
 

 

 

The Language of Proofs: A Philosophical Corpus Linguistics Study of 

Instructions and Imperatives in Mathematical Texts 
Fenner Stanley Tanswell & Matthew Inglis 

 

Published version available on request or can be accessed online here: 

https://link.springer.com/referenceworkentry/10.1007/978-3-030-19071-2_50-1  

 

Abstract 
A common description of a mathematical proof is as a logically structured sequence of assertions, 

beginning from accepted premises and proceeding by standard inference rules to a conclusion, which is 

the theorem to be proved. Does this description match the language of proofs as mathematicians write 

them in their research articles? In this chapter, we use methods from corpus linguistics to look at the 

prevalence of imperatives and instructions in mathematical preprints from the arXiv repository. We find 

thirteen verbs that are used most often to form imperatives in proofs, and that these show up significantly 

more often within proofs than in the surrounding mathematical writing. We also show that there are 

many more verbs used to form a diverse selection of instructions in proofs. These findings are at odds 

with the view of proofs as sequences of assertions. Instead, we argue in favour of the recipe model of 

proofs: that proofs are like recipes, giving instructions for mathematical actions to be carried out.   

 

1. Introduction 
 

One of the central principles of the philosophy of mathematical practices is to embrace, analyse and 

understand the real (and often messy) features of mathematics as a living subject. A project like this is 

necessarily interdisciplinary, relying on history, sociology, anthropology, psychology, cognitive science, 

education, argumentation studies, etc. to identify and study the salient features of mathematics. Here, 

we will use methods from corpus linguistics to study the language used in modern mathematics, and 

especially proofs. 

Despite the central importance of attending to the realities of practices, our understanding of 

what proofs are really like is, in the existing literature, typically only informed by modern and historical 

case studies, and often by anecdote and personal familiarity. While we do not dispute the value of these, 

they can only provide part of the picture. In this chapter, we begin to supply another part through the 
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systematic, large-scale, computational analysis of mathematical texts. Specifically, we will analyse texts 

from the arXiv, a pre-print server for mathematics research articles. 

We will investigate the relationship between the language used in written, textual mathematics, 

and how we should understand what proofs are. In particular, we will look at the use of instructions in 

proofs. One way that instructions are issued in mathematics texts is in sentences in the imperative mood. 

A sentence in the imperative mood instructs or commands that some action be carried out, such as “Go 

to your room”; “Eat your greens”; and “Do as you’d be done by”. The use of the imperative mood can also 

be found in mathematics, such as “Suppose that the inductive hypothesis holds”; “Let I be a proper ideal 

of A”; and “Notice that x is a member of y”. While the presence of instructions and imperative mood 

sentences in mathematical writing has been observed and discussed to some extent, there has been no 

systematic investigation of their relative frequency in modern mathematical proofs, and only to a limited 

extent the philosophical implications they have.  

The central questions we will address through corpus linguistics concern the frequency and 

diversity of the instructions given in proofs in modern mathematical writing. In other words, we are asking 

how common various imperatives are, and how broad the range of permissible imperatives is. 

 There are several reasons to look specifically at the use of the imperative mood in mathematics. 

First of all, it contributes to philosophical debates on the nature of proof and rigour, since it tells us about 

how written proofs are currently presented in research articles. Secondly, it is relevant to the 

epistemology of mathematics, since the potential ways that knowledge is gained from imperatives, which 

instruct us to carry out actions, might be importantly different to knowledge from other kinds of 

sentences. Thirdly, the existence of imperatives in mathematical writing points us to a different class of 

speech acts being used in proofs, and thereby raises questions about what the function of written proofs 

might be. Fourthly, it contributes to an overall picture of mathematical style and the language used in 

professional mathematics, which has impacts in mathematics education on how students are taught to 

read and write proofs. Finally, it adds to the practical efforts to embed computer assistants into 

mathematical practice, by showing what computers need to be able to read and produce in order to 

engage in mathematics alongside mathematicians. 

 The structure of this chapter is as follows. In section 2 we shall outline the recipe model of proofs, 

under which a proof provides a recipe of instructions for the reader to follow. In section 3 we will look at 

the background of existing literature discussing the use of instructions and imperatives in mathematics. 



 

 

In section 4 we will present our corpus study: 4.1 describing corpus linguistics more generally and the 

body of texts we are working with; 4.2 offers our hypotheses to test based on the recipe model and the 

existing literature; 4.3 describes the methods; and 4.4 goes through the various results we obtained. 

Section 5 will offer an empirically informed discussion of the philosophical questions in light of the results. 

 

2. The Recipe Model of Proofs 
 

In this section, we will describe the recipe model of proofs, as defended by Tanswell (forthcoming). This 

model stands in contrast to the standard model of proof, on which proofs are seen as sequences of 

assertions, which are stepwise inferences from premises to a conclusion, and all of which are declarative 

statements. From that perspective, all of the activity is reduced to acts of inferring, and the steps in the 

proof represent the results of those inferences. The standard model of proof has many virtues; however, 

it also often mischaracterises both what proofs look like in practice and how they are engaged with by 

practitioners. The recipe model of proof is intended to more faithfully account for these aspects of 

mathematical proofs. This alternative model develops an analogy that mathematical proofs are akin to 

cooking recipes. This section will fill out the important aspects of this analogy. Our summary of the recipe 

model will focus on four key points: (1) the instructions given by the text; (2) the language used to issue 

them; (3) the relationship between the text and the activity it tells you to carry out; and (4) the epistemic 

significance of proving. In this section we will discuss these four points.1  

 On point (1), the reason to compare proofs to recipes is that this emphasises the ways in which 

proofs are used to issue instructions, either explicitly or implicitly, for us to carry out a series of 

mathematical actions. On the recipe model, we propose that the actions that a proof instructs the 

audience to perform are far more diverse than inferring alone, and can include instructions for 

constructing useful mathematical objects, for manipulating objects and equations, for hypothetically 

considering mathematical assumptions, for fixing notations, for directing the readers’ attention, for 

structuring their reasoning, and for many more possible epistemic actions.  

 For point (2), the emphasis of the analogy to recipes is on the similarity of the language used to 

issue instructions. There are, of course, large variations in the presentation of both cooking recipes and 

 
1 As we are interested in written textual proofs here, we set aside a fifth point by Tanswell (forthcoming) 
concerning the use of diagrams to issue instructions. 



 

 

mathematical proofs. However, in cooking recipes the predominant mood is usually the imperative mood, 

directly listing instructions to follow to carry out the recipe.2 The recipe model thus predicts that proofs 

will similarly include imperative sentences to offer instructions to the reader. However, two disanalogies 

are salient. First of all, recipes might sometimes include elements describing the state of the food, but in 

mathematics there is reason to find more declarative content because we are likely to see some aspects 

of the traditional view of proofs, where they do contain declarative statements with inferences from one 

to the next. Secondly, as a matter of style, cooking recipes tend to use more purely imperatival language, 

while in maths can also make use of the “We [verb]” constructions. Nonetheless, in both disanalogies the 

instructions are still there: in the latter case explicitly, but in the case of inferring from statement to 

statement, the proof is still implicitly instructing the reader to undertake those mathematical acts of 

inference. This means the recipe model is not dependent on there being many imperatives, but does 

certainly look more plausible if there are. We expect that there are plenty of proofs without imperatives, 

but if there are very few proofs that contain any imperatives at all, that would be a bad sign for the recipe 

model generally. 

