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Abstract

In this paper, the relationship between the e-value of a complex hypothesis, H, and those of its

constituent elementary hypotheses, Hj , j = 1 . . . k, is analyzed, in the independent setup. The
e-value of an hypothesis H, ev(H), is a Bayesian epistemic, credibility or truth value defined under

the Full Bayesian Significance Testing (FBST) mathematical apparatus. The questions addressed

concern the important issue of how the truth value of H, and the truth function of the corresponding
FBST structure M , relate to the truth values of its elementary constituents, Hj , and to the truth

functions of their corresponding FBST structures Mj , respectively.
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1 Introduction

The e-value of an hypothesis H, ev(H), is a Bayesian epistemic, credibility or truth
value first defined in Pereira and Stern [39]. In this paper we analyze the relationship
between the e-value, of a complex hypothesis, H, and those of its elementary con-
stituents, Hj , j = 1 . . . k. This problem is known as the question of Compositionality,
which plays a central role in analytical philosophy.
According to Wittgenstein [60], (2.0201, 5.0, 5.32):
- Every complex statement can be analyzed from its elementary constituents.
- Truth values of elementary statement are the results of those statements’ truth-

functions (Wahrheitsfunktionen).
- All truth-function are results of successive applications to elementary constituents

of a finite number of truth-operations (Wahrheitsoperationen).
The compositionality question also plays a central role in far more concrete contexts,

like that of reliability engineering, see Barlow and Prochan [4] and Birnbaum et al.
[6], (1.4):
“One of the main purposes of a mathematical theory of reliability is to develop

means by which one can evaluate the reliability of a structure when the reliability
of its components are known. The present study will be concerned with this kind
of mathematical development. It will be necessary for this purpose to rephrase our
intuitive concepts of structure, component, reliability, etc. in more formal language,
to restate carefully our assumptions, and to introduce an appropriate mathematical
apparatus.”
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When brought into a parametric statistical hypothesis testing context, a com-
plex hypothetical scenario or complex hypothesis is a statement, H, concerning θ =
(θ1, . . . , θk) ∈ Θ = (Θ1×. . .×Θk) which is equivalent to a logical composition of state-
ments, H1, . . . ,Hk, concerning the elementary components, θ1 ∈ Θ1, . . . , θk ∈ Θk,
respectively.
Within this setting, means to evaluate the credibility of H, as well as that of each of

its elementary components, H1, . . . ,Hk, is provided by the mathematical apparatus
introduced in Pereira and Stern [40]. Further general references on the subject include
Lauretto et al. [32] and Madruga et al. [36]. It is of interest, however, to know what
can be said about the credibility of H, from the knowledge of the credibilities of its
elementary components, H1, . . . ,Hk, and this is what the authors endeavor to explore
in the present paper, in the case of independent corresponding FBST structures M1,
M2, . . ., Mk.
In order to give the reader a clear and self contained view of the investigated

questions and the aswers provided, the paper has been organized as follows. In section
2, a panoramic review of several aspects of the FBST theory is presented. In section
3, the mathematical apparatus of the FBST is described. In section 4, the question
of whether the truth value of a conjunctive hypothesis H, can be obtained from
the truth values of its constituent elementary hypotheses, H1, . . . ,Hk, is explored. In
sections 5 and 6 the question of whether the truth function of the FBST structure, M ,
corresponding to a conjunctive hypothesis H can be obtained from the truth functions
of the structures, M1, M2, . . ., Mk, corresponding to H1, . . . ,Hk, respectively, is
analyzed. Final remarks are presented in section 7.

2 FBST Review

The FBST was specially designed to give an epistemic value, or value of evidence,
supporting a sharp hypothesis H. This support function is the e-value, ev(H). Fur-
thermore, the e-value has many necessary or desirable properties for a statistical
support function, such as:
(I) Give an intuitive and simple measure of significance for the hypothesis in test,

ideally, a probability defined directly in the original or natural parameter space.
(II) Have an intrinsically geometric definition, independent of any non-geometric

aspect, like the particular parameterization of the (manifold representing the) null
hypothesis being tested, or the particular coordinate system chosen for the parameter
space, i.e., be an invariant procedure.
(III) Give a measure of significance that is smooth, i.e. continuous and differen-

tiable, on the hypothesis parameters and sample statistics, under appropriate regu-
larity conditions of the model.
(IV) Obey the likelihood principle , i.e., the information gathered from observations

should be represented by, and only by, the likelihood function.
(V) Require no ad hoc artifice like assigning a positive prior probability to zero

measure sets, or setting an arbitrary initial belief ratio between hypotheses.
(VI) Be a possibilistic support function, where the support of a logical disjunction

is the maximum support among the support of the disjuncts.
(VII) Be able to provide a consistent test for a given sharp hypothesis.
(VIII) Be able to provide compositionality operations in complex models.
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(IX) Be an exact procedure, i.e., make no use of “large sample” asymptotic approx-
imations when computing the e-value.

(X) Allow the incorporation of previous experience or expert’s opinion via (subjec-
tive) prior distributions.

The objective of this section is to provide a very short review of the FBST theo-
retical framework, summarizing the most important statistical properties of its sup-
port function, the e-value. It also summarizes the logical (algebraic) properties of
the e-value, and its relations to other classical support calculi, including possibilistic
calculus and logic, paraconsistent and classical. Further details, demonstrations of
theoretical properties, comparison with other statistical tests for sharp hypotheses,
and an extensive list of references can be found in the author’s previous papers.

