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Abstract. This chapter is devoted to robustness analysis, a common practice in modelling, where 

researchers vary features of a model and study the impact of changes on its behavior. After 

presenting the three most prominent types discussed in the philosophical literature, the chapter 

reviews the debate surrounding the epistemic role of this practice, focusing on the contested issue of 

its evidential import. The discussion highlights the multiple roles of robustness analysis, including the 

value of not establishing the robustness of a particular modeling result. 

 

 

1. Introduction: what is robustness analysis? 
 

In most modelling practices, researchers do more than construct and manipulate models. In 

order to draw conclusions on the phenomena that these models are taken to address, they 

also vary features of the model and study the impact of these changes on the model’s 

behavior. These practices are found across disciplines and contexts of application and, in 

many of these, are known as robustness analysis.1 Under this heading, we may find 

ecologists examining how changes in parameter settings affect the behavior of Lotka-

Volterra equations, taken to represent interacting populations of organisms, physicists 

studying the impact of perturbation terms on Navier-Stokes equations that represent 

turbulence, and social scientists checking how Schelling models of segregation depend on 

particular relocation rules.  

 

For philosophers of science, the main interest has been to understand why modelers engage 

in this practice, i.e., what is epistemically valuable in robustness analysis (henceforth: RA). 

As James Woodward put it in the context of economic modelling, the aim is to understand 

whether and, if so, why “robustness (of inferences, measurements, models, phenomena and 

relationships discovered in empirical investigations etc.) is a Good Thing” (Woodward 2006: 

219). Robustness here stands for the stability of these inferences / measurements / models / 

phenomena under perturbations affecting the broader context or a system they belong to. 

While robustness in a broader sense has been used to capture different notions of stability, 

we focus on robustness of results obtained by means of scientific models and RA as a 

method of examining this property.2 

 

The most prominent explanation, which arguably started the current discussion, is found in 

Richard Levins’ work. Levins describes RA as a powerful strategy available to modelers like 

him: 

 

“... we attempt to treat the same problem with several alternative models each with 

different simplifications but with a common biological assumption. Then, if these 

models, despite their different assumptions, lead to similar results we have what we 

can call a robust theorem which is relatively free of the details of the model. Hence 

our truth is the intersection of independent lies” (Levins 1968: 423; emphasis added) 

 

Levins’ description makes evident the potential value of RA: it would allow modelers to 

derive true claims from models that are in important respects inaccurate or (over)simplified. 
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In the extreme case, genuine insights into complex real-world systems could be gained by 

studying only a variety of highly unrealistic, minimal or ‘toy’ models. Although this would 

clearly be ‘a Good Thing’, philosophers have understandably suspected that it is too good to 

be true. 

 

In this chapter, we review the ensuing debate. In the philosophy of science, a key role was 

played by William Wimsatt (1981), who identified the three central elements of RA that 

philosophers are still mainly concerned with: its core definition and varieties; its epistemic 

value; and the conditions under which it realizes this value. We briefly review each, also to 

set the stage for this paper. 

 

Regarding the central definition, Wimsatt notes that a broad variety of practices can be 

gathered under the heading of ‘robustness analysis’. This includes checking which 

implications of models remain the same under change to those models, but also practices 

such as triangulation, which check whether observational results remain the same under 

change of method. In all of these, the aim is to determine whether something is ‘robust’, 

where: 

 

“X is robust = X remains invariant under a multiplicity of (at least partially) 

independent derivations” (Soler et al. 2012: 3, paraphrasing Wimsatt 1981) 

 

Wimsatt’s reasons for discussing the practices under the same heading refer directly to RA’s 

most contentious features: its overriding purpose or epistemic value, as well as the 

conditions for realizing this purpose or value – the reason for engaging in these practices, 

and their proper implementation. For both, Wimsatt extends and partly specifies Levins’ 

characterizations. Regarding purpose, “[a]ll the variants and use of robustness have a 

common theme in … distinguishing … which is regarded as ontologically and 

epistemologically trustworthy and valuable from that which is unreliable, ungeneralizable, 

worthless, and fleeting” (Wimsatt 1981/2012, p.63). More extensively than Levins, Wimsatt 

identifies necessary conditions for realizing this, as well as a risk of engaging in RA:  

