθ∈Θ s(θ) ,
s∗ = supθ∈H s(θ) , θ∗ = argmaxθ∈H s(θ) .

The (closed, lower-level) v-cut of function s(θ), T (v), its complement, the highest
surprise function set (HSFS) above level v, T (v), and its rim (aka level-v set), M(v),
are defined as

T (v) = {θ ∈ Θ | s(θ) ≤ v} , M(v) = {θ ∈ Θ | s(θ) = v} , T (v) = Θ− T (v) .

The statistical model’s truth function, W (v), is the cumulative probability function
up to surprise level v. The complement and the derivative of W (v) are also defined as
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follows. If W (v) is discontinuous, m(v) must be interpreted as a generalized function
in the sense of Schwartz [50].

W (v) =

∫
T (v)

pn (θ) dθ , W (v) = 1−W (v) , m(v) =
d

dv
W (v) .

Several important properties of W (v) follow directly from the nesting property
exhibited by the v-cuts that, in turn, give the integration range defining the truth
function, see Klir and Folger [31, Ch.4], and Zadeh [67],

u ≤ v ⇒ T (u) ⊆ T (v) ⇒ W (u) ≤ W (v) .

Finally, the e-value and its complement for an hypothesis H ⊆ Θ, are defined as
follows.

ev(H) = W (v∗) , ev(H) = 1− ev(H) .

As defined, the e-value is a set function. However, for the sake of simplicity, we may
use a relaxed notation, writing ev({θ0}) = ev(θ0) as a point function for singleton
arguments, that is, in the case of a point hypothesis H = {θ0}.

The e-value of an hypothesisH is based on the most favorable case, ev(H) = ev(θ∗),
a property that characterizes ev(H) as a possibilistic abstract belief calculus, see
Darwiche [14], Darwiche and Ginsberg [15], and Borges and Stern [8]. Using the
nesting property of v-cuts, it is easy to establish that ev(H) also has the desired
properties of consistency with its underlying probability measure and conformity (to
be similarly shaped) with its underlying surprise function, that is,

Consistency: ev(H) ≥ pn(H) , ∀ H ⊆ Θ ;

Conformity: ev(θ) ≥ ev(τ) ⇔ s(θ) ≥ s(τ) , ∀ θ, τ ∈ Θ .

A plausibility measure, Pl(H), is defined by its basic probability assignment, m :
2Θ 7→ [0, 1], such that

∫
S⊆Θ

m(S) = 1. The focal elements of m are the subsets of

the universe with non-zero basic probability assignment, F = {E ⊆ Θ |m(E) > 0}.
Finally, the plausibility of H ⊆ Θ, Pl(H), is defined as

Pl(H) =

∫
E∈F |E∩H ̸=∅

m(E) .

Hence, ev(H) can be characterized as a plausibility function having v-cuts of the
surprise function as focal elements, F = {T (v), 0 ≤ v ≤ v̂}, while the basic probability
density assigned to T (v) is obtained integrating the posterior probability density over
its rim, m(v) =

∫
M(v)

pn(θ)dθ.

A plausibility function defines its dual belief function by the relations

Bel(H) =

∫
E∈F |E⊆H

m(E) = 1− Pl(H) .

Epistemic Onus Probandi
This subsection makes further comments on the interpretation of plausibility and
(dis)belief functions in the context of law and epistemology.
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Dubois and Prade [19, p.12] (adapting the mathematical notation to the conventions
used in this article) give the following insights about the meaning of the belief and
plausibility functions:

The mass m(Ei) can be interpreted as a global allocation of probability to
the whole set of elementary events making up Ei, without specifying how this
mass is distributed over the elementary events themselves... In this situation,
the probability of an event A will be imprecise, that is, will be contained in the
interval [Bel(A),Pl(A)].

The events Ei are called focal elements, Shafer [52], and may be used to
model imprecise observations. In this situation, the probability of an event A
will be mprecise, that is, will be contained in the interval [Bel(A),Pl(A)].

Bel(A) is calculated by considering all focal elements which make the occur-
rence of A necessary (i.e. which imply A). Pl(A) is obtained by considering
all the focal elements which make the occurrence of A possible.