2.1 The FBST Epistemic e-values

Let θ ∈ Θ ⊆ Rp be a vector parameter of interest, and L(θ |x) be the likelihood
associated to the observed data x, a standard statistical model. Under the Bayesian
paradigm the posterior density, pn(θ), is proportional to the product of the likelihood
and a prior density,

pn(θ) ∝ L(θ |X) p0(θ).

The (null) hypothesis H states that the parameter lies in the null set, defined by
inequality and equality constraints given by vector functions g and h in the parameter
space.

ΘH = {θ ∈ Θ | g(θ) ≤ 0 ∧ h(θ) = 0}

From now on, we use a relaxed notation, writingH instead of ΘH . We are particularly
interested in sharp (precise) hypotheses, i.e., those in which dim(H) < dim(Θ), i.e.
there is at least one equality constraint.
The FBST defines ev(H), the e-value, the epistemic value or value of (presented or

observed) evidence supporting (in favor of) the hypothesis H, and ev(H), the e-value
against H, as

s(θ) =
pn(θ)

r(θ)
, s∗ = s(θ∗) = supθ∈H s(θ) , ŝ = s(θ̂) = supθ∈Θ s(θ) ,

T (v) = {θ ∈ Θ | s(θ) ≤ v} , W (v) =

∫
T (v)

pn (θ) dθ , ev(H) = W (s∗) ,

T (v) = Θ− T (v) , W (v) = 1−W (v) , ev(H) = W (s∗) = 1− ev(H) .

The function s(θ) is known as the posterior surprise relative to a given reference
density, r(θ). W (v) is the cumulative surprise distribution. The surprise function was
used, among other statisticians, by Good [23], Evans [16] and Royall [48]. Its role in
the FBST is to make ev(H) explicitly invariant under suitable transformations on the
coordinate system of the parameter space, see next section.
The tangential (to the hypothesis) set T = T (s∗), is a Highest Relative Surprise Set

(HRSS). It contains the points of the parameter space with higher surprise, relative
to the reference density, than any point in the null set H. When r(θ) ∝ 1, the
possibly improper uniform density, T is the Posterior’s Highest Density Probability
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Figure 2.1: H-W Hypothesis and Tangential Set

Set (HDPS) tangential to the null set H. Small values of ev(H) indicate that the
hypothesis traverses high density regions, favoring the hypothesis.
The e-value, defined above, has a simple and intuitive geometric characterization.

Figure 2.1 shows the null set H, the tangential HRSS T , and the points of constrained
and unconstrained maxima, θ∗ and θ̂, for testing Hardy-Weinberg equilibrium law in a
population genetics problem, as discussed in Pereira and Stern [40]. In this biological
application n is the sample size, x1 and x3 are the two homozygote sample counts and
x2 = n−x1−x3 is heterozygote sample count. θ = [θ1, θ2, θ3] is the parameter vector.
The posterior and maximum entropy reference densities for this trinomial model, the
parameter space and the null set are:

pn(θ | x) ∝ θx1+y1−1
1 θx2+y2−1

2 θx3+y3−1
3 , r(θ) ∝ θy1−1

1 θy2−1
2 θy3−1

3 , y = [0, 0, 0] ,

Θ = {θ ≥ 0 | θ1 + θ2 + θ3 = 1} , H = {θ ∈ Θ | θ3 = (1−
√
θ1 )2} .

Finally, consider the situation where the hypothesis constraint, H : h(θ) = h(δ) =
0 , θ = [δ, λ] is not a function of some of the parameters, λ. This situation is described
by Basu [5]:
“If the inference problem at hand relates only to δ, and if information gained on λ

is of no direct relevance to the problem, then we classify λ as the Nuisance Parameter.
The big question in statistics is: How can we eliminate the nuisance parameter from
the argument?”
Basu goes on listing at least 10 categories of procedures to achieve this goal, like

using maxλ or
∫

dλ, the maximization or integration operators, in order to obtain a
projected profile or marginal posterior function, f(δ |x). The FBST does not follow
the nuisance parameters elimination paradigm. In fact, staying in the original pa-
rameter space, in its full dimension, explains the “Intrinsic Regularization” property
of the FBST, when it is used for model selection, see Pereira and Stern [42].

2.2 Reference, Invariance and Consistency

In the FBST the role of the reference density, r(θ) is to make ev(H) explicitly invariant
under suitable transformations of the coordinate system. Invariance, as used in statis-
tics, is a metric concept. The reference density can be interpreted as a compact and
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interpretable representation for the reference metric in the original parameter space.
This metric is given by the geodesic distance on the density surface. The natural
choice of reference density is an uninformative prior, interpreted as a representation
of no information in the parameter space, or the limit prior for no observations, or
the neutral ground state for the Bayesian operation.
Standard (possibly improper) uninformative priors include the uniform and maxi-

mum entropy densities, see Dugdale [15] and Kapur [29] for a detailed discussion. In
the H-W example, using the notation above, the uniform density can be represented
by y = [1, 1, 1] observation counts, and the standard maximum entropy density can
be represented by y = [0, 0, 0] observation counts.
Let us consider the cumulative distribution of the e-value against the hypothesis,