 

“[a]ll these procedures require at least some partial independence of the various 

processes across which invariance is shown. And each of them is subject to a kind of 

systematic error leading to a kind of illusory robustness when we are led, on less 

than definitive evidence, to presume independence” (ibid., 64; emphasis in original) 

 

As the latter part of the quote makes clear – more so than Levins’ much-quoted claim – there 

is a risk to engaging in RA. Because of this systematic error, which Wimsatt claims is 

intrinsic to the practice, it makes sense to investigate which, if any, of the varieties of RA 

meet which conditions for successfully realizing the envisaged purpose.  

 

In this chapter, we review this debate and its results so far. We do so by focusing, like most 

philosophers of science, on the role of RA in the testing of model-derived theorems for an 

epistemic (rather than ontological) purpose. Some in the debate defend that RA can realize 

the purpose envisaged by Levins and Wimsatt – albeit only in some forms and under strict 

conditions and qualifications. Others reject this, mainly by problematizing Wimsatt’s 

condition of independence; they submit that any robustness will, on closer inspection, turn 

out to be illusory for evidential purposes. However, critical authors have identified alternative 
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epistemic purposes of robustness analysis. Interestingly, in some cases negative results 

(i.e., the ‘fragility’ of an implication) can be equally or even more valuable than positive 

results. So, where Woodward’s framing suggests that lack of robustness is a Bad Thing, 

modelling practice does not always conform, and modelers might have many options to 

manage the risk of ‘illusory robustness’ mentioned by Wimsatt and emphasized by many 

philosophers. 

 

We start by introducing some terminology and reviewing the three most prominent types of 

RA that have been distinguished by philosophers of science (Section 2). In Section 3, we 

turn from types of RA to the various roles or epistemic functions of it, focusing on the 

contested issue of its evidential import. Section 4 concludes the chapter. 

 

 

2. Different types of robustness analysis 
 

Before presenting the most prominent types of RA discussed in the philosophical literature, 

we define some key terms. In the literature, ‘robustness analysis’ refers to any practice of 

varying aspects of the model and studying which implications remain invariant; and 

‘robustness’ refers to any invariance revealed. In RA, relevant aspects of a model are 

changed, and it is established whether particular implications of this model are invariant 

under those changes. Implications that are invariant to a relevant degree are called ‘robust’; 

and we refer to the models that share the implication as the ‘robustness set’ for the 

implication. Some authors, following Levins (1968), take the result of (successful) robustness 

analysis to be a robust theorem rather than an implication. This requires an additional 

analytical step, to identify the minimal features shared by members of the robustness set 

that entail the invariant implication (Weisberg 2006; Weisberg and Reisman 2008).3 

 

Robustness analysis is a systematic way or strategy of identifying a robustness set: it starts 

from a model M, varies it in some respect, and checks whether some relevant implication p 

is conserved; here, M and p may be called the ‘targets’. RA is thus a generative method, 

rather than a merely comparative one, in which one would search for some arbitrary 

alternative model that has a sufficiently similar implication. Finding out, for instance, which (if 

any) implications are shared by magnetohydrodynamic models of fusion plasmas and 

Schelling’s checkerboard models of segregation would not be called ‘robustness analysis’, if 

it is a meaningful scientific practice at all. 

 

Following the relevant literature in the philosophy of science, one can distinguish three 

prominent types of RA. Each concerns a different way of generating the robustness set, i.e., 

each type primarily indicates in which respect a target model is changed to determine the 

effects on a target implication. In the literature, different typologies as well as nomenclatures 

can be found.4 We follow Weisberg and Reisman (2008) both in the nomenclature and in 

distinguishing these three types of RA. 