 The next point (3) is about how both proofs and recipes should be understood in terms of the 

relationship between a written text and the actions they describe. A recipe is intrinsically linked to the 

activity of making, and by this analogy we should understand proofs to be the same. A proof is a device 

for recording and communicating how to carry out some piece of mathematics, but it is the correct 

performance of the relevant actions that constitutes mathematical practice. On this model, therefore, we 

prioritise the doing of mathematics over the written artefact of a proof itself. Putting it another way: the 

recipe model makes proofs secondary to proving. Here, the activity of proving is construed broadly, such 

that the author(s) of the proof have proved the theorem, then use a proof to communicate to their readers 

how to carry out the mathematical activity and thereby establish the truth of the theorem. Similarly, we 

expect the author of a recipe to have cooked it themselves, then use the recipe to enable the audience to 

reproduce it. 

 The final point (4) concerns epistemology: one of the central functions that proofs play in 

mathematics is epistemic: a correct and rigorous proof is meant to establish a theorem to be known with 

certainty.3 But an important question for the standard model is: how does a presented proof link to 

 
2 Detailed considerations of the language used in cooking recipes in different contexts can be found in Gerhart et 
al.’s (2013) edited volume. 
3 This is again a rather strong traditional conception of the epistemic function of proofs, and we agree with De 
Toffoli (2020) that this needs to be tempered to properly reflect practice. 



 

 

knowledge at all? What is connecting the proof on the page (or wherever) with the knowledge in your 

head? A plausible story would already have to be recipe-like, where the proof tells you exactly which 

inferences to carry out. But as soon as the proof has any inferential gaps (Fallis 2003; Hamami 2014; 

Andersen 2020), which many proofs do, an additional account is needed. The recipe model’s answer to 

this question is more direct: that knowledge is gained through the mathematical activity that we are 

instructed in by proofs, with this activity acting as a key intermediary to explain the epistemic functioning 

of proofs. Furthermore, the recipe model also expands the traditional conception of mathematical 

knowledge, which is largely about propositional knowledge, to also include mathematical knowledge-

how. In order to cook from a recipe, one needs to know how to perform the relevant actions; likewise, to 

carry out a proof one needs to know how to perform the mathematical actions it tells you how to do. In 

fact, the mixture of imperative and declarative forms suggests that the knowledge gained from proving 

will be a combination of knowledge-how and knowledge-that. (For a longer development of this epistemic 

picture see Tanswell (2016, ch. 4) and Tanswell (forthcoming, Section 6).) 

 The recipe model of proofs gives us concrete predictions on our two main areas of investigation, 

concerning the frequency and diversity of imperatives, namely that they should be common and diverse. 

They should be common because the issuing of instructions is one of the primary functions of proofs. They 

should be diverse because the possible space of mathematical activities that one could be instructed to 

carry out is large. These hypotheses are set out in section 4.2 and tested in section 4.4. 

 

3. Background on Mathematical Language 
 

In this section we will survey previous discussions of the use of instructions and imperatives in 

mathematics. We will group these into two broad categories, based on the sources of the discussion: 1) 

mathematics education and philosophy; and 2) formalised mathematics.  

 

3.1. Mathematics Education and Philosophy 

 



 

 

Researchers in Mathematics Education and Philosophy have both, at times, noted the use of the 

imperative mood in mathematical proof texts. However, in many cases this has been just parenthetically 

or tangentially. We will set out a number of examples from these literatures chronologically. 

 David Pimm, in Speaking Mathematically (1987), analysed the kinds and effects of the language 

used in the mathematics classroom. As an aside, he remarked on mathematical imperatives: 

“There is also the equally common use of the imperative in mathematical discourse (e.g. consider, 

suppose, or define) [...] Another form is `Let x be the number of …’ Who is giving permission for 

this to be done? The mathematical imperative […] is a topic worthy of considerable attention.” 

(Pimm 1987, p. 72). 

However, Pimm does not go on to give them any such attention, merely suggesting that the impersonal 

style allows mathematics texts to supress and omit the agent who is carrying out the actions. This is a 

clear case of a parenthetical mention of the imperative mood in mathematics.  

 The work of Brian Rotman (1988, 1993) included the unusually careful examination of imperatives 

in mathematics. His broader project is one of semiotic analysis of mathematical signs, which is the analysis 

of how signs come to have meaning in mathematical texts. He considers imperatives to be a major feature 

of mathematical writing, and in establishing the shared meanings used in mathematics: 

“But proof in turn involves the idea of an argument, a narrative structure of sentences, and 

sentences can be in the imperative rather than the indicative. […] Mathematics is so permeated 

by instructions for actions to be carried out, orders, commands, injunctions to be obeyed — 'prove 

theorem T', 'subtract from y', 'drop a perpendicular from point P onto line L', 'count the elements 

of set S', 'reverse the arrows in diagram D', 'consider an arbitrary polygon with k sides', and 

similarly for the activities specified by the verbs 'add', 'multiply', 'exhibit', 'find', 'enumerate', 

'show', 'compute', 'demonstrate', 'define', 'eliminate', 'list', 'draw’, 'complete', 'connect', 'assign', 

'evaluate', 'integrate', 'specify', 'differentiate', 'adjoin', 'delete', 'iterate', `order', 'complete', 

'calculate', 'construct’, etc. that mathematical texts seem at times to be little more than 

sequences of instructions written in an entirely operational, exhortatory language.” (Rotman 

1988, p. 8) 

He argued that imperatives in mathematics can be separated into two distinct kinds: inclusive imperatives, 

which are for creating shared mathematical discourse (by introducing shared standards, notations, 

referents etc.), and exclusive imperatives, which take a shared mathematical discourse for granted and 



 

 

operate within it. Rotman takes “consider”, “define”, “prove” and synonyms of these to be inclusive, 

constructing a shared domain of meaning, while other mathematical verbs merely tell us to operate on 

the shared domain of meanings that is already established. For example, “consider the metric space (X,d)” 

tells us to use X as a set with a distance measure d obeying the definitions of a metric space, constructing 

shared meanings for the author and reader for the coming mathematical text, while “add the distances 

d1 and d2” merely instructs the reader to carry out an operation within the space, where meaning for the 

variables has already been established. This distinction is important for understanding the semiotics of a 

mathematics text and how some imperatives work to create shared mathematical discourses, but we 

don’t think the distinction coincides with the epistemic and pragmatic functions of different kinds of 

imperatives. We also note that while Rotman listed many potential mathematical instructions, there is no 

study as to how common these actually are. We will carry out such a study below. 

 Besides the creation of shared meaning in mathematical texts, another feature of the use 

imperatives in mathematical texts is to mark who is part of the mathematical community, something 

discussed by Candia Morgan (1996). She says: 

“One common characteristic of academic mathematics texts (and some school texts) is the 

conventional use of imperatives such as consider, suppose, define, let x be. Like the use of we, 

these implicate the reader, who is addressed implicitly by the imperative form, in the 

responsibility for the construction of the mathematical argument. The use of imperatives and of 

other conventional and specialist vocabulary and constructions characteristic of academic 

mathematics marks an author's claim to be a member of the mathematical community which uses 

such specialist language and hence enables her to speak with an authoritative voice about 

mathematical subject matter. At the same time it constructs a reader who is also a member of 

the same community and is thus in some sense a colleague (although the nature of this 

relationship may vary according to the type of action demanded)” (Morgan 1996, p. 6) 

Her analysis was primarily focused on how these issues of community membership work for students of 

mathematics who are not yet members of the community but are in the process of being inducted and 

enculturated into it. However, she did not further concern herself with imperatives in particular. 