V (c) = Pr(ev ≤ c), given θ0, the true value of the parameter. Under appropriate
regularity conditions, for increasing sample size, n → ∞, we can say the following:
- If H is false, θ0 /∈ H, then ev converges (in probability) to 1, that is, V (0 ≤ c <

1) → 0.
- If H is true, θ0 ∈ H, then V (c), the confidence level, is approximated by the

function

QQ(t, h, c) = Q
(
t− h,Q−1 (t, c)

)
, where

Q(k, x) =
Γ(k/2, x/2)

Γ(k/2,∞)
, Γ(k, x) =

∫ x

0

yk−1e−ydy ,

t = dim(Θ), h = dim(H) and Q(k, x) is the cumulative chi-square distribution with k
degrees of freedom. Figure 2.2 portrays QQ(t, h, c) Q(t − h,Q−1(t, c)) for t = 2 . . . 4
and h = 0 . . . t− 1.
Under the same regularity conditions, an appropriate choice of threshold or critical

level, c(n), provides a consistent test, τc , that rejects the hypothesis if ev(H) > c.
The empirical power analysis developed in Stern and Zacks [57] and Lauretto [32],
provides critical levels that are consistent and also effective for small samples.
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Figure 2.2: Test τc critical level vs. confidence level

Proof of invariance:
Consider a proper (bijective, integrable, and almost surely continuously differentiable)
reparameterization ω = ϕ(θ). Under the reparameterization, the Jacobian, surprise,
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posterior and reference functions are:

J(ω) =

[
∂ θ

∂ ω

]
=

[
∂ ϕ−1(ω)

∂ ω

]
=


∂ θ1
∂ ω1

. . . ∂ θ1
∂ ωn

...
. . .

...
∂ θn
∂ ω1

. . . ∂ θn
∂ ωn


s̃(ω) =

p̃n(ω)

r̃(ω)
=

pn(ϕ
−1(ω)) |J(ω)|

r(ϕ−1(ω)) |J(ω)|

Let ΩH = ϕ(ΘH). It follows that

s̃∗ = sup
ω∈ΩH

s̃(ω) = sup
θ∈ΘH

s(θ) = s∗

hence, the tangential set, T 7→ ϕ(T ) = T̃ , and

Ẽv(H) =

∫
T̃

p̃n(ω)dω =

∫
T

pn(θ)dθ = ev(H).

Proof of consistency:
Let V (c) = Pr(ev ≤ c) be the cumulative distribution of the e-value against the
hypothesis, given θ. We stated that, under appropriate regularity conditions, for
increasing sample size, n → ∞, if H is true, i.e. θ ∈ H, then V (c), is approximated
by the function

QQ
(
t− h,Q−1 (t, c)

)
.

Let θ0, θ̂ and θ∗ be the true value, the unconstrained MAP (Maximum A Posteriori),
and constrained (to H) MAP estimators of the parameter θ.

Since the FBST is invariant, we can chose a coordinate system where, the (likelihood
function) Fisher information matrix at the true parameter value is the identity, i.e.,
J(θ0) = I. From the posterior Normal approximation theorem, see Gelman et al.

[20], (appendix B), we know that the standarized total difference between θ̂ and θ0

converges in distribution to a standard Normal distribution, i.e.

√
n(θ̂ − θ0) → N

(
0, J(θ0)−1J(θ0)J(θ0)−1

)
= N

(
0, J(θ0)−1

)
= N (0, I)

This standarized total difference can be decomposed into tangent (to the hypothesis
manifold) and transversal orthogonal components, i.e.

dt = dh + dt−h , dt =
√
n(θ̂ − θ0) , dh =

√
n(θ∗ − θ0) , dt−h =

√
n(θ̂ − θ∗) .

Hence, the total, tangent and transversal distances (L2 norms), ||dt||, ||dh|| and
||dt−h||, converge in distribution to chi-square variates with, respectively, t, h and
t− h degrees of freedom.
Also from, the MAP consistency, we know that the MAP estimate of the Fisher

information matrix, Ĵ , converges in probability to true value, J(θ0).
Now, if Xn converges in distribution to X, and Yn converges in probability to Y ,

we know that the pair [Xn, Yn] converges in distribution to [X,Y ]. Hence, the pair
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[||dt−h||, Ĵ ] converges in distribution to [x, J(θ0)], where x is a chi-square variate with
t − h degrees of freedom. So, from the continuous mapping theorem, the e-value
against H, ev(H), converges in distribution to e = Q(t, x), where x is a chi-square
variate with t− h degrees of freedom.

Since the cumulative chi-square distribution is an increasing function, we can invert
the last formula, i.e., e = Q(t, x) ≤ c ⇔ x ≤ Q−1(t, c). But, since x in a chi-square
variate with t− h degrees of freedom,

Pr(e ≤ c) = Q
(
t− h,Q−1 (t, c)

)
, Q.E.D.

A similar argument, using a non-central chi-square distribution, proves the other
asymptotic statement.