 

In parameter RA, it is checked whether some implication of a model and its auxiliary 

assumptions is robust to the extent that the implication holds over different parameter 

settings. Thus, the robustness set is generated by varying the parameters of a target model 

over some interval. Take, for instance, Schelling’s model of social segregation. The model 
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was designed to examine factors concerning individual preferences that lead two groups 

within a society to segregate. Schelling approached this question in terms of an abstract 

model: by randomly placing members of two groups of an equal size on a checkerboard, he 

examined how the population changes if we assume that individuals have a specific 

preference about the composition of their neighborhood. One striking result of this model is 

that, even when agents prefer as little as one third of their neighborhood to consist of 

members of their own group, the society ends up clustered in homogenous neighborhoods: 

there is ‘de facto segregation with mild in-group preferences’. To examine the parameter 

robustness of this implication of the Schelling model, we can test whether similar de facto 

segregation obtains once we change the size of the population, the size of the 

checkerboard, and so forth. 

 

Some authors have called parameter RA ‘sensitivity analysis’ (e.g., Raerinne 2013, Gräbner 

2018). In some disciplines, such as many forms of economic modelling, practices under the 

latter name indeed largely match what we described immediately above (i.e., checking to 

what extent implications are conserved under varying parameter settings). However, in some 

contexts and disciplines, ‘sensitivity analysis’ refers to a broader set of practices, in which 

one investigates how the output of a model changes under variations in input parameters 

(see, e.g., Saltelli et al. 2008 for an overview of techniques). Here, modelers are not 

specifically interested in output invariance, i.e., robustness; rather, they seek a more general 

understanding of the relations between a model’s input and output, e.g., to identify which 

input variables most strongly affect output (‘importance assessment’; Saltelli 2002). 

 

Structural RA pertains to structural features of the target model, in particular its central 

assumptions.5 In this case the modeler aims to find out which parts of the model’s structure 

govern an implication. Such an analysis can take two forms. First, the modeler might remove 

or relax certain existing assumptions. Second, the modeler might add assumptions or 

replace existing ones. In either of these ways, modelers may find out which assumptions are 

genuine difference-makers with regard to the implication. In particular, structural robustness 

may test the implication’s dependence on what Kuorikoski et al. (2010) distinguish as 

‘tractability assumptions’ and ‘substantial assumptions’. The former are mathematical 

formulations allowing for an easier or more efficient solution of the represented problem. 

Such assumptions usually have no clear causal interpretation and/or are highly unrealistic. 

They are a ‘necessary evil’, intended to facilitate derivations or even to make them feasible 

at all. Substantial assumptions, on the other hand, are empirically informed and they serve to 

identify the causal structure of the target phenomenon.6 While tractability assumptions may 

impact the formal representation of substantial assumptions, substantial assumptions may 

impact the tractability of the model. Such dependencies may restrict the scope of structural 

RA for some implications and assumptions: for lack of tractable results, it may be impossible 

to determine the effects of target implications for some relevant changes.7 

 

For instance, network epistemology models, which study the impact of social networks on 

the production of knowledge, usually represent the structure of information flow in terms of 

directed graphs, with nodes standing for agents and edges between them for communication 

channels. This allows for the representation of communities that have varying degrees of 

connectivity, that is, a varying degree of information flow. Structural RA can, on the one 

hand, be used to examine whether changing such a tractable representation of information 

flow impacts the result of the model. For instance, Borg et al. (2017) examine whether the 
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results of their model remain stable once a network in which the probability that an agent 

shares information with others is a parameter of the model, is replaced with networks that 

have stable links between agents. On the other hand, structural RA can be used to study the 

impact of different substantial assumptions, such as those that underpin the representation 

of learning. For example, if agents stand for scientists who are trying to identify the better of 

two available theories, we can represent their research in different ways. We could, for 

instance, assume that scientists have ‘inertia’ towards their preferred theory in the sense that 

they do not immediately abandon it even if they learn from others that the alternative theory 

appears to be better. As such behavior of scientists may be more characteristic of some 

contexts of inquiry rather than others, the assumption is an empirical issue. Frey and Šešelja 

(2020) use structural RA to examine the impact of adding such inertia to the process of 

scientific research in Zollman’s (2010) network epistemology model to specify the context of 

learning to which the results of the model apply. 