That is, only the focal elements completely contained inH contribute to its credibility,
while all the elements that intersect H contribute to its plausibility.
In the legal context, the observations in the last paragraph validate the interpreta-

tion of ev(H) = Bel(H) as the belief that H is a misstatement, that is, the belief that
someone stating H is guilty of lying. In the legal context, valid accusations must con-
form to two basic juridical principles known as onus probandi and in dubito pro reo,
for further details analysis see Stern [54, 55]. The natural epistemological foundation
of frequentist statistics is Popperian falsificationism, where significance measures are
used to falsify a theory in a ‘scientific tribunal’. For a detailed analysis of the scientific
tribunal metaphor and its role in statistical analysis, see Stern [61].

The Standard Probability-Possibility Transformation
Dubois and Prade [19, p.178] define (for discrete variables) the standard possibil-
ity measure, π(H), that coincides (generalizing the same definition for continuous
variables) with ev(H) in the trivial case of a uniform (possibly improper) reference
density, r(θ) = 1. In this case, s(θ) = pn(θ) and the HSFSs are ordinary highest prob-
ability density sets, or HPDSs. Considering that the standard probability-possibility
transformation has been extensively used for a long time in the areas of artificial intel-
ligence and computer science, it would be natural to consider the intuitive suggestion
of using π(H) as a measure of statistical significance for the hypothesis H. It turns
out, however, that π(H) is not appropriate for this task.

The e-value, ev(H), is more flexible than the standard possibility measure, π(H),
for it allows the use of a non-trivial reference density, r(θ), and, therefore, a surprise
functions, s(θ), that has a ‘different shape’ than the underlying probability density,
pn(θ). Hence, ev(H) can be kept consistent with pn(H), while the same ev(θ) con-
forms with s(θ). Better said, the possibility measure ev(H) has focal elements that
are defined by the level sets of the surprise function, while its basic probability assign-
ment is obtained integrating the underlying probability density. The following section
will examine why and how this added flexibility can be used to obtain a possibility
measure that can be used as an invariant measure of statistical significance.
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4 Invariance and Reference Geometry

Invariance is a key property of well-defined significance measures, see Stern [60]. An
invariant measure is independent of the (regular) parameterizations being used to
describe the statistical model. For example, an invariant significant measure cannot
depend on the particular coordinate system being used as a reference frame in the
parameter space, or the particular algebraic form of the equations being used to
describe the hypothesis set.
In the FBST, the role of the reference density, r(θ), is to make ev(H) explicitly

invariant under suitable transformations of the coordinate system. The natural choice
of reference density is an uninformative prior, interpreted as a representation of no,
minimum or low information in the parameter space, or the limit prior for no obser-
vations, or the neutral ground state for the Bayesian operation. Standard (possibly
improper) uninformative priors include the uniform, Jeffreys’ and maximum entropy
densities, see Stern [60] for a detailed discussion.
Invariance, as used in statistics, is a metric concept. The reference density can

be interpreted as induced by the information metric in the parameter space, dl2 =
dθ′G(θ)dθ. Jeffreys’ invariant prior is given by p(θ) =

√
detG(θ), see Amari [1],

Amari et al. [2] and Stern [60] for further interpretations. For a formal proof of the
e-value invariance, see Borges and Stern [8, p.405-406].
The operator used to expand a point-wise possibility measure to a set measure is

maximization (or, more technically, the supremum). The maxH operator is essentially
independent on the algebraic description of the hypothesis set. Hence, ev(H) is
invariant by alternative parameterizations of the hypothesis set.
The maximization operator is used in several procedures of classical or frequentist

statistics. Decision theoretic Bayesian statistical procedures, however, favor averaging
or integration operations. These preferences are not fortuitous, but deeply grounded
in the epistemological foundations of these well established frameworks, for an exten-
sive investigation see Stern [61].

Resigning Invariance?
This sub-section analyses the non-invariance of HPDSs and some implications of this
non-invariance in Bayesian procedures using these sets, like Lindley’s method, dis-
cussed in Section 7. HPDSs are not invariant objects, as acknowledged in Box and
Tiao [9, p.1469]:

Effect of transformations: Let φ = ϕ(θ) be, say, a one to one transfor-
mation of parameters θ to φ. But it is clear from their definition that HPD
regions in θ will not in general transform into HPD regions in φ.