 Paul Ernest has also discussed imperatives in mathematics in multiple places. For example, in his 

book Social Constructivism as a Philosophy of Mathematics (1998) he stated: 



 

 

“Thus mathematical texts comprise specific assertions and imperatives directed by the writer to 

the reader.” (Ernest 1998, p. 170) 

We are broadly sympathetic to this view of proofs as, at least in part, functioning as communicative 

devices to transfer knowledge of mathematical reasoning from author to reader. In more recent work, 

citing Rotman, Ernest went so far as to say: 

““Imperatives are orders that instruct or direct actions either inclusively, such as: let us …, 

consider …, or exclusively, such as: add, count, solve, prove, etc. Imperatives occur more 

frequently in mathematics than in any other academic school subject.” (Ernest 2018, p. 191) 

We note that this is a direct empirical claim, offered without evidence, and one that could potentially be 

refuted by other disciplines which use imperatives in their written work such as chemistry, philosophy, or 

geology (cf. Swales et. al. 1998). Below we will carry out one study of the frequency of imperatives in 

proofs in mathematical research articles.  

The work of Rotman was also extended and challenged by Roy Wagner (2009; 2010) in his detailed 

semiotic study of Gödel’s proofs of the first incompleteness theorem. Wagner discussed the imperatives 

both explicit and implicit in the text, and incorporated these into a nuanced picture of the mathematical 

subject, agency, and the relationship these have to a mathematical text. One major difference from our 

findings below is that Wagner finds very few explicit imperatives: 

“First, there are very few imperatives in these texts. Perhaps the imperative mood was considered 

ill-suited for civilised written communication in the Vienna and Princeton circles. Perhaps it never 

occurred to writers in these circles to dominate a mathematical text with the imperative mood. 

Instead of imperatives, we have the frequent use of the indicative mood in both active and passive 

voices, often attributed to the character we.” (Wagner 2009, p. 48) 

It is notable, but maybe not surprising, that the modern writing style is different in some ways to Gödel’s 

in the 1930s. Wagner’s work also provides a nice contrast for what can be achieved with different 

methodological approaches: Wagner uses detailed analysis of a single mathematician’s writing, while the 

corpus linguistics approach below looks for patterns across thousands of papers by thousands of authors. 

 A notable difference related to action-based vocabulary was also found by Mejía-Ramos & Inglis 

(2011). On a proof-evaluation task with undergraduate students, they found that changing the question 

from “Does the argument prove the claim?” to “Is the argument a proof of the claim?” had a significant 



 

 

impact on how the students evaluated a specific visual argument. The students were more willing to agree 

that the argument proved the claim than that it was a proof for the claim. The researchers built the case 

that the verb form was more connected to judgments of conviction, while the noun form was more 

connected to judgments of validity. They related this to issues of semantic contamination: where the 

everyday meanings of words affect our understanding of them in more formal and technical settings like 

mathematics (cf. Tanswell 2018, section 4). 

 As a final example, Lew and Mejía-Ramos (2019) investigated the norms of mathematical writing 

by testing the reactions of mathematicians and students to cases where those norms were flouted. One 

of their stimuli was an ill-formed imperative: “Suppose (S·R)-1 such that [...]”. They found that professional 

mathematicians especially responded very negatively to the ungrammatical phrasing of this. For the 

mathematicians, imperatives must be used correctly and grammatically, and they appear to have strong 

conventions on how that is achieved. In contrast, students often did identify that the construction didn’t 

sound right, but could not clearly express why (Lew & Mejía-Ramos 2019, p. 134). 

From a different direction, Paul Halmos (1970) provided a classic style guide for mathematics, and 

discussed both imperatives in maths and the use of the first-person plural “we”. Regarding imperatives 

he said: “A frequently effective and time-saving device is the use of the imperative. `To find P, multiply q 

by r.’ `Given p, put q equal to r.’” (Halmos 1970, p. 141).4 He also proceeded to explain using the first-

person plural to convey instructions on how a proof goes:  

“There is nothing wrong with the editorial “we”, but if you like it, do not misuse it. Let “we” mean 

“the author and the reader” (or “the lecturer and the audience”). Thus, it is fine to say “Using 

Lemma 2 we can generalize Theorem 1”, or “Lemma 3 gives us a technique for proving Theorem 

4”.” (Halmos 1970, p. 141) 

Indeed, it is discussions of the first-person plural “we” that are found most often in mathematical style 

guides. For example, Krantz likewise stated that “The custom in modern mathematics is to use the first 

person plural, or “we”. It stresses the participatory nature of the enterprise, and encourages the reader 

to push on.” (Krantz 1997, p. 33). A similar point was made by Knuth et al. (1989, p. 2).  

 

 
4 Somewhat amusingly, the immediately prior sentence is: ““Most (all?) mathematical writing is (should be?) 
factual; simple declarative sentences are the best for communicating facts.” (Halmos 1970, p. 141). 



 

 

3.2. Formalised Mathematics 
 

There is a large area of research dedicated to formalised mathematics, where the central goal is to provide 

formalised counterparts of informal proofs that can be formally verified in one of the proof-checkers, such 

as Lean, Coq, Mizar, or Isabelle. Standardly, these come with their own language, software, and libraries 

of completed formal proofs that can be called on in later proofs. There are two obvious goals to this 

formalisation project: firstly, to check the existing mathematical literature, and secondly, to develop 

software that can assist mathematicians in new work.  

Especially for the second goal, it is important that the formal language used by the computer is 

accessible to human mathematicians. For this reason, there is some research on the language of everyday 

mathematics focusing on how to formalise it. Oddly enough, researchers here sometimes seem to 

downplay the significance of imperatives in proofs. We will look at three examples of work in this area, 

and what they say with regards to imperatives in mathematical writing. 

The oldest we consider is the work of de Bruijn (1994). His goal was to set out the “mathematical 

vernacular”, which is meant to be the native language of mathematics, described as “[...] the very precise 

mixture of words and formulas used by mathematicians in their better moments” (de Bruijn 1994, p. 865). 

This is immediately contrasted to the “official”, purely formal language of mathematics. De Bruijn then 

claimed that this mathematical vernacular is in essence the same as the rigorous part of mathematics: 

“Roughly speaking, the [mathematical vernacular] part of a piece of mathematics will be the 

rigorous part.” (ibid., p. 867). 

This is then used to exclude various common parts of mathematical texts from the mathematical 

vernacular as he sees it, such as historical remarks, textual signposting, references to the syntactical form 

of the presented equations, and indications of how to reproduce omitted material. Included in this list is 

“Commands, like `show that’.” (ibid. p. 867). Hereby de Bruijn excludes imperatives from the domain of 

rigorous mathematics. 

 This exclusion is also present in the book The Language of Mathematics by Mohan Ganesalingam 

(2010). The purpose of the book was to analyze the language used in mathematical texts in keeping with 

a broadly generative tradition, to give a formal, objective, and precise syntactic structure and associated 

semantics. Ganesalingam said that he will restrict himself to the language used in “more rigorous, careful 

textbooks” (ibid., p. 7) and only the part in the formal mode, where “[a] sentence is in the formal mode if 



 

 

and only if it consists only of assertions about mathematical objects and about mathematical facts, so that 

its semantic content is purely truth-conditional and can be completely captured in an appropriate logic” 

(ibid. p. 7). This clearly precludes imperatives, since they are not assertions, nor do they have a purely 

truth-conditional semantics.5 Ganesalingam thus stated that: 

“[T]he language of mathematics consists purely of assertions about mathematical objects. As a 

result, textual mathematics predominantly uses the third person singular and third person plural, 

to denote individual mathematical objects (or propositions) and collections of mathematical 

objects (or propositions) respectively. The first person plural (‘we’) is also used in a more 

restricted capacity, with a limited and potentially closed class of verbs, typically to refer to the 

mutual intent of the author and reader.” (ibid. p. 21). 