 

Representational RA goes beyond structural RA in varying the representational framework, 

modelling technique, or modelling medium. The aim here is to determine the extent to which 

the target model’s specific representational framework or implementation makes a difference 

with respect to its implications. For instance, the Volterra principle was originally derived 

from a set of differential equations, which describe predation at the population level. Using 

representational RA, one may study whether the principle also holds if the predatory system 

is represented in terms of individuals and their individual-level properties. Indeed, Weisberg 

and Reisman (2008) present a set of such agent-based models and find that they too 

produce the Volterra principle. From this, the authors conclude that the principle is robust 

across at least two representational frameworks. Another example is evolutionary game-

theoretic modelling, which is based either on mathematical analytical frameworks or on 

computational frameworks such as agent-based models (ABMs). As de Marchi and Page 

(2009) argue, ABMs allow for the representation of features that may be impossible to 

represent in analytical models due to tractability constraints. Again, implications that are 

shared by ABMs and analytical models may be called (representationally) robust; here, one 

may conclude specifically that these implications are not artefacts of the constraints inherent 

to analytical frameworks. As such, representational RA can, like structural RA, serve to study 

the impact of certain tractability assumptions in the models. Finally, modelers may vary the 

medium in which models are realized or implemented: Knuuttila and Loettgers (2021) 

discuss how, in synthetic biology, a particular network design (the Repressilator Model) was 

implemented in multiple media to test whether it produced robust oscillations in genetic 

networks. 

 

Intuitively, the change made in representational RA is ‘larger’ than the one in structural RA: it 

concerns the very formal modelling technique rather than a particular tractability assumption 

made in implementing a technique. The robustness set in representational RA thus also 

consists of models that hold a stronger (intuitive) claim to being independent, since they are 

not constructed with the same technique or, more broadly, epistemic means. In light of 

Levins’ claim, this would seem to make positive results of representational RA more valuable 

than those of structural or parameter RA. Admittedly, examples of such positive results are 

also difficult to find, whereas variations of parameter settings and structural features are part 

and parcel of modelling practice. This, however, may only underline how valuable 

representationally robust implications are if they can be obtained (cf. Houkes & Vaesen 

2012, Lisciandra 2017). 
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The main purpose of representational RA is perhaps in negative findings: failing to replicate 

a result with a different framework may help to identify a set of difference-making 

assumptions in the original model, which may otherwise remain overlooked. For instance, in 

the above-mentioned field of network epistemology, Borg et al. (2018) use an agent-based 

model (ABM) based on argumentation dynamics to examine the robustness of results 

previously obtained with an ABM employing a Bayesian framework based on bandit models 

(Zollman 2010). While Zollman’s results are representationally robust with respect to a 

number of ABMs employing the epistemic landscape framework (e.g., Lazer and Friedman 

2007, Grim et al. 2013), Borg et al. fail to reproduce the same findings. In light of this, Borg 

et al. identify assumptions in their model, absent from the previous ones, which are 

responsible for this outcome. This in turn helps to specify the context of learning to which 

previous results apply. 

 

 

3. Epistemic roles 
 

Philosophers of science have discussed various epistemic roles that robustness analysis 

can play. Most of the discussion has focused on the question under which conditions (if any) 

this role can be evidential – roughly, when modelers have indeed found a ‘truth at the 

intersection of independent lies’; and slightly less roughly, whether positive results of RA 

should increase one’s credence in the truth of some hypothesis. Insofar as other epistemic 

roles have been discussed, this was mainly to identify an alternative, which would make 

sense of modelers’ engaging in RA even when it cannot play an evidential role. In this 

section, we first outline the main arguments regarding the evidential role of RA, and then 

review some of the alternative roles that have been identified. 