Nuisance parameter elimination procedures are an important technique used in
both frequentist and decision theoretic Bayesian statistic, as discussed in Sections 5,
6 and 7. These procedures are based on reparameterization maneuvers that are tailor-
made for a given statistical model and hypothesis. Hence, any non-invariance relative
to choice of coordinates in the parameter space contaminates nuisance parameter
elimination procedures, This state of affairs is fully acknowledged at Box and Tiao
[9, p.1475-1477]:

Suppose in general we have k parameters θ = [θ1, . . . , θk]. We shall define
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(k−1) non-redundant comparisons as (k−1) independent functions ϕi = fi(θ),
k = 1 . . . (k − 1), which are all equal to zero if and only if θ1 = . . . = θk.
There is clearly a very wide range of choices of functions of this kind. Since
HPD regions, like the confidence regions, are not invariant under non-linear
transformations, some thought must be given as to how we parameterize such
comparisons.

In particular, we may be interested to discover if φ0 = 0 is so included
[in a (1 − α) HPD region]. The point φ0 = 0 corresponds to the situation
where θ1 = . . . = θk, and is often of special concern in comparing location of
distributions.

Box and Tiao [9, p.1470] advocate the use of statistical methods based on HPDSs,
see section 7. However, they understate the importance of invariance, downplaying
the issue altogether. After all, any unfeasible property should be regarded as an
inessential characteristic:

It seems that we cannot hope for invariance for a genuine measure of cred-
ibility. It needs to be remembered that invariance under transformations and
virtues are not synonymous. For problems which should not be invariant under
transformation, a search for invariance serves only to guarantee inappropriate
solutions.

As far as we know, Box and Tiao [9] option to forfeit invariance while using measures
of significance based on credible regions remained consensual in mainstream Bayesian
analysis. However, we beg to strongly disagree with Box and Tiao final conclusion
about the importance of invariance properties in statistical procedures. For an in-
depth discussion of this issue, see Stern [60].

5 Frequentist p-values and their Deconstruction

The general idea of a p-value is to compute the probability that, repeating a random
experiment under a given statistical model and a given hypothesis H, one would
obtain an observation that is more extreme, that is, more unlikely than the one that
was actually observed.
In section 2 it was stated that, in the frequentist conceptual framework, the (vector)

parameter θ of the statistical model is considered as a ‘fixed but unknown’ quantity.
Moreover, under the frequentist paradigm θ must not be regarded as a random vari-
able. Furthermore, the language of probability is strictly forbidden for any direct
description or manipulation of the existing uncertainty about θ. In this setting, it is
easy to argue that the maximum-likelihood or ML estimator, θ̂ is the best choice for
fixing the parameters, if they are free. Likewise, the constrained ML, θ∗, is arguably
the best choice for fixing the parameters under the constraints established by a given
hypothesis H.
Under these conditions, the predictive distribution pn(x | θ∗) can be used to induce

an order in the sample space, so that the so far vague idea of a p-value becomes a
well-defined concept, see Pereira and Wechsler [45]. pv (H), the complement of the
p-value of hypothesis H, is defined as follows:

pv (H) =

∫
C(y1,...,yn)

∏n

i=1
p(xi | θ∗) dxn , θ∗ = argmax

θ∈H

∏n

i=1
p(yi | θ) ,
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C(y1, . . . , yn) =
{
x1, . . . , xn |

∏n

i=1
p(xi | θ∗) ≤

∏n

i=1
p(yi | θ∗)

}
.

Pseudo-possibilistic nature of p-values
pv (H) = 1− pv (H) measures the probability of ‘extreme’ events, extreme according
to the order in the sample space engendered the by the optimal (most likely) parameter
θ∗. Hence, pv (H) considers the probability of worst case outcomes under the best
case parameters. In this sense, p-values have a “possibilistic” appearance.
However, although the hypothesis H is stated in the parameter space, H ⊆ Θ,

pv (H) ‘shifts the problem’ computing a probability in the sample space. Hence,
pv (H) only superficially resembles the basic conceptual framework for probability-
possibility transformations studied in Section 3.

Construction of Practical p-values.
As last defined, pv (H) may be extremely difficult to compute. Please note that, in
the equation defining a p-value, yi and xi, i = 1 . . . n, stand for, respectively, the
observed and a possible new data bank. Each data bank is coded in matrix form,
xi,j , i = 1 . . . n, j = 1 . . .m, consisting of n singular observations, xi,•, each of these
coded as a vector of dimension m. Hence, the dimension of the integration space,
m ∗ n, increases linearly with the number of observations, demanding an exponential
(in n) computing time. Moreover, the geometry of the cut-region C(y1, . . . , yn) is
specified by non-linear constraints that may be hard to handle either analytically or
numerically. Therefore, it should not come as a surprise that the equation defining a
general p-value is seldomly directly used in practice. Instead, practical implementa-
tions make use of several approximation techniques, reparameterization maneuvers,
dimensionality reduction strategies and pre-compiled algorithms that greatly simplify
the subsequent computational procedures. In the sequel we put in perspective some
of these methods and how they relate and interrelate in practical implementations.
We hope that this deconstructive analysis will help us to understand why p-values