2.3 Loss Functions

In orthodox decision theoretic Bayesian statistics, a significance test is legitimate if
and only if it can be characterized as an Acceptance (A) or Rejection (R) decision
procedure defined by the minimization of the posterior expectation of a loss function,
Λ. Madruga [36] gives the following family of loss functions characterizing the FBST.
This loss function is based on indicator functions of θ being or not in the tangential
set T :

Λ(R, θ) = a I(θ /∈ T ) , Λ(A, θ) = b+ d I(θ ∈ T )

The interpretation of this loss function is as follows: If θ ∈ T we want to reject H,
for θ is more probable than anywhere on H; If θ ∈ T we want to accept H, for θ is
less probable than anywhere on H. The minimization of this loss function gives the
optimal test:

Accept H iff ev(H) ≥ φ = (b+ c)/(a+ c) .

Note that this loss function is dependent on the observed sample (via the likelihood
function), on the prior, and on the reference density, stressing the important point of
non-separability of utility and probability, see Kadane and Winkler [27] and Rubin
[49].
This type of loss function can be easily adapted in order to provide an asymptotic

indicator checking if the true parameter belongs to the hypothesis set, I(θ0 ∈ H).
Consider the tangential reference mass,

m =

[∫
T (s∗)

r(θ)dθ

]γ

If γ = 1, m is the reference density mass of the tangencial set. If γ = 1/t, m is

a pseudo-distance from θ̂ to θ∗ . Consider also a threshold of form φ1 = bm or
φ2 = bm/(a+m), a, b > 0, in the expression of the optimal test above.

If θ0 /∈ H, then θ̂ → θ0 and θ∗ → θ0∗, where θ0∗ ̸= θ0, therefore ||θ̂− θ∗|| → c1 > 0.
But the standarized posterior, pn, converges to a normal distribution centered on θ0.
Hence, m → c2 > 0 and φ → c3 > 0. Finally, since ev(H) → 0, Pr(ev(H) > φ) → 0.

If θ0 ∈ H, then θ̂ → θ0 and θ∗ → θ0, therefore ||θ̂ − θ∗|| → 0. Hence, m → 0 and
φ → 0. But ev(H) converges to a propper distribution, see section 2.2, and, therefore,
Pr(ev(H) > φ) → 1.
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2.4 Belief Calculi and Support Structures

Many standard Belief Calculi can be formalized in the context of Abstract Belief
Calculus, ABC, see Darwiche and Ginsberg [13], Darwiche [14] and Stern [51]. In a
Support Structure, ⟨Φ,⊕,⊘⟩, the first element is a Support Function, Φ, on a universe
of statements, U . Null and full support values are represented by 0 and 1. The second
element is a support Summation operator, ⊕, and the third is a support Scaling or
Conditionalization operator, ⊘. A Partial Support Structure, ⟨Φ,⊕⟩, lacks the scaling
operation.
The Support Summation operator, ⊕, gives the support value of the disjunction of

any two logically disjoint statements from their individual support values, i.e.,

¬(A ∧B) ⇒ Φ(A ∨B) = Φ(A)⊕ Φ(B) .

The Support Scaling operator, ⊘, gives the conditional support value of B given A
from the unconditional support values of A and the conjunction C = A ∧B, i.e.,

ΦA(B) = Φ(A ∧B)⊘ Φ(A) .

Support structures for some standard belief calculi are given in Table 2.1, where the
support value of two statements their conjunction are given by a = Φ(A), b = Φ(B),
c = Φ(C = A ∧B).

Table 2.1: Support structures for some belief calculi, c = Φ(C = A ∧B).
Φ(U) a⊕ b 0 1 a ⪯ b c⊘ a Calculus
{0, 1} max(a, b) 0 1 a ≤ b min(c, a) Classical Logic
[0, 1] a+ b 0 1 a ≤ b c/a Probability
[0, 1] max(a, b) 0 1 a ≤ b c/a Possibility

{0 . . .∞} min(a, b) ∞ 0 b ≤ a c− a Disbelief

In Table 1, the relation a ⪯ b indicates that the value a represents a stringer
support than the value b. Darwiche and Ginsberg [13] and Darwiche [14] also give a
set o axioms defining the essential functional properties of a (partial) support function.
Stern [51] shows that the support Φ(H) = ev(H) complies with all these axioms.

In the FBST, the support values, Φ(H) = ev(H), are computed using standard
probability calculus on Θ which has an intrinsic conditionalization operator. The
computed e-values, on the other hand, have a possibilistic summation, i.e., the e-
values in favor of a composite hypothesis H = A∨B, is the most favorable e-value of
in favor of each of its terms, i.e., ev(H) = max{ev(A), ev(B)}. It is impossible however
to define a simple scaling operator for this possibilistic support that is compatible with
the FBST’s e-value, ev, as it is defined.
Hence, two belief calculi are in simultaneous use in the full Bayesian significance

testing setup: ev constitutes a possibilistic partial support structure coexisting in
harmony with the probabilistic support structure given by the posterior probability
measure in the parameter space.
Requirements (V) and (VI), i.e. no ad hoc artifice and possibilistic support, find

a rich interpretation in the juridical or legal context, where they correspond to the
some of the most basic juridical principles, see Stern [51].
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Onus Probandi is a basic principle of legal reasoning, also known as Burden of
Proof, see Gaskins [19] and Kokott [31]. It also manifests itself in accounting through
the Safe Harbor Liability Rule:
“There is no liability as long as there is a reasonable basis for belief, effectively

placing the burden of proof (Onus Probandi) on the plaintiff, who, in a lawsuit,
must prove false a defendant’s misstatement, without making any assumption not
explicitly stated by the defendant, or tacitly implied by an existing law or regulatory
requirement.”
The Most Favorable Interpretation principle, which, depending on the context, is

also known as Benefit of the Doubt, In Dubito Pro Reo, or Presumption of Innocence,
is a consequence of the Onus Probandi principle, and requires the court to consider
the evidence in the light of what is most favorable to the defendant.
“Moreover, the party against whom the motion is directed is entitled to have the

trial court construe the evidence in support of its claim as truthful, giving it its most
favorable interpretation, as well as having the benefit of all reasonable inferences
drawn from that evidence.”

