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Abstract

Energy nonconservation is a well-known feature of collapse theo-
ries of quantum mechanics. In this paper, I argue that the heating
effect of collapse theories can be used to realize superluminal signaling.
Possible implications of this new result are also briefly discussed.

Energy nonconservation is a well-known feature of collapse theories of
quantum mechanics including the continuous spontaneous localization (CSL)
model and the gravity-related collapse models such as the Diósi-Penrose (DP)
model (Ghirardi and Bassi, 2020). The localization of the wavepacket of a
quantum system in space amounts to an increase in the energy of the sys-
tem, and thus conservation of energy is violated (Pearle, 2000). This effect
of energy increase or heating has been investigated by analyzing existing ex-
periments and conducting new experiments (Carlesso et al, 2022). Although
these experiments constrain the parameter values in the CSL model and the
DP model, they do not exclude the possibility of such energy nonconserva-
tion. In this paper, I will argue that the heating effect of collapse theories
can be used to realize superluminal signaling. Possible implications of this
new result will be also discussed.1

Consider two ensembles of identically prepared measured systems. In
the first ensemble, the wave function of each system is random, being |0〉

1In a previous paper, I argued that collapse theories with a solution to the tails problem
in principle permit superluminal signaling (Gao, 2022).
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or |1〉 with the same probability 1/2, where |0〉 and |1〉 are two different
eigenstates of an observable of the system such as different spin states. In
the second ensemble, the wave function of each system is also random, but
being 1√

2
(|0〉+ |1〉) or 1√

2
(|0〉− |1〉) with the same probability 1/2. These two

ensembles have the same statistical density matrix ρ = 1
2
|0〉 〈0|+ 1

2
|1〉 〈1|. In

standard quantum mechanics, it is impossible to distinguish between these
two ensembles.

However, the two ensembles can be distinguished in collapse theories due
to the existence of the heating effect. The reason is as follows. When the
systems in the first ensemble are input one by one to a measuring device
that measures the observable of which |0〉 and |1〉 are two eigenstates, no
collapse of the wave function happens. While when the systems in the second
ensemble are input one by one to this measuring device, the collapse of
the wave function will happen. According to collapse theories such as the
CSL model or the DP model, the energy of the measuring device will not
increase due to the first measurements, but it will increase due to the second
measurements. In other words, the first measurements will not lead to the
heating of the measuring device, but the second measurements will do. Then,
we can distinguish the two measured ensembles by detecting the heating effect
in principle.

Here it is worth noting that the (mean) energy of a quantum system will
continuously increase over time due to the continuous expansion and collapse
of its wave function. This means that the energy of the above measuring
device will also increase after the first measurements. However, the second
measurements will induce more collapse of the wave function and thus result
in more energy increase or heating. Then, the second measurements will still
cause more heating of the measuring device than the first measurements. In
an extreme case where the measuring time for each measured system is so
short that it can be ignored, the first measurements will cause no heating
of the measuring device, while the second measurements will cause heating
of the measuring device due to the collape of the wave function during the
measurements.

Once two ensembles with the same density matrix can be distinguished,
superluminal signaling can be realized. Consider a usual Bell-like experiment.
There are two observers Alice and Bob who are in their separate laboratories
and share an ensemble of EPR pairs of spin 1/2 particles in the spin singlet
state:

1√
2

(|↑〉1 |↓〉2 − |↓〉1 |↑〉2). (1)

Alice measures the spin of particles 1 at angle z or x, and Bob measures the

2



spin of particles 2 always at angle z. These two measurements are spacelike
separated. When Alice measures the spin of particle 1 at angle z, the state of
spin of particle 2 in the z direction will be either |↑z〉2 or |↓z〉2 with the same
probability 1/2. While when Alice measures the spin of particle 1 at angle
x, the state of spin of particle 2 in the z direction will be either 1√

2
(|↑z〉2 +

|↓z〉2) or 1√
2
(|↑z〉2 − |↓z〉2) with the same probability 1/2. Now if these two

ensembles of particles 2, which have the same statistical density matrix, can
be distinguished, then Alice can send a signal to Bob by measuring particles
1 at angle z or x, and Bob can also identify the signal by measuring particles
2 at angle z. This means that superluminal signaling can be realized. Since
Alice’s and Bob’s measurements are spacelike separated, the superluminal
signaling is instantaneous in a preferred Lorentz frame.

It has been demonstrated that collapse theories prohibit superluminal
signaling (see, e.g. Ghirardi et al, 1993). The above analysis is not inconsis-
tent with the existing proofs. The reason is as follows. These proofs consider
only the results of measurements represented by the whole post-measurement
wave functions and their probability distribution. They do not consider the
forms of these post-measurement wave functions. Due to the existence of dy-
namical collapse process, the form of the post-measurement wave function for
a measurement of an eigenstate of the measured observable is different from
that for a measurement of a superposition of eigenstates of the measured ob-
servable. In particular, the post-measurement wave function in the latter case
will contain more high-momentum components than the post-measurement
wave function in the former case, although they are both localized, repre-
senting the same result of measurement. As argued above, the difference of
energies for these two cases can be used to distinguish two ensembles with
the same density matrix and further realize superluminal signaling.

It can be seen that besides the heating effect, other non-interferometric
tests of collapse models may also be used to realize superluminal signaling
(Carlesso et al, 2022). In collapse theories, although interferometric experi-
ments cannot distinguish two ensembles with the same density matrix, non-
interferometric experiments can distinguish them. The essential reason is
that measurements of an ensemble of random superpositions of eigenstates
of the measured observable will induce more collapse of the wave function
than measurements of an ensemble of random eigenstates of the measured
observable and thus the former will cause stronger non-interferometric effects
such as a stronger heating effect than the latter, although the two ensembles
have the same statistical density matrix. Note that the above mechanism
of superluminal signaling is still based on the stochastic nonlinear evolu-
tion of the wave function introduced in collapse theories, and it is not based
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on the definite nonlinear evolution of the wave function, which can lead to
superluminal signaling when combining with wave-function collapse, as al-
ready demonstrated by several authors (Gisin, 1989, 1990; Polchinski, 1991;
Czachor, 1991).

There are three possible ways to respond to the above result (when as-
suming the result is valid). The first way is to admit that collapse theories
with energy nonconservation permits superluminal signaling and try to con-
duct new feasible experiments to test this result. Maybe few people will take
this way. The second way is to build and test collapse models which satisfy
the principle of conservation of energy (see Gao, 2013, 2017, chap.8 for an
example). This may be an interesting direction of research for the proponents
of collapse theories. However, it is possible that these models may also have
other non-interferometric effects that can help realize superluminal signaling.
This needs a further deep analysis. The third way is to take this result as a
no-go result for collapse theories. Some opponents of collapse theories may
choose this way.

It has been recently argued that the many-worlds interpretation of quan-
tum mechanics (MWI) also violates conservation of energy (Carroll and Lod-
man, 2021). If this is true and this effect of energy nonconservation can also
be measured, then it seems that we can also use this effect to realize super-
luminal signaling in MWI in a similar way as above. But I doubt that their
result is valid, since the expectation value of energy cannot be measured for
a single quantum system.

To sum up, I have argued that the effect of energy nonconservation in
collapse theories of quantum mechanics can be used to realize superluminal
signaling. It remains to be seen if one can formulate a collapse model which
satisfies conservation of energy and avoids superluminal signaling.
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