are such a successful tool and, later on in this paper, also to understand why e-values
can match or supersede them in practice. An important source of inspiration for
the development of the e-value was a challenge made by Oscar Kempthorne to the
second author, asking for a Bayesian measure of significance able to compete with
the frequentist p-values, including the case of sharp hypotheses. Section 7 will revisit
this issue, explaining how, in the authors’ view, the e-value is a worthy answer to
Kempthorne’s challenge.

(a) Asymptotic approximations: Under mild regularity conditions that are com-
monly assumed in the practice of statistical practice, and for large data banks,
n → ∞, it is reasonable to approximate the behavior of certain random variables of
interest by well-known and convenient to manipulate statistical distributions. The
central limit theorem, stating the convergence of (vector) means to (multivariate)
Normal random variables provides the best known of such approximations.

(b) Sufficient statistics: It would be very useful to reduce [x1, . . . , xn], the entire
sample, to a compact or condensed statistic S(x1, . . . , xn). Typically, although the
pre-image of the map S( ) is a space of dimension m∗n, growing linearly with the
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sample size, its image is a space of fixed dimension. Perhaps the best known ex-
ample is the reduction of sample of n real scalar values to their mean and variance,
S(x1, . . . , xn) = [m, s2], where m = (1/n)

∑
xi and s2 = (1/n)

∑
(xi−µ)2. In gen-

eral, a lot of relevant information would be lost by such a reduction. Under special
appropriate conditions, for a given map S in a specific statistical model, no rele-
vant information is lost. In these circumstances S is called a sufficient statistics,
see Kempthorne and Folks [30]. In many practical applications, (approximate)
sufficient statistics are obtained in conjunction with asymptotic approximations.

(c) Numerical algorithms for Gaussian and related distributions: For the
multivariate Normal, Chi-2, central and non-central F and T , and other related
distributions, many useful computations can be handled with the aid of pre-
compiled algorithms, tables, or even analog devices, see Pickett [46]. We believe
that these simple but powerful techniques offer at least a partial explanation for
the extraordinary success of frequentist statistics in the times predating personal
computers. In section 7 we discuss how these techniques can be successfully ap-
plied also in the context of Bayesian statistics.

(d) Nuisance parameter elimination: In mainstream mathematical statistics, it
is customary, if by all means feasible, to reparameterize a model using new coor-
dinates [δ, λ], dim(δ) = k, dim(λ) = h, so that, the parameters of interest, δ, are
completely specified by the hypothesis, while the nuisance parameters, λ are free.
Such a Θ = ∆ × Λ decomposition can then be followed by a nuisance parameter
elimination procedure, that is, a mapping or ‘projection’, D(Θ) = ∆, that reduces
the original composite hypotheses to the point-hypothesis D(H) = {δ0}.
Basu and Ghosh [5] give an extensive list of at least 10 categories of procedures
for achieving this goal, like using maxλ or

∫
dλ, the maximization or integration

operators, in order to obtain a projected profile likelihood or marginal posterior
function, p(δ |x), see also Pereira and Lindley [42]. Maximization operations and
profile likelihoods are especially important in the frequentist framework, while
integration operations and marginal posteriors are especially important in the
decision theoretic Bayesian framework, as discussed in the next section.

We can now begin to contrast the characteristics of p-values and e-values, a contrast
analysis that will, in the following sections, be extended to decision theoretic Bayesian
methods. The FBST performs probability calculations in the parameter space and,
in so doing, falls within the Bayesian framework. However, the FBST does not follow
the nuisance parameters elimination paradigm, working in the original parameter
space, in its full dimension. In this respect the FBST breaks away from both the
frequentist and the decision theoretic Bayesian tradition. Furthermore, the FBST is
defined by a first optimization step, a possibilistic operation on the surprise, followed
by a second posterior probability integration step. The combination of these two steps
looks alien in any of the two traditional frameworks for statistical theory. Moreover,
with the currently available numerical optimization and integration algorithms, the
FBST has little need to rely on calculation or computational procedures based on
asymptotic approximation techniques. The consequences of all these departures from
and compromises with different means and methods developed by the two mainstream
statistical schools is further explored in the next sections.
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6 Bayes Factors - Probability as a Tool for all Trades

This section presents Bayes factors, the probability all-the-way decision theoretic
solution for hypothesis test. Given two alternative simple hypotheses (or models), H1

and H2, and an observed data (matrix), X = [x1, x2 . . . , xn], the Bayes factor B1,2

transforms the prior odds ratio to the posterior odds ratio, that is,

Pr(H1 |X)

Pr(H2 |X)
=

Pr(X |H1)

Pr(X |H2)

Pr(H1)

Pr(H2)
= B1,2

Pr(H1)

Pr(H2)
.