This seems to allow constructions similar to imperatives (e.g., “We suppose”, “We assume”, “We obtain”, 

etc.”) but not the imperative forms (“Suppose”, “Assume”, “Obtain”). Of course, if we restrict ourselves 

to the formal mode, which by definition is exclusively about mathematical assertions, then the absence 

of imperatives must follow. Nonetheless, this doesn’t justify these bolder claims about the language of 

mathematics being limited to this class of sentences, nor even claims about rigorous textbooks.6 

 Below we will demonstrate that imperatives are found in mathematical writing as found on the 

arXiv. Whether any given article on the arXiv is part of rigorous mathematics or not must surely be 

debatable, but there is no doubt that such a corpus must represent a collection of paradigm examples of 

the language of mathematics. 

 
5 The formal mode is contrasted with the informal mode: “The informal mode consists of commentary on the 
ongoing mathematics. Individual sentences in the language of mathematics tend to be either entirely formal or 
entirely informal, though there are exceptions. It is worth noting that mathematicians have very strong intuitions 
about the distinction between these two modes.” (p. 7). Below we will be showing that imperatives are a part of 
normal mathematical language, but it bears emphasising that no evidence is provided for the existence or 
reliability of these intuitions, and even if mathematicians do have robust intuitions about the difference between 
doing the mathematics and commentary on it, that does not necessarily align with the characterisation he gives of 
the difference between the formal and informal modes. 
6 A similar criticism can be levelled concerning another exclusion: that of modality in mathematics. Ganesalingam 
said: “[...] textual mathematics is much more restricted than natural language. [...] Mathematical truths are true in 
all possible worlds, and therefore there is no modality.” (pp. 22-23). However, Hodges (2013) demonstrated that 
there are many uses of modals in mathematical writing but that these don’t refer to metaphysical necessity and 
possibility.  



 

 

 In contrast to de Bruijn and Ganeslingam, formalised mathematics does not need to exclude 

imperatives. Here is an example of a simple proof in Lean7: 

theorem even_add : ∀ m n, even m → even n → even (n + m) := 

take m n, 

assume ⟨k, (hk : m = 2 * k)⟩, 

assume ⟨l, (hl : n = 2 * l)⟩, 

have n + m = 2 * (k + l), 

by simp [hk, hl, mul_add], 

show even (n + m), 

from ⟨_, this⟩. 

 

The details of how the system works are not important here; all we need is to see the imperatives at work 

in the proof. What is remarkable is that the imperatives serve the dual functions of both acting as 

imperatives in a proof in the sense outlined above for the human mathematician, but also acting as 

imperatives as commands for the computer (in the imperative programming tradition).  

The system Naproche-SAD (De Lon et al. 2020) similarly incorporates many imperatives into its 

“controlled natural language”, a fact notable because of the system’s explicit aim to emulate normal 

mathematical language. Here is an example of Naproche-SAD text taken from (Frerix et al. 2018, p. 3): 

Theorem 1. Assume f is holomorphic and the domain of f is a region. If f has a local maximal point 

then f is constant.  

Proof Let z be a local maximal point of f. Take ε such that Bε(z) is a subset of Dom(f) and |f[w]| ≤ 

|f[z]| for every element w of Bε(z). Let us show that f is constant on Bε(z). Assume the contrary. 

Then f[Bε(z)] is open. We can take δ such that Bδ(f[z]) is a subset of f[Bε(z)]. Therefore there exists 

an element w of Bε(z) such that |f[z]| < |f[w]|. Contradiction. end. Hence f is constant. 

Again, observe the natural use of imperatives to construct the proof here. The creators of Naproche are 

amongst a relatively small set of researchers who also use linguistics to study mathematical language, and 

we hope that our empirical work below will support its further development. 

 
7 This example is taken from https://leanprover.github.io/introduction_to_lean/ written by Jeremy Avigad, Gabriel 
Ebner and Sebastian Ullrich. (Accessed 11/02/2021). 

https://leanprover.github.io/introduction_to_lean/


 

 

 

4. A Corpus Linguistics Study 

4.1. Corpus Linguistics 

 

The driving idea underlying the philosophy of mathematical practice is to ensure that our philosophical 

claims about mathematics are true and accurate of real mathematics, not just some idealised version of 

it. This means that we need to give empirical grounding to any factual claims about mathematical practice 

that we rely on (e.g. Aberdein & Inglis 2019). In this chapter we are focused on the language of 

mathematics, and especially on the language used in proofs. In our review of the literature, however, the 

main evidence used by previous authors is their own experience as mathematicians (e.g. Ganesalingam 

2010) or the detailed analysis of isolated texts (e.g. Wagner 2009, 2010). Here, we take a very different 

approach: we will examine a large number of mathematics texts using the tools of corpus linguistics.  

 A corpus in this sense is a substantial body of texts that are machine-readable to allow for 

computational analysis. In our case, we are using the corpus assembled by Alcock et al. (2017) and used 

by Mejía-Ramos et al. (2019) in their study of language relating to explanation in mathematics. The corpus 

is made up of all of the papers uploaded to the arXiv in the first four months of 2009 to the Mathematics 

category. The arXiv is an online repository for texts from mathematics, physics, computer science, and 

various related disciplines, which acts as the main pre-print server for large sections of research 

mathematics, especially in English-speaking mathematics communities. Many mathematicians upload 

copies of their academic papers as pre-prints to make them freely accessible online. There is a level of 

selection before papers can appear on the arXiv, partially moderated by volunteered and partially by an 

automated system, and the assigned category for the paper does have social implications, as described 

by Reyes-Galindo (2016). 

 Texts on the arXiv are predominantly written in the TeX/LaTeX mark-up language, then compiled 

into pdf format. In order to process these into a form useable for computational linguistics (plain texts 

without extraneous code), the texts were processed to strip out the TeX/LaTeX code while preserving the 

structure of the written language, as described by Mejía-Ramos et al. (2019, p. 249-250).8 This posed the 

challenge of what to do with inline mathematics, such as “Let f: X →Y be a bijection.” The problem is that 

 
8 This process was automated, and Chris Sangwin has made the code available online at 
https://github.com/sangwinc/arXiv-text-extracter (accessed 23/02/2021). 

https://github.com/sangwinc/arXiv-text-extracter


 

 

the same mathematics can be coded in many different ways in LaTeX, which speaks against leaving the 

code as is because the linguistics software would not be able to identify the different codes as 

representing the same syntactic unit. However, simply removing it would interfere with some of the 

linguistics tools (measuring word proximities, for example). As such, they opted to replace all inline 

mathematics with the tag “inline_math”. For the above example, this gives us ““Let inline_math be a 

bijection.” The result of this processing is sufficient for our needs too because we are interested in the 

natural language components and not the mathematical content.9 

 In total, the corpus then contained 6,988 files and 30,892,695 words of mathematics (with 

231,400 distinct words). As a useful subset of this for our purposes, we also have a corpus that is made 

up of only the proofs found in these papers, containing 3,268 files and 4,973,892 words of mathematics 

(with 48,025 distinct words).10 This will allow us to focus specifically on the mathematical writing found in 

written proofs in these papers. Simple subtraction then also lets us compare the proof-only corpus to the 

non-proof parts of the mathematical texts. The non-proof part therefore contains 25,918,803 words. 

Henceforth, we refer to the main corpus as the All-math corpus, and the proof only part as the Proof-only 

corpus, and the result of subtracting the Proof-only from the All-math will be called the Non-proof corpus.  