2.5 Sensitivity and Inconsistency

For a given prior, likelihood and reference density, let η = ev(H; p0, Lx, r) denote
the e-value supporting H. Let η′, η′′ . . . denote the e-value with respect to references
r′, r′′ . . .. The degree of inconsistency of the e-value supporting H, induced by a set
of references, {r, r′, r′′ . . .} is defined by the index

I {η, η′, η′′ . . .} = max {η, η′, η′′ . . .} −min {η, η′, η′′ . . .}

The same index can be used to study the degree of inconsistency of the e-value
induced by a set of priors, {p0, p′0, p′′0 . . .}. One could also study the sensitivity of the
e-value to a set of vitual sample sizes, {1n, γ′n, γ′′n . . .}, γ ∈ [0, 1], corresponding to
scalled likelihoods, {L,Lγ′

, Lγ′′
. . .}.

This intuitive measure of inconsistency can be made rigorous in the context of
paraconsistent logic and bilattice structures, see Abe et al. [1], Alcantara et al. [2],
Arieli and Avron [3], Costa [7], Costa and Subrahmanian [8] and Costa et al. [9], [10],
[11].
The bilattice B(C,D) = ⟨C ×D,≤k,≤t⟩, given two complete lattices, ⟨C,≤c⟩, and

⟨D,≤d⟩, has two orders, the knowledge order, ≤k, and the truth order, ≤t, given by:

⟨c1, d1⟩ ≤k ⟨c2, d2⟩ ⇔ c1 ≤c c2 and d1 ≤d d2

⟨c1, d1⟩ ≤t ⟨c2, d2⟩ ⇔ c1 ≤c c2 and d2 ≤d d1

The standard interpretation is that C provides the “credibility” or value in favor
of a hypothesis (or statement) H, and D provides the “doubt” or value against H.
If ⟨c1, d1⟩ ≤k ⟨c2, d2⟩, then we have more information (even if inconsistent) about
situation 2 than 1. Analogously, if ⟨c1, d1⟩ ≤t ⟨c2, d2⟩, then we have more reason to
trust (or believe) situation 2 than 1 (even if with less information).
For each of the bilattice orders we define a join and a meet operator, based on

the join and the meet operators of the single lattices orders. More precisely, ⊔k and
⊓k, for the knowledge order, and ⊔t and ⊓t, for the truth order, are defined by the
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folowing equations:

⟨c1, d1⟩ ⊔k ⟨c2, d2⟩ = ⟨c1 ⊔c c2, d1 ⊔d d2⟩ , ⟨c1, d1⟩ ⊓k ⟨c2, d2⟩ = ⟨c1 ⊓c c2, d1 ⊓d d2⟩

⟨c1, d1⟩ ⊔t ⟨c2, d2⟩ = ⟨c1 ⊔c c2, d1 ⊓d d2⟩ , ⟨c1, d1⟩ ⊓t ⟨c2, d2⟩ = ⟨c1 ⊓c c2, d1 ⊔d d2⟩

The “unit square” bilattice, ⟨[0, 1]× [0, 1],≤,≤⟩ has been routinely used to repre-
sent fuzzy or rough pertinence relations, logical probabilistic annotations, etc. The
lattice ⟨[0, 1],≤⟩ is the standard unit interval, where the join and meet coincide with
the max and min operators, ⊔ = max and ⊓ = min.
In the unit square bilattice the “truth”, “false”, “inconsistency” and “indetermina-

tion” extremes are t, f , ⊤, ⊥, whose coordinates are given in Figure 2.3. As a simple
example, let region R be the convex hull of the four vertices n, s, e and w, given in
Figure 2.3. Points kj, km, tj and tm are the knowledge and truth join and meet,
over r ∈ R.

In the unit square bilattice, the degree of trust and degree of inconsistency for
a point x = ⟨c, d⟩ are given by BT (⟨c, d⟩) = c − d, and BI (⟨c, d⟩) = c + d − 1, a
convenient linear reparameterization of [0, 1]2, to [−1,+1]2. Figure 2.3 also compares
the credibility-doubt and trust-inconsistency coordinates.
Let η = ev(H), and η = ev(H) = 1 − ev(H). The point x = ⟨η, η⟩ in the unit

square bilattice, represents herein a single e-value. Since BI(x) = 0, such a point is
consistent. It is also easy to verify that for the multiple e-values, the definition of
degree of inconsistency given above, is the degree of inconsistency of the knowledge
join of all the single e-values points, i.e.,

I(η, η′, η′′ . . .) = BI (⟨η, η⟩ ⊔k ⟨η′, η′⟩ ⊔k ⟨η′′, η′′⟩ . . .) .