 

3.1. Does robustness analysis have evidential value? 

 

Levins’ original claim can be read in a strong way: showing that an implication is robust 

provides evidence for regarding this claim as true, i.e., by studying whether a set of models 

behaves similarly, one can learn something about the world. Furthermore, Levins suggests 

that RA could play this strong evidential role regardless of any observational evidence for 

this implication or a robust theorem. This would make RA especially valuable if it is difficult 

or impossible to validate a model or its implications in another way, e.g., by successful 

prediction. Such an epistemic situation obtains in many modelling contexts across research 

fields, e.g., in economics, evolutionary biology, climate science and computational 

philosophy. Consequently, many contributions to the debate draw on one or more of these 

contexts to illustrate their general claims – positive or negative – about the role of RA. 

 

It is broadly acknowledged (e.g., Cartwright 1991; Orzack and Sober 1993; Sugden 2000), 

that RA does not have the strong, complementary evidential role suggested by Levins’ 

dictum – or at least, that the conditions for RA playing this role are so strict that this cannot 

reasonably explain the widespread use of the practice. To see why, take an extended 

Schelling model in which agents’ behavior is governed by their ‘range of vision’ R over the 

grid (with R a natural number), rather than only their immediate neighbors (corresponding to 

R = 1) (Laurie and Jaggi 2003). Suppose that some interesting implication p holds for all 
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ranges R, i.e., that p is parameter-robust with respect to R. Then, we may conclude that p is 

true for actual urban areas – or other target systems to which Schelling models are applied – 

only if a modeler has reason to believe that the correct model of the target system may be 

found in this robustness set, consisting of models in which R ∈ [1,𝑚], where m is the 

measure of the grid length. If the modeler does not know whether this is the case, let alone if 

she has reason to think that all members of the robustness set are unrealistic in some 

relevant respect, R-robustness alone does not have sufficient evidential impact to warrant 

accepting the target implication. In Levins’ terms, something has been found at the 

intersection of lies, but it cannot be said to be a truth. 

 

In response, it could be pointed out that this analysis ignores one important aspect of Levins’ 

statement: the models in the robustness set need to be independent. Recall that according 

to Wimsatt, failure of independence produces illusory robustness, and that the models in the 

set need to have “at least some partial independence” (see Section 1). Only if the models 

are mutually independent can RA play a role similar to triangulation, making it less likely that 

the implication is false. 

 

A well-established line of argumentation shows the difficulties in spelling out a suitable 

notion of independence. As Orzack and Sober (1993) point out, competing models of the 

same phenomenon cannot be logically independent, since the truth of one implies the falsity 

of all the others. Models in robustness sets tend to be competing. Take, for instance, our 

case from above: at most one value of R can be descriptively adequate for a given urban 

area. The models in a robustness set are not statistically or probabilistically independent, in 

the sense that a certain result following from one model has no bearing on the probability 

that the same result will be detected by the other model (cf. Schupbach 2018, who also 

discusses other notions of independence in this context). However, when doing RA, 

modelers do not review models that are independent in this way. Reviewing whether target 

implications still hold under changes of parameter settings requires holding fixed a model’s 

structural assumptions. While the latter assumptions may be relaxed or changed (in 

structural RA), deriving implications typically requires holding fixed the model’s tractability 

assumptions. Finally, checking whether implications hold under changes in tractability 

assumptions requires holding fixed substantial assumptions (including structural 

assumptions and those concerning parameter values). Even if this is done via 

representational RA, the chosen representational frameworks need to have the core 

substantial assumptions in common. Therefore, in a crucial sense, the models in a 

robustness set must share some of their assumptions. As a result, robustness might still only 

reflect commonalities of the models and/or the representational frameworks (cf. Odenbaugh 

and Alexandrova 2011: 763). In Orzack and Sober’s words, there is always the possibility 

that “robustness simply reflects something common among the frameworks and not 

something about the world those frameworks seek to describe” (1993: 539). Phrased more 

negatively, using Wimsatt’s terms, no notion of ‘partial’ independence seems available which 

would dispel the suspicion that robustness might be illusory and confer evidential value on 

RA. 