This transformation is a direct consequence of Bayes rule,

Pr(Hk |X) =
Pr(X |Hk)Pr(Hk)

Pr(X |H1)Pr(H1) + Pr(X |H2)Pr(H2)
.

The calculation of Bayes factors for parameterized hypotheses if further explained
in Kass [29, p.776]:

In the simplest case, when the two hypothesis are single distributions with no
free parameters (the case of simple versus simple testing), B1,2 is the likelihood
ratio. In other cases, when there are unknown parameters under either or both
of the hypotheses, the Bayes factor is still given by [the formula above], and.
in a sense, it continues to have the form of a likelihood ratio. Then, however,
the densities p(X |Hk) are obtained by integrating (not maximizing) over the
parameter space [where gk is the prior probability of the (vector) parameter θk
under hypothesis Hk],

B1,2 =

∫
H1

p(X |H1, θ1)g1(θ1 |H1)dθ1∫
H2

p(X |H2, θ2)g2(θ2 |H2)dθ2
.

Building such a weighted or average likelihood ratio is the traditional course of
action within the decision theoretic Bayesian paradigm driven by the betting-utility
or scientific casino metaphors, as discussed at length in Stern [61]. A strong point of
this approach is that a single abstract belief calculus, namely probability, is used to
handle all computations involving uncertain quantities. This approach is very effective
in several cases involving non-sharp hypothesis, but runs into serious difficulties in
the case of sharp hypotheses representing lower dimensional sub-models of a given
model.
Lindley’s paradox and related symptoms indicate that naive ad-hoc assignments

of non-zero measures to null-Lebesgue measure sets is problematic. There is a vast
and ever increasing literature proposing ever more sophisticated case-specific prior
measures specifically designed for this purpose. However, the very need of such con-
voluted solutions seems to indicate that it may be worthwhile to develop different
approaches for testing sharp hypotheses.
There is also a strong line of thought in the decision theoretic Bayesian school

arguing that sharp hypotheses make little sense in this framework, and that the tech-
nical difficulties alluded in the last paragraph further confirm and justify regarding
sharp hypotheses as ill-posed statements. Although tempting from a theoretical per-
spective internal to the decision theoretic framework, this position cannot withstand
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the strong demand by the scientific community for adequate procedures for testing
sharp hypotheses. Sharp hypotheses are naturally stated in many areas of research,
specially so in the exact sciences, as discussed in Stern [56-61].

Decision Theoretic Rejection of Possibilistic Logic
The optimization step of the FBST, θ∗ = argmaxH pn(θ), can be interpreted as
‘representing’ H by its best case. In section 5 we argued that this choice for the true
value of a fixed but unknown parameter was a very reasonable under the frequentist
framework. This choice follows a well established principles of possibilistic logic,
as explained in Darwiche [14], Darwiche and Ginsberg [15], and Borges and Stern
[8]. From the conceptual considerations in the present section, however, one can
understand that the same optimization step lies completely outside the traditional
decision theoretic Bayesian framework. Denis Lindley [36] explicitly warns us that
taking this path is, in his view, a very unwise course of action:

Several proposals have been made as how ev(H) might be calculated. Two
are p-values and posterior probabilities, to which you added a third. Suppose we
look at ev(H) as an abstract concept and ask ourselves what properties it should
have. For example, if A and B are two hypotheses... I find it compelling that
ev(H) should satisfy the assumptions SP1 to SP5 in chapter 6 of DeGroot’s
book... Accepting this five assumptions, DeGroot proves that ev(H) must obey
all the rules of probability, in particular that ev(A or B) = ev(A) + ev(B) −
ev(A and B). As you clearly point out... your form of ev(H) does not satisfy
this rule, but rather ev(A or B) = max[ev(A), ev(B)].