 Something important to be sensitive to in analysing these texts is how representative they are of 

textual mathematical proofs more generally. Since the arXiv is the standard repository for pre-print papers 

for many mathematical researchers, we do take it that the corpus is fairly representative. However, this 

must come with some caveats. The first is the most obvious: we are conducting this research in English, 

and so our results apply to mathematical texts written in English. They may still be applicable to nearby 

languages, where we believe many similar linguistic conventions apply for mathematical writing, but the 

current study would not reveal that. Secondly, language and other factors will in turn affect who submits 

their papers to the arXiv, and there are obvious demographic and geographic biases likely to arise in whose 

 
9 The decision of how to treat the mathematical content of the papers does affect the kinds of results we get. If we 
were to instead convert mathematical content to verbalised counterparts (i.e., x^2+5 becoming “x squared plus 
five”) this would lead to different frequencies, and “dilute” the natural language parts in the corpora. However, 
there is certainly no unique or uncontroversial algorithm for this process of verbalisation, so our approach here is 
the pragmatically obvious one. 
10 Selected automatically as everything between “\begin{proof}” and “\end{proof}”. This is the most common way 
to write proofs, but may have left out a small minority of written proofs coded differently. 



 

 

work we are seeing.11,12 Thirdly, since these are pre-print articles primarily from professional 

mathematicians, the mathematical language we are analysing is theirs and not, say, that of mathematics 

students or teacher, nor the language used in proofs in maths textbooks or other media (such as spoken 

proofs, or proofs on blackboards in seminars). Finally, the papers are all from 2009, so represent a 

snapshot of proof writing from that year.13 We do not believe there has been any substantial change since 

then, but writing and presentational styles are always changing to some degree. Obviously, the results of 

our study will not immediately generalise to historical mathematical writing either. 

 

4.2. Hypotheses 
 

Based on the previous sections, we can form various hypotheses about the prevalence of instructions and 

imperatives in our corpus.  

 In the literature from mathematics education and philosophy, we saw that the researchers like 

Pimm (1987), Rotman (1988, 1993), Morgan (1996) and Ernest (1998, 2018) broadly claimed: 

(H1): Imperatives are common in mathematical proof texts. 

The recipe model of proof also predicts that (H1) will hold. 

 In the works of De Bruijn (1994) and Ganesalingam (2010), however, the opposite claim was made 

regarding imperatives. They saw rigorous proofs as only containing assertions about mathematical 

objects. So, the opposite hypothesis can be considered: 

(H2): There are no imperatives in mathematical proof texts. 

The recipe model of proof will predict that (H2) will not hold. 

 
11 The arXiv themselves do have various statistics about submissions and downloads at 
https://beta.arxiv.org/help/stats (accessed 23/02/21) but these do not include demographic or geographic data.  
12 For more on how social features of mathematics can involve epistemic exclusion, see Rittberg et al. (2018) and 
Tanswell & Rittberg (2020). Indeed, Reyes-Galindo (2016) examines how the automated filtering of the arXiv is 
partially based on linguistic analysis, and can lead to the exclusion of certain researchers.  
13 They are also from only the first four months of 2009. We do not believe that the time of year makes a 
significant difference to writing styles, though it is possible it affects the demographics of who is submitting their 
papers to some small degree.  

https://beta.arxiv.org/help/stats


 

 

We also saw the mathematical style guides discussing the first person plural in mathematics. This 

can be used with the same verbs to form “We [verb]...” sentences, which can potentially also be used to 

give instructions for the reader to follow. We will test how common this is as the following hypothesis: 

(H3): The construction “We [verb]...” is common in mathematical proof texts. 

The recipe model of proof again predicts that (H3) will hold. 

Ganesalingam did note the use of the “We [verb]...” constructions (like “We suppose...”, “We 

assume...” etc.) but states that they are only used for a “limited and closed class of verbs”. Generalising 

to cover imperatives too, and putting this as a hypothesis: 

(H4): The verbs used in imperatives and the “We [verb]...” constructions in mathematical proof texts are 

drawn only from a limited and closed class of verbs. 

On the recipe model of proofs, proofs contain many instructions (be they explicit or implicit), and 

therefore the more diverse the selection of verbs the better for the model. As such, the recipe model of 

proofs predicts that (H4) does not hold. 

 In sum, (H1) and (H2) are about the frequency of imperatives in mathematical texts, while (H3) is 

about “We [verb]...” constructions. The hypothesis (H4) is about the diversity of verbs used to form 

mathematical imperatives. We believe that both of these can be used in mathematical texts to give 

instructions so will investigate both below. 

   

4.3. Methods 
 

We used Laurence Anthony’s AntConc software (Anthony 2020) and Yasu Imao’s CasualConc software 

(Imao 2020) to analyse the corpora.14 

We had two primary targets for investigation from our hypotheses: explicit imperatives and “We 

[verb]” constructions. Both of these have textual markers that we could use. For explicit imperatives, we 

could perform a case-sensitive search for capitalised verbs, as this is a reasonable and conservative 

operationalisation that will capture many imperatives (e.g. “Let...”, “Assume...”, “Suppose...”, 

 
14 The AntConc software is available online at https://www.laurenceanthony.net/software/antconc/ (accessed 
24/02/21) and CasualConc is available at https://sites.google.com/site/casualconc/ (accessed 06/03/21). 

https://www.laurenceanthony.net/software/antconc/
https://sites.google.com/site/casualconc/


 

 

“Construct...” all are formed with a capitalised verb to start the imperative sentence.) A drawback of this 

is that it will miss any imperatives constructed in different ways, such as “Firstly, suppose...”, but we did 

not have a systematic way to predict the idiosyncratic ways sentences may be constructed, and we believe 

that missing these did not alter our findings. For “We [verb]” constructions, the software allowed us to 

search for these strings directly. 

For both explicit imperatives and “We [verb]” constructions, we needed to identify the specific 

verbs we will investigate in the first place. We required some way to select these systematically, but the 

verbs most likely to be used in mathematical imperatives are typically mathematical keywords; we 

shouldn’t expect, for instance, that common mathematical imperatives would use the same verbs as 

imperatives in general English, so couldn’t use that as a guide. To solve this, we produced a list of the 500 

most common words in the All-math corpus and selected all of them that can ever be verbs in English. 

This gave a total of 91 possible verbs, listed in Table 1. One obstacle we faced was that many of the words 

have multiple meanings: for example, the word “set” is ambiguous between the verb form and the noun 

form, and is used in both senses in the corpora. The same held for many of the terms for mathematical 

objects, such as “group”, “ring”, “field”, and “structure”. A second obstacle is that some of these words 

were extremely unlikely to be used as verbs in the current context, such as “stable”, “like”, and “hand”. 

Finally, some of the verbs have existing functions in mathematics papers, such as “claim”, “step”, and 

“remark”.  

Table 1  

The 91 potential verbs among the 500 most common words in the All-Math Corpus. 

action construct free lie order satisfy step 

apply curve function like pair say structure 

assume define further limit part second study 

bound denote get map point see sum 

bundle do give measure present sense suppose 

call estimate graph model prime sequence take 

check exist group need process set term 

choose factor hand norm prove show time 

claim field have note rank side type 

complete figure hold number recall smooth use 

conclude find image observe remark space will 

condition fix introduce obtain respect stable work 

consider form let open ring state write 

  



 

 

 

 

To separate out the verbs used as imperatives in the corpus, we generated a file for each of the 

91 verbs containing all capitalised instances of that verb in the All-math corpus and their contexts (which 

shows six words either side of the verb). For example, an entry from the file for the verb “choose” is: 

[circle of a copy of inline_math.  Choose a base point inline_math on inline_math,] 

By examining these files, we separated the 91 verbs into three classes: 1) Those where the capitalised 

form was used exclusively (or almost exclusively) as an imperative; 2) those where there was a mixture of 

imperatives and other uses; 3) those where there were no imperatives. Separating the verbs into the three 

lists using the context files gave us the three categories reported in Table 2. 

