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Abstract

We consider the long-term evolution of science and show how a ‘contagion of

disrespect’ – an increasing dismissal of research in subfields associated with

marginalized groups – can arise due to the dynamics of collaboration and

reputation (versus, e.g., preconceived notions of the field’s worth). This has

implications both for how we understand the history of science and for how we

attempt to promote diverse scientific inquiry.

1 Introduction

Why do scientific disciplines appear, disappear, merge together, or split apart? We

might point to major events: the creation of new journals and departments, significant

innovations, or new technologies. However, taking a social dynamics perspective, we can

also note that at the heart of things is a social process involving interactions among

∗We would like to thank audiences at the PSA 2022 and the Workshop on Agent-Based Models of
Epistemic Communities for feedback. Thanks also to members of the Notre Dame Reilly Center for
discussions on the Sun et al. paper, and to Mike Schneider and Jingyi Wu for comments.
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individual scientists, deciding who to collaborate with and on what topic. While it is

impossible to deny that big events play a role in shaping scientific inquiry, taking this

social dynamics perspective allows us see how interactions among scientists give rise to

broad, long-term trends in the evolution of science. Additionally, this perspective allows

us to study the long-term effects of processes that are generally only studied in the short

term, such as collaboration formation and reputation building.

As one instance of a broad historical trend, we will investigate the ‘contagion of

disrespect’, whereby research in subfields associated with marginalized groups is

increasingly dismissed as unimportant to the production of scientific knowledge

(Schneider et al., 2022). While factors such as biased evaluation of work and institutional

inequity surely play a role in this, we will show that collaboration dynamics are also

likely part of the story. As explained in section 2, there is often unequal division of credit

within collaborations according to social identity and a ‘rich get richer’ dynamic of credit

received for the products of these collaborations. To show how these factors can shape

broad patterns across scientific disciplines and give rise to a contagion of disrespect, we

provide an agent-based model. We build on a previous model of the social dynamics of

scientific disciplines, described in section 3, and add considerations of inequity, as

described in section 4. Implications of these results will be discussed in section 5.

2 Contagion of Disrespect

The ‘devaluation view’ of labor in sociology of employment states that a change in the

gender distribution of an occupation will lead to a change in the valuation of the work

done (Levanon et al., 2009). There seems to be a similar devaluation in science. Further,
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Schneider et al. (2022) describe a contagion of disrespect, where new results in fields

associated with marginalized groups are increasingly dismissed as unimportant to the

production of scientific knowledge. Though this phenomenon is less well-studied than the

devaluation view of labor, there are a few historical episodes that serve as ready

examples.

First, as described by Schneider et al. (2022), Child Study, which studied infant

cognitive development, arguably became less respected as women researchers took over.

In the 1870s and 1880s, various well-respected ‘men of science’ like Darwin began

publishing detailed accounts of their children’s psychological developments, and

encouraging others to do the same, leading to a booming interest in the field of Child

Study. However, since women had easier access to children (because they were in charge

of raising them), by the 1890s, scientifically-minded women like Millicent Shinn were

compiling extensive notes and providing valuable findings. Correspondingly, the field

diminished over the next 20 years and was eventually overshadowed by the field of

experimental psychology (Lorch and Hellal, 2010; von Oertzen, 2013).

The history of computer science arguably shows both a contagion of disrespect and a

reverse case, where respect increased as it became more male dominated. In the United

States, before World War 2, male ‘computers,’ or what we would today call

programmers, were given status as technical experts. During the war, however, women

took over this role, and “With feminization came a loss of technical status” (Light, 1999,

p. 460). As computer programming rose in popularity and importance during the war, it

was overwhelmingly viewed as clerical work for women that freed male engineers from

tedious calculations. It was considered less productive for knowledge or innovation than

male-dominated engineering, even though it required the same understanding of the
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hardware as well as a high level of mathematical skill. Following World War 2, women

were generally excluded from programming work and encouraged to be math teachers, or

some such, instead (Light, 1999). Computer programming today enjoys correspondingly

higher prestige than it did 70 years ago.