 

A recent, powerful defense of the evidential role of RA grants the validity of this critical 

argument, but submits that it largely misses the point of how RA can be and is used in 

modelling practice. According to Kuorikoski et al. (2010, 2012), epistemically impactful RA 

does not feature just any change to a model (let alone every possible change); rather, it 



 
Forthcoming in The Routledge Handbook of Philosophy of Scientific Modeling, 
ed. by Natalia Carrillo, Tarja Knuuttila and Rami Koskinen, Routledge, 2023 

   

 

focuses on specific assumptions to show that a target implication does not crucially depend 

on them. While this does not amount to empirical confirmation of the implication, it should 

also not be dismissed as epistemically futile. According to the authors, the primary value of 

RA lies in making our inferences more reliable and increasing our confidence in them by 

showing that they do not depend on problematic modelling assumptions. Since RA serves to 

identify assumptions that the result of the model depends on, if such assumptions are 

problematic, this will lower our confidence in the given inference. However, if the result 

appears to depend mainly on plausible substantial assumptions, we should have more 

confidence in its validity than prior to conducting the RA. Importantly, for RA to play such an 

evidential role, the substantial modelling assumptions need to be ‘reasonably realistic’. In 

other words, RA can increase our confidence in the given inference only in combination with 

empirical evidence supporting the assumptions of the model.8 Moreover, for RA to have this 

effect, there should be no reason, prior to RA, to think that differences in tractability 

assumptions of the studied models “have a similar mathematical and empirically 

interpretable impact on the modelling result” (Kuorikoski et al. 2012: 898). In Levins’ terms, 

RA requires independence of the specific lies inherent to each model in the set; then, a 

robust result might still not be true, but it is at least not an artefact of one specific lie. 

 

This debate on the evidential role of RA has revealed that this role is tightly connected to 

empirical underpinnings of the studied models. For models with realistic substantial 

assumptions, RA can serve to insulate (some) implications from (some) specific lies, such as 

particular parameter settings, auxiliary assumptions, idealizations, or even tractability 

assumptions.9 It might also provide indirect confirmation if the robustness set of the 

implications consist of models that have other confirmed results (Lehtinen 2018). Defenders 

of this evidential value admit, however, that robustness could always prove to be illusory, 

because implications could be the result of shared and unquestioned assumptions within or 

even across modelling frameworks.10 Use of a large number of such frameworks may 

alleviate this worry to some extent, since they are unlikely to all share such assumptions. 

Whether or not they do, however, remains an empirical question; there is no strength in 

numbers here per se.  

 

3.2. Which other epistemic roles can robustness analysis play? 

 

An interesting side-effect of the debate on the evidential role of RA has been the 

identification of various alternative purposes that RA can and does serve in modelling 

practices. The reason is, of course, that if RA cannot or hardly ever increases our credence 

in hypotheses, it becomes all the more puzzling ‘what modelers get out of it’: why is the 

practice so widespread if positive robustness checks do not give (additional) reasons to 

believe that particular modelling results are true? Even if one would assign an evidential role 

to RA, alternative roles could be used as supplementary reasons to engage in the practice. 

Here, we briefly describe several alternatives that have been identified. 

 

I. Discovery of causal structure. 

Even those who are not convinced that RA might have evidential value often subscribe to its 

usefulness in generating causal hypotheses. Specifically, RA allows exploration of the 

implications of substantial assumptions, together with varying parameter settings, tractability 

assumptions, auxiliary assumptions, etc. If such substantial assumptions identify the causal 

structure of a phenomenon, these explorations allow statements about the conditions in the 
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model-world under which the causal mechanism holds. In this way RA allows for the 

formulation of more precise causal hypotheses,11 or to identify the common causal 

mechanism in a family of models, rather than providing evidence for any implications. Thus, 

Knuuttila and Loettgers (2011) distinguish ‘causal isolation’ RA from the ‘independent 

determination’ RA on which most of the philosophical literature has focused. In this epistemic 

role, RA can also help to formulate pursuit-worthy hypotheses. It does so by providing 

‘inquisitive reasons’ (Fleisher 2022), which are reasons that concern promoting successful 

inquiry (such as showing that a hypothesis is testable, that it is based on a heuristic analogy, 

etc.). By identifying specific conditions under which the given causal mechanism holds in the 

model-world, RA helps to delineate the application domain in which the causal hypothesis 

should be further pursued in terms of empirical studies. 