From here we performed a selection of analyses using the corpus linguistics software, reported below. 

 

4.4. Results 

4.4.1 Comparing Imperatives in the Proof-Only and Non-Proof Corpora 
 

Table 2  

The 91 verbs divided into three categories. 

Imperatives   Mixed   Non-Imperatives 

apply note   claim number   have hand respect structure 

assume observe   complete order   action hold ring term 

call obtain   do pair   bound image satisfy time 

check prove   estimate present   bundle lie second type 

choose recall   factor process   condition like see will 

conclude say   find rank   curve limit sense  
consider show   form set   exist need sequence  
construct suppose   get study   field norm side  

define take   give sum   figure open smooth  
denote use   group work   free part space  

fix write   map    function point stable  
introduce    measure    further prime state  

let    model    graph remark step  
 



 

 

To test (H1) and (H2) on explicit imperatives, we compared the frequency (per million words) of the 

capitalised verbs in our Proof-Only and Non-Proof corpora. We used only the verbs from the first category 

of Table 2 so that our operationalisation of using capitalised verbs to track sentences in the imperative 

mood will be accurate. Recall that the third category contained no imperatives, and the second category 

contained a mixture of imperatives and non-imperatives, which would interfere with the goal of the study. 

The results are displayed in Table 3. What we see is that the total frequency per million words for our 

selected verbs is 9406 in the Proof-Only corpus and 6854 in the Non-Proof corpus, a highly significant 

difference, Fisher’s exact test, p < .001.  

Table 3  

Comparing imperative frequencies per million words in the Proof-Only and Non-Proof Corpora. 

Verb Proof-Only  Non-Proof  

Let 4523 4035 

Suppose 944 512 

Note 929 681 

Consider 570 314 

Assume 556 339 

Recall 304 265 

Define 272 167 

Fix 255 106 

Denote 218 145 

Observe 213 92 

Choose 199 45 

Take 178 49 

Write 117 39 

Apply 53 6 

Use 28 9 

Call 14 11 

Introduce 11 9 

Construct 8 4 

Say 7 7 

Show 3 10 

Check 2 2 

Prove 1 4 

Obtain 1 0 

Conclude 0 0 

TOTAL 9406 6854 

 



 

 

 These results demonstrate that imperatives using common mathematical verbs appear more 

commonly within proofs than outside of proofs. If mathematical texts outside of proofs, as in the Non-

Proof corpus, are a reasonable baseline for imperatives in mathematical writing, then these results 

provide evidence for (H1) and against (H2).  

 The results here also show major variation in the prevalence of imperatives using different verbs. 

By far the most common is the imperative `Let...’, followed by `Suppose...’ and `Note...’, then by 

`Consider...’ and `Assume’. The imperatives using `Recall...’, `Define...’, `Fix...’, `Denote...’, `Observe...’, 

`Choose...’, `Take...’, and `Write...’ were also relatively common. Other verbs we searched for were all 

present to some degree, but were less common overall. The only three verbs that showed up as a higher 

frequency per million words in the Non-Proof corpus were `Show...’, `Prove...’, and `Conclude’. 

 

4.4.2 Comparing “We [verb]...” constructions in the Proof-Only and Non-Proof Corpora 
 

To test (H3) concerning the “We [verb]...” constructions, we took all 91 of the (possible) verbs from the 

top 500 most common words in the All-math corpus (i.e., all of the verbs found in Table 1), and looked for 

the “We [verb]” string in the Proof-Only and Non-Proof corpora. We made this case-sensitive to only look 

at instances where the “We” is capitalised, thus indicating the start of a sentence. The results are reported 

in Table 4.15 

The results here are more mixed than in the previous section. The two biggest entries are from 

`We have’ and `We will’, used to form the past and future tenses, so they are not in and of themselves 

giving implicit instructions, but could be used that way. Especially `We have’ has a diverse range of 

potential uses: it could describe carrying out an action in the past tense, as in “We have applied...”, or can 

be used to summarise as in “We have seen...”. It can be used in the present tense to emphasise tools, 

facts, or mathematical objects at our disposal at that point in the proof, as in “We have that...”. It can also 

be used to point forwards to set a shared target, as in “We have to [achieve some goal/carry out some 

procedure/etc.]”. These constructions can also be used in the abstracts of the papers, describing what the 

authors do in the paper, in which case the “we” is not being used to include the reader, unlike within a 

proof. Examining the corpus revealed examples of all of these constructions.  

 While the totals overall again find more “We [verb]” constructions in the Proof-Only corpus than 

the Non-Proof corpus (and this difference is again significant, Fisher’s exact test, p < .001), most of the 

difference can be accounted for just by the “We have” construction, which we just noted can be used in 

a variety of ways, so doesn’t tell us much about instructions being issued.  

 Looking more at the specific verbs, the more common imperatives we found above do not appear 

to be anywhere as common in the “We [verb]” form: none of the verbs used in the thirteen most common 

imperatives appear in this form more than 100 times per million words in the Proof-Only corpus. 

Nonetheless, several other verbs are more common in this form, especially “We claim”, “We conclude”, 

“We prove”, “We show”, and “We use”. What is notable about these constructions is that they appear to 

 
15 We have omitted all the verbs that returned no results. As such, the zero entries that do appear in the table are 
the result of rounding. 



 

 

be more structural than the verbs we found as imperatives, in that they are used to structure where the 

Table 4 

 Comparing “We [verb]” construction frequencies per million words in the Proof-Only and Non-Proof 
Corpora. 

Verb Proof-Only Non-Proof  Verb Proof-Only Non-Proof 

We apply 51 18  We model 0 0 

We assume 59 73  We need 92 39 

We bound 3 1  We norm 0 0 

We bundle 0 0  We note 61 75 

We call 12 85  We number 0 0 

We check 11 3  We observe 30 20 

We choose 55 27  We obtain 65 35 

We claim 231 34  We open 0 0 

We complete 5 2  We order 1 1 

We conclude 137 41  We point 2 11 

We condition 0 0  We present 4 17 

We consider 95 108  We process 0 0 

We construct 21 16  We prove 128 69 

We define 96 140  We recall 32 70 

We denote 77 158  We remark 14 35 

We do 18 35  We satisfy 0 0 

We estimate 13 3  We say 9 147 

We factor 1 0  We see 40 22 

We find 12 16  We set 71 40 

We fix 37 24  We show 105 74 

We form 1 1  We smooth 0 0 

We further 8 10  We state 1 9 

We get 53 21  We structure 0 0 

We give 20 42  We study 3 23 

We group 1 0  We sum 1 1 

We have 666 348  We suppose 9 15 

We hold 0 0  We take 37 21 

We introduce 14 33  We term 0 0 

We let 31 27  We use 121 83 

We like 0 0  We will 318 387 

We limit 0 0  We work 3 7 

We map 0 0  We write 47 52 

We measure 0 0     

    TOTAL 2923 2522 

 



 

 

proof is aiming to get to, or (in the case of “We use”) what method or fact will be employed to get there.  

With regards to (H3), we did find plenty of “We verb” constructions in the Proof-Only corpus, 

suggesting that they are not uncommon, but we also didn’t find them to be overall more common than in 

the more general mathematical texts, as represented by the Non-Proof corpus. 

 

4.4.3 Imperative Frequency in Proof-Only Files 
 

In Section 4.4.1 we tested (H1) and (H2) by looking at the frequency of imperatives in proofs relative to 

their frequency in mathematical texts outside of proofs. To provide another angle on how common 

Table 5 

 Number of and percentage of files in the Proof-Only corpus containing the capitalised verb, alongside 
other keywords appearing at a roughly similar frequency for reference. 