Though we do not have similar temporal data about changing demographic

compositions, there are plenty of other fields where arguably a dismissal is/was due to

their demographic composition. Just to name a couple: home economics, which among

other things tied the kitchen to the chemical laboratory and allowed women to be

professional academics (Stage and Vincenti, 1997), and indigenous ecology and forestry,

where valuable work could have been integrated into other work on similar questions

(Mason et al., 2012; Kimmerer, 2013). In what follows, we will tend to use the term

‘devaluation’ to refer to the general phenomena of scientific fields being dismissed due to

their demographic composition, while referring to cases where such fields are increasingly

dismissed over time as instances of a contagion of disrespect. (Though, as might already

be apparent, we will use the terms ‘field’ and ‘discipline’ interchangeably.)

Studying the contagion of disrespect is important. We stand to lose a lot if entire

areas of scientific research are dismissed, not because of any defect in their results, but

because of their demographic composition. So, how do we explain the devaluation of

work in these and other fields? One could appeal to particular roadblocks that exist or

existed in the past, such as lack of institutional access. While those barriers are certainly

an important part of the story, we want to show that, also, the social dynamics

surrounding collaboration can lead to the devaluation of certain fields. Studying these

dynamics allows us to look beyond particulars to see how (some) present reasons for

devaluation are both continuous with the past and likely to continue into the future. Of
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course, here we are focusing on academic collaborations, but this viewpoint can apply

more broadly.

3 The Social Dynamics of Science

Sun et al. (2013) provide an agent-based model to explore how collaboration dynamics

can shape broad patterns across scientific disciplines. The basic idea is that as scientists

go about collaborating and producing research, they create a network structure which

captures how different scientists are connected to each other. As an overview, in each

round of a simulation, there are three stages:

1. Publication: A new paper is published by a scientist, possibly with co-authors

2. Growth: There is some probability a new scientist enters the network

3. Landscape change: There is some probability fields merge together or split apart

The model starts with one scientist writing one paper. Then, as new scientists enter the

community, they enter into their own collaborations and the network builds up from

there. We will go through the above three stages in more detail now.

Publication: First, a new paper is published. A scientist, chosen uniformly at random

from those in the network, is one of the authors and may or may not add co-authors to

the paper. To capture the observation that people are more likely to collaborate with

people they have more frequently collaborated with in the past, adding co-authors is

done via a biased random walk. That is, when an author writes a paper, with

probability pw the walk stops and no co-authors are added. If the walk continues, with

probability 1− pw, the scientist decides where to step, i.e. which co-author to add. The
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author looks to all and only the people they have collaborated with previously, and

chooses one of them randomly, weighted according to how many times they have

co-authored in the past.

This newly added co-author becomes the ‘walker’ and the process continues. With

probability pw the walk stops, and if the walk continues, the new walker’s collaboration

history probabilistically determines who gets added to the collaboration. If a new

co-author is added, there is again a probability the walk stops, or that this third author

walks to one of their connections on the network and passes the baton to a yet a new

walker, and so on. (Though there is an order in which authors are added, this does not

affect anything in the model, e.g. the person who joins first temporally is not given first

author position.) This might seem like an odd way to determine sets of co-authors, but,

intuitively, it just abstracts away from all the various reasons to co-author with a person

— having similar interests, being from the same institution, etc. — and captures the

sum of all those reasons with the observation that a person is more likely to co-author

with someone they have more frequently co-authored in the past.

Once the set of co-authors is determined (i.e., the walk stops), the paper is then

categorized according the discipline of the majority of its authors. So, if there are two

physicists and one biologist, the paper is labeled a physics paper. Similarly, the

discipline of the authors is determined by the disciplines of the papers they have written

in the past.

Growth: After this, with probability pn a new scientist enters. If they do, they

automatically write a paper with a co-author, who is chosen uniformly at random from

those in the network and who can then add additional co-authors through the biased

random walk process described above. The automatic assignment of one co-author
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guarantees that new authors are integrated into the network. Otherwise, they would not

be able to walk anywhere, and no one could walk to them to add them as a co-author.

Landscape change: The creation of these collaborations affects the evolution of

disciplines. As collaborations develop, this increases the weight of the links between the

co-authors, indicating their ties are stronger. Some scientists will be more closely tied to

each other than to the rest of the network, generating clusters of closely connected

individuals.