Separate from the axiomatic approach, many people, including myself, have
objected to the concept of possibility on the grounds that with it ev(A or B)
can be calculated from ev(A) and ev(B) without any consideration of the rela-
tionship between A and B... Probability requires three numbers adequately to
describe the relationship between two hypotheses; possibility uses only two and,
for that reason, is often thought to be inadequate.

John Skilling [53], give us even stronger warnings against following a renegade
possibilistic logic that lead us into temptation of accepting the optimization heresy:

Take maximum likelihood. The difficulty there is that the single point of
maximum may be highly atypical of the measure being assessed... By using the
single point θ∗ to represent the entire hypothesis H, the FBST fails to escape
the inadequacy of representing a set with a point.... I can’t accept that.

7 Lindley’s Method

The treatment given to sharp hypotheses by frequentist p-values is far less problem-
atic than that offered by Bayes factors, at least for the aspects previously discussed
that directly concern the properties of zero-measure sets. Optimization on algebraic
sub-manifolds defined by equality and inequality constraints is the standard problem
of mathematical programming, requiring only good optimization algorithms, see for
example Andreani et al. [3]. In contrast, computing non-zero integrals over proper
algebraic sub-manifolds requires several ad-hoc choices and definition of tailor-made
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objects (like artificial priors and other oximora) for the statistical model at hand.
Furthermore, all this effort may be of no avail resulting in statistical procedures that
are problematic in the case of sharp hypotheses.
This state of affairs stimulated research on compromise methods allowing for the

joint use of ‘probabilistic’ integral operators and ‘possibilistic’ maximization operators
within a framework that is fundamentally Bayesian insofar as it allows and makes use
of probability measures in the parameter space. Several of such compromise meth-
ods have been developed. However, many of these hybrid possibilistic-probabilistic
procedures (not the FBST) lack a solid theoretical and epistemological foundation.
Anyway, when presenting any of the pre-existing methods for handling sharp hypoth-
esis, many Bayesian authors give an explicit caveat emptor to the users, warning them
that such procedures are pragmatic tools that should be used with great care, see for
example Williams [65, p.234].

Bayesian significance of sharp hypothesis: a plea for sanity: ...It astonishes
me therefore that some Bayesian now assign non-zero prior probability that a
sharp hypothesis is exactly true to obtain results which seem to support strongly
null hypotheses which frequentists would very definitely reject. (Of course, it is
blindingly obvious that such results must follow).

Bayesian p-values look at the frequency of extreme samples under average param-
eters located at the hypothesis, that is, they measure the frequentist probability of
observing a data bank more extreme than the one actually observed, under a param-
eter θ distributed over H according to a convenient posterior probability gn(θ) on
H. However interesting, Bayesian p-values and other compromise solution that are
not directly linked with the ideas leading to the FBST, have to be analyzed in future
articles.
This section discusses Lindley’s method, an approach for testing a point hypotheses

H : θ = θ0 based on the coverage (or not) of θ0 by a credibility interval of prescribed
size, see Lee [33, Sec4.3, p.123]. Hence, this is an approach that looks at extreme
epistemic intervals covering a given point-hypotheses. Hald [24] gives a detailed ac-
count of the use of credibility and confidence intervals in parametric statistics since
the times of Laplace and Gauss; see also Barnett[4, Sec.5.5]. In Lindley’s method,
HPDSs are at the center-stage of all computational procedures and, in this sense, it
could be considered as a direct precursor of the FBST. Denis Lindley himself regards
such methods only as practical procedures for testing point-hypotheses, having how-
ever serious reservations about its underlying theoretical foundations. We introduce
this method by the words of some authors who used it in important applications:

The normal distribution has the remarkable property that equivalent state-
ments can be made with either X or Θ as the relevant space supporting the
probability distributions... A Bayesian interpretation of the common F-test is
then available by rephrasing the sampling-theory notion that a null value is sig-
nificant if the confidence interval does not include it, confidence being replaced
by credible... Essentially in rejecting the null value we are saying that it has
not got high posterior probability (density) in comparison with other values.

Although these ideas enable orthodox practice to be interpreted in probability
terms, it does not follow that the practice is to be adopted... We now turn from
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sampling-theory concepts to an honest Bayesian analysis of a decision problem
(and hence of an associated inference problem). D.V.Lindley [35, p.18,19].

In normal linear models, HPD regions are always connected regions, or
intervals, and these provide interval-based inferences and tests of hypotheses
through the use of posterior normal, T and F distributions. West and Harrison
[64, Sec.17.3.5, p.643].