Verb Number of files  % of files  Nearby word Number of files % of files 

Let 2692 82.4%  then 2706 82.8% 

Note 1486 45.5%  function 1477 45.2% 

Suppose 1250 38.3%  thus 1274 39.0% 

Consider 1186 36.3%  So 1186 36.3% 

Assume 1085 33.2%  bounded 1053 32.2% 

Recall 844 25.8%  know 843 25.8% 

Define 712 21.8%  simple 722 22.1% 

Fix 606 18.5%  action 598 18.3% 

Choose 541 16.6%  length 553 16.9% 

Denote 538 16.5%  precisely 544 16.7% 

Take 459 14.1%  always 465 14.2% 

Observe 447 13.7%  less 455 13.9% 

Write 343 10.5%  derivative 348 10.7% 

Apply 173 5.3%  block 173 5.3% 

Use 104 3.2%  convenient 122 3.7% 

Call 57 1.7%  congruent 54 1.7% 

Introduce 44 1.4%  Lagrangian 42 1.3% 

Construct 34 1.0%  walk 32 1.0% 

Say 27 0.8%  adopt 27 0.8% 

Check 7 0.2%  Nash 7 0.2% 

Show 5 0.2%  Method 5 0.2% 

Prove 5 0.2%  functionally 5 0.2% 

Obtain 2 0.1%  unpruned 2 0.1% 

Conclude 1 0.0%  Hamiltonianly 1 0.0% 

 



 

 

imperatives are, we now investigate the percentage of files they appear in. Recall that our Proof-Only 

corpus consists of 3,268 files. A file in our corpus contains all of the proofs from one file uploaded to the 

arXiv. Barring a minor complication, we can thus take this to give us a representation of what percentage 

of papers that contain proofs at all also contain a given imperative somewhere in those proofs.16 

 Once again, to look for imperatives we searched for the capitalised verbs from the first category 

in Table 2 using a case-sensitive search such that, for example, it will count `Consider’ and `consider’ 

separately.  

 The results are found in Table 5 in the left columns. To put the percentages in some context, we 

have included an arbitrarily selected word which appears in a similar percentage of the papers, listed on 

the right. 

 The results agree with the findings from Section 4.4.1, with the same set of verbs serving most 

often as imperatives in proofs. The results also show that these imperatives are not just common relative 

to non-proof mathematical texts, but also common in general, appearing in a substantial proportion of 

the files of the corpus, and therefore in a substantial percentage of the papers containing proofs. 

 

4.4.4 Imperative Diversity 
 

Our final hypothesis (H4) concerned the diversity of verbs used in imperatives and “We [verb]” 

constructions in mathematical proofs, alluding to Ganesalingam’s claim that they are drawn only from a 

limited and closed class of verbs. Our more fine-grained results from the previous sections already address 

this hypothesis to some degree.  

Of course, the truth of (H4) depends on what that class is. For example, the English language is 

finite, so on one reading the claim could be trivially true. We propose that a natural reading of 

Ganesalingam (2010) in light of our results would be to have the “limited and closed class of verb” be 

those that we found to be most common in Sections 4.4.1 and 4.4.3, namely: `let’, `consider’, `assume’, 

`denote’, `note’, `define’, `suppose’, `recall’, `write’, `take’, `choose’, `fix’ and `observe’. From our results 

in the previous sections, then, it is correct to say that a large number of the instructions in proofs are given 

with these verbs. This is clearer in the case of imperatives from Sections 4.4.1 and 4.4.3, but also the case 

in the “We [verb]” constructions.  

 
16 The minor complication is that if a paper was uploaded as multiple files, then it will remain as multiple files in 
our corpus. However, only files containing proofs at all will be included in the corpus, which reduces the frequency 
of this. Only a small minority of the files were uploaded this way, and this is conservative such that the effect on 
our results is that the percentage of files we report is a slight underestimate of the percentage of papers a given 
word appears in.  



 

 

However, the hypothesis of (H4) states that these verbs are the only ones used in instructions 

given by imperatives and “We [verb]” constructions. Above we found many other instances of verbs being 

used both as imperatives and in “We [verb]” constructions. Here, we offer two more pieces of evidence 

for there being a diverse number of instructions issued in mathematical proofs. 

First of all, in Section 4.3 we set aside 22 of our 91 verbs because in the All-Math corpus they were 

used in their capitalised form both as imperatives and in some other ways, which would’ve obscured the 

above studies. These were the verbs listed in the middle column of Table 2. Returning to these verbs, we 

searched for them in their capitalised forms in the Proof-Only corpus. Of these, 16 returned results that 

were clearly imperatives.17 For each of these we selected a clear example, displayed in Table 6. Given that 

these examples sound like normal written mathematics, this demonstrates further diversity of the verbs 

used as imperatives in the Proof-Only corpus. 

 
17 We avoid giving the numbers of imperatives because not all of the cases were clear, and mostly the numbers 
were low. That is not important, though, as here we are interested in diversity of imperatives rather than the 
frequency. 

Table 6 

Examples of imperatives from the Proof-Only corpus for the verbs found in the middle column of Table 2. 

Verb Example                 

Set Set the total degree equal to the sum of the bidegrees.         
Group Group the non-constant linear generators of inline_math so that […]       
Map Map this product to a neighborhood inline_math of the torus knot as follows […]     
Form Form the commutative cube in which the front and back faces are pullbacks, so that […]     

Order 
Order the eigenvalues of inline_math so that the inline_math eigenvalue of the spectrum  
of inline_math is […] 

Number Number the elements of inline_math.             
Get Get rid of the self-intersection as before to obtain as before.         
Give Give the knot inline_math an orientation inline_math.         
Find Find a partition of unity inline_math on inline_math subordinate to the cover inline_math.     
Sum Sum the estimates in the previous corollary.           
Do Do the above coarsening process for every element inline_math with inline_math.     
Complete Complete this elimination process, ending with inline_math.         

Pair 
Pair these elements and return to inline_math and repeat the process, skipping over any  
letters already paired. 

Estimate Estimate the difference on the right hand side of by the triangle inequality to find […]     
Study Study the case inline_math.             
Factor Factor inline_math as a product of prime ideals inline_math in inline_math.       

                    
 



 

 

The second way we chose to look at the diversity of verbs used as imperatives in proofs was using 

the mathematical verbs listed by Rotman in the quote in Section 3.1. We omit all of those that overlapped 

with the previous analysis. Like in Section 4.4.1, we compared the frequency per million words of the 

capitalised versions of the verbs between the Proof-Only and the Non-Proof corpora. The results are 

displayed in Table 7. These verbs appeared significantly more often per million words in proofs than 

outside of proofs, Fisher’s exact test, p = .006. 

One striking feature here is that the verbs suggested by Rotman are orders of magnitude less 

common than those selected by our method above, suggesting that while these may be mathematical 

Table 7 

Comparing the Rotman verb imperative frequencies per million words in the Proof-Only and Non-Proof 
Corpora. 

Verb Proof-Only Non-Proof 

Add 2.01 2.28 

Adjoin 0 0.08 

Assign 1.81 1.12 

Calculate 0.80 1.50 

Compute 2.41 6.29 

Connect 2.41 0.58 

Count 0 0.15 

Delete 0.60 0.81 

Demonstrate 0 0.04 

Differentiate 0.40 0.58 

Draw 0.60 0.77 

Drop 0 0.23 

Eliminate 0 0.12 

Enumerate 2.21 1.00 

Evaluate 0.20 0.62 

Exhibit 0 0.00 

Integrate 3.62 0.50 

Iterate 1.01 0.31 

List 0.40 2.16 

Multiply 7.84 0.93 

Reverse 0.20 0.58 

Specify 0 0.46 

Subtract 1.21 0.12 

TOTAL 27.74 21.22 

 



 

 

words broadly speaking, they are not particularly common ones. More importantly for (H4), we did find 

that many of them were present as imperatives in our Proof-Only corpus. Once again, this result suggests 

that many more verbs are amenable to being used as imperatives in mathematical proof texts. We thus 

reject (H4), as the class of verbs does not appear to be closed or limited. 