Negation type operators are not an integral part of the bilattice structure but,
in the unit square, one can define negation as ¬ ⟨c, d⟩ = ⟨d, c⟩, and conflation as
−⟨c, d⟩ = ⟨1− c, 1− d⟩, so that negation reverses trust, but preserves knowledge, and
conflation reverses knowledge, but preserves trust.
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Figure 2.3: credibility-doubt and trust-inconsistency coordinates

As an example of sensitivity analysis we use the HW model with the standard uni-
formative references, the uniform and the maximum entropy densities, represented by
[1, 1, 1] and [0, 0, 0] observation counts. Between these two uninformative references,
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we also consider perturbation references corresponding to [0, 1, 1], [1, 0, 1] and [1, 1, 0]
observation counts. Each of these references can be interpreted as the exclusion of a
single observation of the corresponding type from the observed data set.

3 3.5 4 4.5 5 5.5 6 6.5 7
0.85

0.9

0.95

1

Ev(
H)

Hardy−Weinberg symmetry: Yes

3 3.5 4 4.5 5 5.5 6 6.5 7
0

0.05

0.1

0.15

0.2

0.25

0.3

log of sample size, log2(n)

Ev(
H)

Hardy−Weinberg symmetry: No

Figure 2.4: Sensitivity analysis

The e-values in the example are calculated using two sample proportions, [x1, x2, x3]
= n[1/4, 1/4, 1/2] and = n[1/4, 1/2, 1/4]. The first exhibits the HW hypothesis sym-
metry, the second does not. The log 2 of sample size, log2(n), ranged from 3 to 7.
In Figure 2.4, the e-values corresponding to each choice of reference, are given by
an interpolated dashed line. The interpretation of the vertical interval (solid bars)
between the dashed lines is similar to that of the usual statistical error bars. However,
the uncertainty represented by these bars does not have a probabilistic nature, being
rather a possibilistic measure of inconsistency, defined in the partial support structure
given by the FBST e-value, see Stern [52].

3 FBST Formal Structures

By a Full Bayesian Significance Test (FBST) Structure, we mean a quintuple

M = {Θ, H, p0, pn, r} , where

� Θ is the parameter space of an underlying statistical model (S,Σ(S), Pθ);

� H : θ ∈ ΘH ⊆ Θ is a hypothesis on θ; and

� p0, pn and r are, respectively, the prior, the posterior and the reference probability
densities on Θ, all with respect to the same σ-finite measure µ on a measurable
space (Θ,Σ(Θ)).

In the sequel we often use a relaxed notation, writing the hypothesis, H, instead of the
set ΘH defining it. Within a FBST structure, the following definitions are essential:
- The posterior Surprise function, s(θ), relative to the structure’s reference density,

r(θ), and its constrained and unconstraind suprema are defined as:

s(θ) = pn(θ)/r(θ) ,

s∗ = s(θ∗) = supθ∈H s(θ) , ŝ = s(θ̂) = supθ∈Θ s(θ) .
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- The Truth Function or cumulative surprise distribution, W : R+ 7→ [0, 1], and the
the Untruth Function of M , W (v), are defined as:

W (v) =

∫
{s(θ)≤v}

pn(θ)µ(dθ) , W (v) = 1−W (v) .

- The Truth Value, ev(H), or e-value supporting the hypothesis H in M , and the
Untruth Value, ev(H) or e-value against H, are defined as:

ev(H) = W (s∗) , ev(H) = W (s∗) = 1− ev(H) .

As we will see in the next sections, it is not possible to obtain the truth value of
a complex hypothesis only from the truth values of its elementary constituents. It
is possible, however, to obtain upper and lower bounds for the truth value of the
complex hypothesis from the truth values of its elementary constituents.
We will also see that it is possible to obtain the truth function, W , of a com-

plex structure, from the truth functions, W j , of its elementary constituents, and
the constrained supremum, s∗, of the complex structures surprise function from the
elementary suprema, s∗j .
Since ev(H) = W (s∗), the pair (W, s∗) will be referred to as the Truth Summary

of the structure M .
Since we will be dealing in this paper, exclusively with complex hypotheses in an

independent setup, we close this section by establishing the precise meaning of this
framework. By an independent setup we mean that the FBST structures correspond-
ing to the complex hypothesis H, M = {Θ, H, p0, pn, r}, and to each of its elementary
constituent hypotheses, Hj , M j = {Θj , Hj , pj0, p

j
n, r

j}, j = 1, . . . k, bear the following
relationships between their elements:
- the parameter space, Θ, of the underlying statistical model, (S,Σ(S), Pθ), is the

product Θ1 ×Θ2 × . . .×Θk;
- H, is equivalent to a logical composition (conjunctions and disjunctions) of H1,

H2, . . ., Hk;
- pn and r, are probability densities with respect to the product measure µ =

µ1×µ2× . . .×µk on (Θ,Σ(Θ)), where µj denote the σ-finite measure on (Θj ,Σ(Θj))
with respect to which pj0, p

j
n and rj are densities ; and

- the probability densities pn and r are such that

pn(θ) =
∏k

j=1
pjn(θ

j), θ = (θ1, . . . , θk) ∈ Θ , and

r(θ) =
∏k

j=1
rj(θj), , θ = (θ1, . . . , θk) ∈ Θ.