Each round there is a probability, pd, to check for a split event, where some part of

the network has become clustered enough, and separate enough from the rest, to call it

an independent discipline. Sun et al. (2013) use a community detection algorithm based

on modularity. Roughly, this algorithm looks at the extent to which there is higher

connectivity within a part of the network than would be expected if connections in the

network were randomly generated.1 They choose a discipline at random, consider all

possible ways of splitting the discipline in two, and, if the modularity after a split is

higher than before a split, make the split with highest modularity. If there is a split

event, the smaller of the two clusters is considered to be a new discipline. The labels of

existing papers in the community are then updated – if a majority of a paper’s authors

are in the new community, it is categorized as part of that new discipline – as well as

author disciplines according to the new paper labels.

Likewise, what previously looked like two clusters might come closer together as

people start collaborating across the clusters. So, each round there is also a chance,

1More specifically, modularity measures compare the number of edges within a part of the network to
the expected number in a null model. In this algorithm, the null model is generated by shuffling the edges
in the network generated in the simulation, while ensuring the degree sequence is the same (Newman,
2006).
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again pd, to check for a merge event. In this case, two disciplines with at least one

common author are randomly selected and merged if this increases modularity of the

network as a whole. If there is a merge, the smaller cluster is now considered part of the

discipline of the larger cluster and paper labels and author disciplines are updated

accordingly. Thus, the process of collaboration affects the structure of the research

community, and the evolution of disciplines within it.2

4 Incorporating Inequities

While we take the basic model from Sun et al. (2013), we are interested in different

questions. As mentioned, we are motivated by the observation that fields associated with

marginalized groups tend to be devalued and the hypothesis that the social dynamics of

collaboration are an important part of this story. So, we incorporate into the model ways

that social identity can affect aspects of collaboration.3

First, data shows that there is often an unequal division of credit within

collaborations. Women and members of minority groups are less likely to hold

prestigious first and last author positions, and tend to put in more work in a lab while

being less likely to be given any authorship at all (see, e.g. West et al., 2013; Feldon

et al., 2017). In other words, they tend to get less credit from the products of their joint

work. We know something about the short- or medium-term consequences of this

unequal division of credit within collaborations. For instance, it can affect who scientists

2Sun et al. (2013) verified that this model captured important features of the real evolution of scientific
disciplines, such as the distribution of collaboration size and number of papers per scientist, and we checked
that our results were qualitatively similar as well.

3Our code can be found at https://osf.io/6uafr/?view only=fc972f9fd5864abbb17887177ca06d42, with
further information at https://github.com/kekoawong/scienceDynamicsModel.
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choose to collaborate with, as they try to avoid unfair collaborations. Thus, inequity can

affect the collaboration network within a single discipline, ultimately leading to

segregation or clustering along social identity lines (Ferber and Teiman, 1980; McDowell

and Smith, 1992; Rubin and O’Connor, 2018). This, however, leaves open questions of

the long-term consequences of collaboration inequity for the shape of the scientific

community and our valuation of knowledge produced within whole disciplines.

Another aspect of inequity is the Matthew effect, where the rich get richer (Rossiter,

1993). In this context, there are two ways that past credit accumulated for one’s work

can affect the future credit one expects to receive. First, past credit affects the

probability that a person gets added onto a collaboration; high reputation from past

credit makes it more likely to be asked to join projects in the future, thus increasing the

amount of work for which a person gets credit in the future (Chakraborty and Chandra,

2016). Second, past credit also affects how much credit is generated by each new paper

that author produces. Papers by well-known people are more likely to be widely read

and highly cited (Petersen et al., 2014).

We incorporate these three factors — collaboration inequity and two aspects of the

Matthew effect — into the modeling framework developed by Sun et al. (2013) to show

how they can affect the overall shape of the scientific community over time. We build in

each feature one by one, yielding three models. In addition, we incorporate ‘retirement’

into the models, where a scientist stops collaborating. (The node stays in the network

but is no longer an active part of the network.) Unlike Sun et al. (2013), we track

reputation of scientists, so including this retirement mechanism avoids distorting our

view of how reputation can accumulate to a person over the lifetime of their career. To

keep things simple, scientists retire after 1,000 time steps, though section 5 will discuss
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how we might make this more complicated.