A time plot of the estimates [values], with an indication of the associated
uncertainty as measured by the posterior variance, provides a clear and useful
visual indication of the contribution of the [scalar parameter of interest]. West
and Harrison [64, Sec.8.6.7, p.256,257].

Testing of a Sharp Null Hypothesis Through Credible Intervals:
Some Bayesians are in favor of testing, say, H0 : θ = θ0 versus H1 : θ ̸= θ0
by accepting H0 if θ0 belongs to a chosen credible set. This is similar to the
relation between confidence intervals and classical testing, except that there the
tests are inverted to get confidence intervals. This must be thought of as a very
informal way of testing. If one really believes that the sharp null is a well-
formulated theory and deserves to be tested, one would surely want to attach a
posterior probability to it. That is not possible in this approach.

Because the inference based on credible intervals often has good frequency
properties, a test based on them also is similar to a classical test. This is in
sharp contrast with inference based on Bayes factors or posterior odds. Ghosh
et al. [23, Sec.2.7.3-4, p.48-50].

Other influential authors in the field of Bayesian statistics are not willing to be
so complaisant about heterodox transgressions relative to decision theoretic doctrine,
see for example Berger and Delampady [7, Sec1.2, p.319; Sec.4.3, p.328]:

Opinion 3: Testing is Somewhat Irrelevant; One Should Concentrate on
Confidence Sets, Testing from Them if Necessary. This opinion is wrong,
because it ignores the supposed special nature of θ0. A point can be outside a
95% confidence set an, yet not be so strongly contradicted by the data. Only
by calculating a Bayes factor (or related conditional measures) can one judge
how well the data supports a distinguished point θ0...

The Bayes factor communicates the evidence in the data against θ0, and [a
credible region] C the magnitude of the possible discrepancy.

As already stated, in Lindley’s method, HPDSs are at the center-stage of all com-
putational procedures and, in this sense, it could be considered as a precursor of the
FBST. Nevertheless, Lindley’s method and the FBST are in essence very different
approaches to the concept of hypothesis significance. The following list of contrasting
points should make the distinction clear. This list also has the purpose of exposing
some of the obstacles that, in the authors’ view, have prevented further research in
this area, at least within the historical path taken in the development of mainstream
decision theoretical Bayesian statistics.

(a) Covering-interval interpretation: The original covering-interval interpretation
of Lindley’s method is often translated into a strong topological requirement of
having simply-connected HPDSs. These topological requirements, in turn, render
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uni-modality and monotonicity sufficiency conditions for the underlying posterior
density or its marginals at the statistical model in study.

(b) Nuisance parameter elimination: Lindley’s method can be coherently extended
to handle a composite hypothesis H by reduction to a point-hypothesis D(H) =
{δ0} through an acceptable nuisance parameter elimination procedure. As dis-
cussed in Sections 4 and 5, in the decision theoretic Bayesian framework, accept-
able procedures for that purpose may be based on a marginalization or other
integration operation, but never on a possibilistic optimization operation.

(c) Non-invariance: As discussed in Section 4, Lindley’s method is essentially non-
invariant, a consecrated reason to question the theoretical foundations of any
method based on HPDSs.

(d) Loss function: Before the formulation of an appropriate loss function by Madruga
et al. [37], test procedures for sharp hypotheses based on general HPDSs had not
been duly derived within the decision theoretic framework, even though closely
related loss functions are discussed in O’Hagan [40, Sec.2.5, p.54-59]. The lack
of such a foundation was a steady source of complaints concerning the heterodox
character of such procedures.

(e) Ontological status of sharp hypotheses: Even after the work of Madruga et
al. [37], from the decision theoretic epistemological perspective, sharp hypotheses
are perceived to be ill-posed problems. In contrast, the epistemological framework
of cognitive constructivism fully supports sharp hypotheses, see Stern [56-61].