4 Truth-Values Inequalities for Conjunctions

In this section we shall investigate, within the independent setup, the question of
whether the truth value of a complex hypothesis, H, can be obtained from the truth
values of its elementary constituents, H1, H2, . . ., Hk. We consider the case of
a conjunctive composite hypothesis, that is, the case in which H is equivalent to
H1 ∧H2 ∧ . . . ∧Hj .
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In this case only bounds can be obtained for the truth and untruth values of H,
from the corresponding truth and untruth values of the elementary constituents, Hj :

Proposition 4.1: If H is equivalent to H1 ∧H2 ∧ . . . ∧Hk, then∏k

j=1
ev(Hj) ≤ ev(H1 ∧H2 ∧ . . . ∧Hk) , and

∏k

j=1
ev(Hj) ≤ ev(H1 ∧H2 ∧ . . . ∧Hk).

In order to prove proposition 4.1, the following lemmas will be needed:
Lemma 4.2: For any conjunctive composite hypothesis H with elementary con-

stituents H1, H2, . . . Hk,

s∗ = supθ∈H s(θ) =
∏k

j=1
supθj∈Hj sj(θj) =

∏k

j=1
s∗j .

Proof: Since for θ ∈ H, sj(θj) ≤ s∗j , for 1 ≤ j ≤ k, s(θ) =
∏k

j=1 s
j(θj) ≤

∏k
j=1 s

∗j

so that s∗ ≤
∏k

j=1 s
∗j . On the other hand, if for ϵ > 0 and s =

∏k
j=1(s

∗j − ϵ), there

must exist θ ∈
∧k

j=1 H
j such that s(θ) =

∏k
j=1 s

j(θj) >
∏k

j=1(s
∗j−ϵ). Consequently,

supθ∈H s(θ) >
∏k

j=1

(s∗j − ϵ), and the result follows by making ϵ → 0.
Lemma 4.3: ∏k

j=1
W j(vj) ≤ W (

∏k

j=1
vj) ,

where W j , 1 ≤ j ≤ k, and W are the truth functions of M j , 1 ≤ j ≤ k, and M ,
respectively.
Proof: Let G : Rk

+ 7→ [0, 1] be defined as

G(v1, . . . , vk) =

∫
{s1(θ1)≤v1,...,sk(θk)≤vk}

pn(θ)µ(dθ) .

Since s =
∏k

j=1 s
j , µ =

∏k
j=1 µ

j , and{
s1(θ1) ≤ v1, . . . , sk(θk) ≤ vk

}
⊆{∏k

j=1
sj(θj) ≤

∏k

j=1
vj
}

=

{
s(θ) ≤

∏k

j=1
vj
}
,

it follows that ∏k

j=1
W j(vj) = G(v1, . . . , vk) ≤ W (

∏k

j=1
vj) .

Proof of Proposition 4.1: In the inequality of Lemma 4.3, replacing each vj by s∗j ,
1 ≤ j ≤ k, and then using Lemma 4.2, the first result in proposition 4.1 follows. The
same argument proves the other assertion.
Consequently, if H is equivalent to H1 ∧ H2 ∧ . . . ∧ Hk, the truth values of the

elementary constituent hypotheses give us lower and upper bounds for the truth value
of the complex hypothesis. More precisely,
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Figure 3. Subplots 1,2: W j , s∗j , and ev(Hj), for j = 1, 2;
Subplot 3: W 1 ⊗W 2, s∗1s∗2, ev(H1 ∧H2) and bounds;

Subplot 4: Structure M3 is an independent replica of M2,
ev(H1) < ev(H2), but ev(H1 ∧H3) > ev(H2 ∧H3).

Proposition 4.4: If H is equivalent to H1 ∧H2 ∧ . . . ∧Hk, then∏k

j=1
ev(Hj) ≤ ev(H1 ∧H2 ∧ . . . ∧Hk) ≤ 1−

∏k

j=1
(1− ev(Hj)) , and∏k

j=1
ev(Hj) ≤ ev(H1 ∧H2 ∧ . . . ∧Hk) ≤ 1−

∏k

j=1
(1− ev(Hj)).
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In the null-or-full support case, that is, when, for 1 ≤ j ≤ k, s∗j = 0 or s∗j = ŝj ,
and the truth values of the simple constituent hypotheses are either 0 or 1, the bounds
in proposition 4.4 are sharp. In fact, it is not hard to see that the composition rule
of classical logic holds, that is,

ev(H1 ∧ . . . ∧Hk) =

{
1 , if s∗1 = ŝ1 . . . s∗k = ŝk

0 , if, for some j = 1 . . . k, s∗j = 0

In the example below, we show that the inequality in proposition 4.4 can, in fact
be strict.
Example 4.5: In the third, first and second subplots of Figure 3, we have the graphs

of truth functions corresponding, respectively, to the complex hypothesis H1 ∧ H2

and to its elementary constituents, H1 and H2. Note that while ev(H1) = 0.5 and
ev(H2) = 0.7, ev(H1∧H2) = 0.64, which is strictly grater than ev(H1)ev(H2) = 0.35.

5 The Truth Operation for Conjunctions

In this section we shall investigate, also within the independent setup, the question
of whether the truth function of the FBST structure corresponding to a complex
hypothesis, H, can be obtained from the truth functions of the FBST structures
corresponding to its elementary constituents, H1, H2, . . ., Hk. As in section 3, we
consider the case of a conjunctive composite hypothesis, that is, the case in which H
is equivalent to H1 ∧H2 ∧ . . . ∧Hj .
Definition 5.1: Given two probability distribution functions G1 : R+ 7→ [0, 1] and

G2 : R+ 7→ [0, 1]. Their Mellin convolution, G1 ⊗ G2, is the distribution function
defined by

G1 ⊗G2(v) =

∫ ∞

0

∫ v/y

0

G1(dx)G2(dy) =

∫ ∞

0

G1(v/y)G2(dy) .