Model 1 : We start with a model incorporating collaboration inequity. We introduce

‘types’ into the model, which do not affect anything except the credit an author receives

for a paper. We assume that a type 1 agent gets 1 unit of credit per paper they

collaborate on, where a type 2 agent gets 2 units. Therefore, being type 1 represents

being a member of a marginalized group and receiving less credit for your work than a

member of a dominant group, consistent with empirical evidence regarding how credit is

often distributed.

Model 2 : The next model additionally incorporates reputation, where reputation is a

function of a person’s total accumulated credit. There are diminishing returns of credit

on reputation – e.g., 10 new citations are worth more to someone just starting out versus

someone at the top of their field – captured in the model by reputation equalling the

square root of an author’s total credit accumulated. Model 2 then includes everything

from model 1 plus the aspect of the Matthew effect where past credit increases chances

to be added to a project; the probability to choose someone as a co-author now depends

both on past co-authoring and author reputation.4

Model 3: The final model allows past reputation to feed into future credit generated

per paper. Since, again, there are diminishing returns to accumulation of credit, we say

that the reputation of the set of authors is found by summing up the credit accumulated

by all authors in the collaboration, then taking the square root of that. Model 3 includes

everything from model 2 plus the assumption that papers generate an amount of credit,

cp, according to total reputation of the collaborators involved. In this case, type 1 agents

4Formally, author i’s reputation (ri) is a function of their credit accumulated from all their papers
(ci): ri =

√
ci. We multiply linking probabilities in model 1 by loge(ri) and normalize so that the values

sum to 1.

10



(a) (b) (c)

Figure 1: Average credit per author vs. representation of marginalized group in each
discipline for (a) model 1, (b) model 2, and (c) model 3.

receive 1× cp and type 2 receive 2× cp for the paper.

4.1 Contagion Results

The percent marginalized researchers in a field predicts the average credit per paper

coming out in that field. Figure 1 shows scatter-plots of all the disciplines, for all runs of

the simulation, according to the representation of the marginalized group (on the x-axis,

with higher numbers indicating a higher proportion of marginalized researchers) and the

average credit each author in that discipline accumulates (on the y-axis).5

Figure 1a shows that the more marginalized researchers there are, the less credit

accumulated by the average person in that field. In particular, the slope of a linear

regression is negative but small in model 1.6 That the slope is negative is unsurprising.

This is essentially built into the model, as each paper produced by a marginalized

510 simulations were run for 10,000 time-steps for each model.
6The linear regressions in figure 1 are not intended as best fit lines, but only to capture the negative

relationship between credit and a field’s association with a marginalized group.
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researcher is worth less — they might manage to accumulate as much total credit as a

member of the dominant group, but they would have to publish twice as many papers.

However, the contagion of disrespect is not simply an observation that fields associated

with marginalized groups are seen as less good, rather it is that they are increasingly

dismissed as unimportant to the generation of scientific knowledge. Looking to models 2

and 3, the way this collaboration inequity interacts with the way reputation functions in

these collaboration dynamics can start to give us a better picture of how a contagion of

disrespect might arise.

As seen in figure 1b, in model 2, the slope of the linear regression is more negative,

meaning that researchers in fields associated with marginalized groups tend to be seen as

even less productive of scientific knowledge than researchers in other fields. The slope is

even more negative in figure 1c; in model 3, authors generate less credit still in fields

associated with marginalized groups. The scale is different for this model versus the

other two – because the credit per paper varies based on the authors – making very

specific comparisons of model 3 with models 1 and 2 somewhat complicated.