 

4.5 An Example 

It is easy to lose oversight of what these results look like in practice. To address this, and provide some 

reflection on the methodological choices made above, we will now demonstrate the use of imperatives 

and instructions in our corpus with an illustrative example. We will look at the preprint of the paper by 

Mazzeo & Rowlett (2015), selected as the chronologically first paper in our corpus to contain at least one 

proof. 

 Here is an excerpt from the introduction section of the paper. This contains three imperatives 

(“For simplicity, suppose”, “Let”, and “Note”) of which our analysis using capitalisation would have found 

two. There are also two “We [verb]” constructions (“We now explain” and “We assume”), of which we 

would have found one. Interestingly, in the context of an introduction, the “We [verb]” phrases are not 

acting to include the reader in epistemic actions, but instead are simply describing what the authors are 

doing. What is also noteworthy is that this paragraph is relatively high in instructional language, but is also 

proof-like in the sense that it is describing a piece of mathematical reasoning. Looking further through the 

Figure 8 An excerpt from the introduction of Mazzeo & Rowlett’s (2015) preprint. 



 

 

paper, this seems to be the case for a large number of the imperatives being used. Direct imperatives 

appear in theorem statements, lemma statements, numbered remarks, and in the long paragraphs of 

description of mathematical reasoning. Since our analysis placed all of those in the non-proof category, 

the results we have described are likely to understate the extent to which imperatives are characteristic 

of proofs in research papers, since this style of proof writing can spill over into the surrounding text.18  

 The first substantial proof is of Theorem 1.6, which spans over several pages. Here are its opening 

lines: 

The proof contains eight direct imperatives (using the verbs “decompose”, “note”, “write”, “set”, 

“choose”, and “let”), of which our analysis would have found five. In fact, we have not looked for 

imperatives using the verb “decompose” above, so this reinforces our finding of diversity of imperative 

phrases. The proof also contains ten instances of using “we” with a verb to indicate activities (using the 

verbs “construct”, “denote”, “see”, “defer”, “examine”, “write”, “prove”, “appeal”, and “find”). 

Surprisingly, only two of these were in the exact “We [verb]” form, and most were embedded in much 

more complicated sentence structures. This is coherent with our analysis that we did find “We [verb]” 

phrases in both the proof-only and the non-proof corpora, but suggests that further analysis might reveal 

a richer picture. Indeed, this proof also contains several phrases that suggest epistemic and mathematical 

actions in other ways: “For that, we may as well replace the upper limit of integration by [...]”, “To finish 

the proof, we must analyze the behaviour of [...]”, and “The decay of each of term as |λ| → ∞ is 

straightforward, so we can write [...]”. These three all make use of modal language, something examined 

 
18 Our thanks to a referee for pushing us to be explicit about this important point.  

Figure 9 An excerpt from the proof of Theorem 1.6 of Mazzeo & Rowlett’s (2015) preprint. 

 



 

 

by Hodges (2013). Computational corpus linguistics may be a suitable method for capturing these more 

complex constructions, but would require more advanced tools than we have used here.  

We also note that at the time of writing, Keith Weber (submitted) has carried out a “medium-

scale” analysis of the use of instructions and imperatives in the entirety of Kunen’s classic textbook Set 

theory: An introduction to independence proofs (1980). This will provide a useful piece of methodological 

triangulation for our results, something which Löwe & Van Kerkhove (2019) have argued is centrally 

important for empirical approaches to mathematical practice. While our computational analysis allows us 

to examine trends across a large number of papers, Weber’s approach does not rely on automation and 

thus allows him to find and analyse instructions our methods wouldn’t catch. Indeed, Weber is able to 

carry out an interesting investigation of the different kinds and functions of instructions he finds, providing 

different insights into the instructional language of proofs. Nonetheless, Weber’s results largely confirm 

our results, finding both a high frequency and broad diversity of instructions and imperatives in Kunen’s 

text. There are some differences in the exact distribution of the imperatives he finds, but this is easily 

explained by the fact that this is a single author with certain stylistic preferences. In light of Weber’s work, 

we can feel more confident that the various small methodological choices we have made above have 

delivered reliable results.  

 

5. Discussion 

Our analysis of the language used in a large number of mathematics papers allows us to make empirically 

informed contributions to the philosophy of mathematical practice, and especially questions concerning 

the nature of real, modern mathematical proofs. We now relate our findings to the philosophical debates 

discussed earlier in the chapter. 

 Recall that we were interested in the recipe model of proofs, which tells us that proofs are akin 

to recipes, commanding that we undertake various kinds of mathematical actions to perform a piece of 

reasoning. These actions were not limited to inferential actions, but also include constructing and 

manipulating mathematical objects, fixing notations, entertaining hypotheticals, structuring their 

reasoning, and more besides. Viewing proofs in this way has important implications for understanding the 

nature of proofs, the epistemology of proofs, the functions of proofs, how to best educate students to 

engage with proofs, and how to best integrate formal proof checkers into mathematical practice. As such, 



 

 

while it may appear to be a mere stylistic variation, we hold that the specifics of how proofs can be written 

is of substantial importance in the philosophy of mathematical practice. 

 Based on the recipe model, we predicted that imperatives and instructions are both common and 

diverse in mathematical proof texts. The results of our study certainly lend support to the recipe model 

because we did indeed find that imperatives and instructions are used often and using a broad range of 

verbs. However, there were a core set of more common imperatives using the verbs `let’, `consider’, 

`assume’, `denote’, `note’, `define’, `suppose’, `recall’, `write’, `take’, `choose’, `fix’ and `observe’. This 

core set of verbs make up the bulk of the imperatives we found in our study, suggesting that these 

imperatives are used in fairly standardised ways for particular mathematical instructions. Nonetheless, 

we found many different verbs used as imperatives in our corpus. While many of these were used less 

frequently, it does indicate that there is also the flexibility in written proofs to deploy a diverse selection 

of instructions using imperatives.  

 Finding broad empirical support for the recipe model of proofs is also beneficial for the epistemic 

picture underlying it. If proofs are giving us instructions to carry out, then mathematical knowledge is 

more intimately tied to knowledge-how than is standardly recognised.  

 Our results should also be of interest to the formal mathematics community. If part of the aim of 

formal proof checkers is to gain widespread use among mathematicians by making the formal tools better 

at reading and producing natural-sounding proofs, then we will need accurate information on how those 

proofs do and ought to look. The results in this chapter suggest that such natural-sounding formally-

verifiable proof should contain imperatives and “We [verb]” constructions, especially those most common 

verbs. 

 We should re-emphasise a note of caution from above. Our results are for papers from the arXiv, 

and so represent a particular kind of mathematical text. It is thus not clear whether they would generalise 

to other contexts, such as proofs in textbooks, classrooms, or seminars. We can speculate that journal 

proofs may be at the more formal end of mathematical language, and therefore we might expect greater 

flexibility in terms of the verbs used to form instructions in other contexts. Research articles are also a 

context where one assumes a great deal of competence from the reader, so we might also hope that 

proofs aimed more at teaching will include more imperatives as a communicative aid. 



 

 

 To conclude, we have made progress in investigating real mathematical proofs in a systematics 

and large-scale way. If we truly want our philosophy of mathematics to attend to the realities of practice, 

then these methods should be integral to uncovering what those realities are. 
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