In probabilistic terms, the Mellin convolution G1 ⊗ G2 gives us the distribution
function of the product, of two independent random variables, X and Y , with dis-
tribution functions, G1 and G2, respectively, see Kaplan and Lin [28], Springer [50]
and Williamson [59]. From this interpretation, commutativeness and associativeness
of Mellin convolution, ⊗, follows immediately. Furthermore, if G1,G2, . . .Gk, are
distribution functions defined on R+, their Mellin convolution is defined as⊗

1≤j≤k

Gj = G1 ⊗G2 ⊗ . . .⊗Gk(v) = G1 ⊗ (G2 ⊗ (. . .⊗ (Gk−1 ⊗Gk(v))

Lemma 5.2: For a conjunctive hypothesis H,

H =
∧k

j=1
Hj , W =

⊗
1≤j≤k

W j .

Proof: 5.2 follows straight from the definition of W .
In view of the above result, we shall refer to the Mellin convolution, in the present

context, as the Truth Operation.
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In order to show that, together with the truth operation, truth summaries, (W j , s∗j),
1 ≤ j ≤ k, efficiently synthetize the independent setup information, in the sense that
the truth value of a complex hypothesis H can be obtained, the following lemma
comes in handy.
Proposition 5.3: If H is a complex hypothesis with elementary constituents

H1, H2, . . . Hk, and (W j , s∗j), 1 ≤ j ≤ k, are their corresponding truth summaries,
the truth value of H is given by

ev(H) = W (s∗) =
⊗

1≤j≤k

W j

(∏k

j=1
s∗j

)
.

Proof: Immediate, from Lemmas 4.1 and 5.2.

6 Disjunctive Normal Form

Let us now consider the case where H is Homogeneous and expressed in Disjunctive
Normal Form, that is:

H =
∨q

i=1

∧k

j=1
H(i,j) ,

M (i,j) = {Θj , H(i,j), pj0, p
j
n, r

j} .

Let us also define s∗(i,j) and ŝ(i,j) as the respective constrained and unconstrained
suprema of s(θ(i,j)) on the elementary hypotheses H(i,j).

Proposition 6.1:

ev(H) = ev

(∨q

i=1

∧k

j=1
H(i,j)

)
= W

(
supqi=1

∏k

j=1
s∗(i,j)

)
=

maxqi=1 W

(∏k

j=1
s∗(i,j)

)
= maxqi=1 ev

(∧k

j=1
H(i,j)

)
Proof: Since the supremum of a function over the (finite) union of q sets, is the

maximum of the suprema of the same function over each set, and W is monotonically
increasing, the result follows.
Proposition 6.1 asserts the Possibilistic nature of the FBST truth value, that is,

the e-value of a disjunction is the maximum e-value of the disjuncts, see Stern [51],
Klir and Folger [30] and Zadeh [61].
It is worth mentioning that the present article does not abridge the most general

composition cases of nested or heterogeneous structures, that is, the cases in which
composite hypotheses are simultaneously assessed in heterogeneous sub-structures of
(possibly) different dimensions. The following example indicates that this is not a
trivial matter:
Example 6.2: Let m = argmaxj=1,2 ev(H

j) and H be equivalent to (H1∨H2)∧H3.
Is it true that ev(H) =

max{ev(H1 ∧H3), ev(H2 ∧H3)} = ev(Hm ∧H3) ?

Interestingly the answer is in the negative. In the third and forth subplots of Figure 3
we have the graphs of the Truth Functions corresponding, respectively, to the complex
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hypothesis H1 ∧H3 and H2 ∧H3, where the structure M3 is an independent replica
of M2. Observe that ev(H1) = 0.5 < ev(H2) = 0.7, but while ev(H1 ∧H3) = 0.64,
ev(H2 ∧H3) = 0.49.

7 Final Remarks and Future Research

This paper gives a theoretical framework for the compositionality problem in the con-
text of parametric statistical hypothesis testing, based on the FBST e-value, ev(H).
Forthcoming papers illustrate several applications, like simultaneous calibration of
measurement procedures, and psychometric analysis on learning experiments, see
Stern [53], [54], [55], [56], Foerster [18] and Piaget [46].
Forthcomming papers will also detail the implementation of computational proce-

dures for estimating the truth function, W (v), 0 ≤ v ≤ ŝ, by Markov Chain Monte
Carlo (MCMC). Such procedures require only minor adaptations, with small compu-
tational overhead, of the MCMC for estimating ev(H) = W (s∗), see Gilks et al. [22],
Evans and Swartz [17] and Stern and Zacks [58].
Forthcoming articles work on applications using the results obtained in this paper

for testing complex hypotheses that are conditionally independent, in the context of
Dirchlet-Multinomial models, Bayesian networks, and structural analysis, see Cozman
[12] and Jensen [26], and MacDonald [34]. All these applications rely on conditional
indepencence and decoupling, a pivotal concept in the discussion of causal relations
in the context of mathematical statistics, see Pearl [37] and Stern [55], [56].
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