However, we can see from model 3 that incorporating reputation building gives rise

to something we can call a contagion of disrespect. When reputation has no effect, as in

model 1, results produced by disciplines associated with marginalized groups are

devalued, but only due to pre-existing inequities, rather than anything to do with the

collaboration dynamics that affect the evolution of disciplines. Then, when reputation is

incorporated, as in model 2, the collaboration dynamics begin to come into play in terms

of the possibility of people preferentially collaborating with those who happen to have

slightly higher reputation. However, those people only have higher reputation if they by

chance write more papers, and the number of papers any one person writes during their
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career is limited. There is no mechanism by which the difference between authors can

substantially increase over time, or by which these high reputation authors can increase

the reputation of their co-authors, who are likely to be in their field.

In model 3, the reputation building aspect of the Matthew effect provides exactly

that kind of mechanism, where the reputation of individuals, and as a side-effect, the

reputation of disciplines, can increase over time. This reputation building benefits the

dominant group more – credit feeds into future credit for all scholars, but members of

the dominant group have more credit to feed into that process at the start.7 In

conjunction with collaboration inequity according to social identity, we can then see the

emergence of a contagion of disrespect, where new results by authors in fields associated

with marginalized groups generate less and less relative credit, or are seen as less and

less important to scientific knowledge.

For each of the three models, we can also plot a histogram of the credit produced

within the disciplines (figure 2). This reveals that there is a higher skew in the

distribution of credit over fields in model 3 (figure 2c) versus model 2 (figure 2b) versus 1

(figure 2a). In other words, credit, relative to the total amount of credit produced, is less

evenly distributed across fields as we include additional reputational effects, consistent

with the above description of increasing dismissal of certain fields. As is likely

7Though figures are not included here due to space considerations, we can also consider the distribution
of credit accumulated to each individual across disciplines. In model 1, the distribution of credit across
members of the dominant group is roughly similar to the distribution of credit across members of the
marginalized group, except that the scale is twice that of the scale for the marginalized group members
(since they receive twice the credit per paper). In model 2, even accounting for this difference in scale,
there are more marginalized group members at the low end of the distribution, accumulating very little
credit over their career, but there are roughly similar numbers at the high end of the distribution. In
model 3, again accounting for the difference in scale, there are both fewer members of the dominant
group at the low end of the distribution and more at the top end when compared with members of the
marginalized group.
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(a) (b) (c)

Figure 2: Histogram of average credit produced across all disciplines for (a) model 1, (b)
model 2, and (c) model 3.

unsurprising, though it is not shown in figure 2, fields associated with marginalized

groups tend to be on the lower end of the distribution, i.e they are the ones that are

being increasingly dismissed.

5 Discussion

We conclude that a contagion of disrespect can emerge based on observed features of

collaboration dynamics. Of course, there are several factors left out of this analysis. For

instance, when we incorporated aspects of the Matthew effect, we did not include the

observation that a less famous person often gets a lower share of the credit for the

co-authored paper. We also did not include homophily, where people tend to link more

often with others of their same social identity group, or any attempt at avoiding unequal

collaborations (Rubin and O’Connor, 2018); on the more segregated networks these

processes produce, the affects of inequality and the Matthew effect would likely be

amplified. As mentioned, we also included a very simplified exit dynamic where people
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retired after a certain number of rounds. It might be more plausible to assume that

people not accumulating a certain amount of credit leave the field after not securing

permanent employment. Including this might allow us to say something more about why

certain fields, like the field of Child Study, diminish and eventually disappear from the

scientific landscape altogether.

It is important to emphasize that our explanation is not incompatible with there

being a range of biases. In our model, fields are dismissed due to low average credit

generated per author or per paper, but fields can also be dismissed because people have

preconceived notions about their worth. Something like this is arguably the case with

indigenous forestry and ecology. In reality, these phenomena (and others, like

institutional barriers) are not going to be cleanly separable, and likely act in

conjunction. So, we ought not to conclude that we can explain devaluation of fields only

by appeal to collaboration dynamics.

However, it is important to know the variety of factors working against disciplines

associated with marginalized researchers. This knowledge affects how we think about our

connections to a history of dismissal of certain kinds of knowledge and it impacts how we

might address current devaluation. For example, there have been recent pushes to

address some instances of devaluation by recognizing the legitimacy of various ways of

knowing. While potentially ameliorative, these measures will not necessarily put

productive fields of research on the equal footing they deserve. In the long term, we will

need to address collaboration inequity as well.
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