It can be argued that, within the decision theoretic framework, points (c), (d)
and (e) made Lindley’s method and related ideas only barely acceptable as pragmatic
procedures thatmust be thought of as a very informal way of testing. Moreover, points
(a), (b) and (c) seem to have restricted the scope of interest for practical applications
of Lindley’s method almost exclusively to Gaussian linear models, as in Box and Tiao
[10] or West and Harrison [64]. Nevertheless, the authors recently became aware of
the work of Sanjib Basu [6], where the author departs from the strict interval coverage
interpretation, and breaks away from the standard simple-connectivity requirement
for HPDSs. In so doing, even if non-invariant and limited to point-hypotheses, his
work should be regarded as an even closer precursor to the FBST.
Paradoxically (from the cognitive constructivism plus FBST perspective), but also

very interestingly (from an historical perspective), the paradigm of interval-based in-
ference seems to have percolated (backwards) from (sometimes very old sources in)
the literature of mathematical statistics to that of possibility and fuzzy sets theory.
For recent developments on interval-based possibilistic inference, see Castineira et al
[13] and Salicone [49]. The next quotation, from Dubois et al. [18, Sec,3,p.282], ex-
plains the authors’ motivation for this course of investigation even if, as acknowledged
by the authors in Remark 3.2, p.282,283, consequent definitions only make sense for
unimodal and monotonic distributions.

A closed form expression of the possibility distribution induced by confidence
intervals around the mode x̂ is obtained for unimodal continuous probability
densities strictly increasing on the left and decreasing on the right of x̂...
In the paper, we use the terminology ‘confidence interval’ for reliable interval
substitutes to probability distributions. It does not correspond to the traditional
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terminology...
Our notion of confidence interval is much closer to Fishers fiducial interval.

8 Final Remarks and Future Research

Epistemic vs. Predictive Significance Tests and their Performances
In the quotation of Ghosh et al. [23] at the last section, the authors praise the
good frequency properties of Bayesian inference based on credible intervals. Leonard
and Hsu [34, p.142-143] make similar remarks. These good frequency properties can
explain the FBST outstanding performance at comparative benchmarks based on
frequencies of type-I and type-II errors, used to gauge the FBST performance at sev-
eral already published applications. Nevertheless, Skilling [53] sees these measures of
performance with great suspicion. Contradictory opinions about this issue are com-
mon in the Bayesian statistics literature: Frequency properties of covering intervals
are sometimes exalted as a wonderful feature, sometimes dismissed as an irrelevant
aspect.
We believe that contradictory appraisals of these frequency properties and different

opinions about performance measures are deeply entangled with two very distinct
concepts of statistical significance, namely, the notion of predictive power of a the-
ory vs. the idea of epistemic verification of the same theory. The last paragraph
in the quotation of Berger and Delampady [7] at the last section has already hinted
at making this same distinction. We also believe that these two concepts, although
intertwined, require essentialy different tests of significance that ought to be accom-
panied by compatible, and hence also different, measures of performance. This issue
should benefit from extensive further research.

Alternative Probability-Possibility Transformations
In Dubois and Prade [19, p.177,180] the authors define two alternative probability-
possibility transformations specially suited for continuous densities, namely,

κ(φ) =

∫
Θ

min [p (θ) p (φ)] p(θ)dθ ; ξ(φ) =
p(φ)

p̂
, p̂ = sup

Θ
p(θ) .

These alternative transformations have several interesting interpretations. Under rea-
sonable regularity conditions, both transformations are easily extended to possibility
measures if computed at the argument θ∗ = argmaxH p(θ).

For the first alternative transformation, the identity π(θ̂) = κ(θ̂) = 1 can be inter-
preted as two alternative ways of calculating the total volume under p(θ), integrating
over vertical or horizontal ‘slices’. The equivalence of this two ways of computing the
total probability is a consequence of Fubini theorem that, in turn, can be interpreted
by Cavalieri principle, expressing a notion that predates the formalization of calculus
by either Newton or Leibniz, see Fubini [22] and Palmieri [41].
Analytically, the alternative transformation κ(φ) can be easier to handle than

the standard possibility transformation, π(φ), because the (necessarily) discontin-
uous integrand, 1 [p(θ) ≤ p(φ)] p(θ), is replaced the (possibly) continuous function
min [p(θ), p(φ)]. Furthermore, all the results stated for one of these measures can be
immediately translated to the other for, taking v = p(θ), we get δ(θ) = κ(θ)−π(θ) =
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v ∗ µ(T (v)), where µ stands for the appropriate Lebesgue measure.
The second alternative measure, ξ(H), is even easier to handle analytically, but it

also departs even farther away from the standard measure. Several other alternative
probability-possibility transformations have been proposed in the literature, see for
example Dubois and Prade [19], Dubois et al. [18, 21], Castineira et al. [13], Dhar
[17], Jumarie [27, 28], Mauris et al. [39], Salicone [49], Yamada [62] and Wonneberger
[66]. In future research, we intend to study generalizations of the e-value based on
some of these alternative probability-possibility transformations.
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