 

II. Deepened causal understanding. 

Relatedly, and perhaps a bit more distinctively, RA might help to develop and deepen our 

causal understanding of real-world systems and phenomena. It may do so by presenting a 

way in which to vary systematically – albeit through their representation in substantial 

assumptions, and heavily mediated by tractability assumptions and other auxiliaries – the 

factors that could be causally responsible for certain system behavior. All forms of RA would 

appear to be useful in this respect. Parameter RA helps to study the range under and extent 

to which factors cause behavior (e.g., how the ‘range of vision’ influences segregation in 

Schelling models; Laurie and Jaeggi 2003). Structural RA contributes to developing more 

sophisticated causal understanding, because it allows studying the effects of adding or 

removing factors as well as possible confounders and mediators. Finally, representational 

RA allows studying alternative or supplementary causal mechanisms, perhaps at different 

levels of organization (e.g., population-level versus individual).12 

 

III. Elimination of (alternative) potential explanations 

As a complement to the previous role, RA might serve an eliminative role in explanatory 

reasoning, as argued by Schupbach (2018). Suppose that we have a model that has some 

empirically validated implications and we are trying to explain why the model gives this 

result. Then, studying how these implications of the model vary under changes to the model 

may serve to rule out competing possible explanations of this kind. For instance, in the case 

of the Volterra principle, this means ruling out various explanations which stipulate that the 

result is due to idealizing and simplifying assumptions in the model. Specifically, if such 

competing alternatives entail that implications fail to hold under particular changes, this 

provides a way of discriminating between them and the target explanation. In case of the 

above example this means that RA can help to discriminate between two explanations: that 

the model accurately represents the given predator-prey dynamics and therefore continues 

to behave in accordance to the Volterra principle if we relax certain unrealistic assumptions; 

or that the result is due to the given unrealistic assumption (so that, once this assumption is 

removed, we should fail to observe the same output). RA could thus amount to a strategy of 

systematically and incrementally generating such explanatorily discriminating means.13 

 

IV. Calibration of alternative modelling techniques 

RA may have a role in constructing models rather than in studying and evaluating their 

implications. This is most straightforwardly illustrated with representational RA. When 

developing a modelling technique as an alternative to existing approaches, some 

implications may be used to calibrate or even test the alternative: only if those implications 
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can be replicated, the alternative will be considered. Houkes and Vaesen (2012: 361) argue 

that this applies to Weisberg and Reisman’s agent-based alternative to Lotka-Volterra 

models: an alternative that does not display the Volterra property (i.e., the desired 

implication) is discarded in favor of another, more sophisticated agent-based model. 

Structural RA might play out similarly, for instance if changing structural features of a model 

only reproduces desired results under specific parameter settings or with additional auxiliary 

assumptions. This calibrative role of RA is, in many ways, complementary to the eliminative 

role discussed above. Clearly, it has no bearing on one’s credence in any hypothesis, since 

there is not even the semblance of independence; thus, if one adopts Levin’s and Wimsatt’s 

characterization of RA, this practice may be taken as a degenerate case of the practice. 

 

 

4. Conclusion 
 

Robustness analysis is commonly used in modelling practices as the method of examining 

the stability of results under various perturbations of features of the model. In light of this, 

philosophers of science have inquired which kinds of RA there are, and what exactly their 

epistemic function is. In this chapter, we have reviewed this debate. We started by defining 

key terms and distinguishing between parameter RA, structural RA and representational RA. 

While each kind of RA can increase our understanding of the studied models, philosophers 

have debated whether any of them can have an evidential, confirmatory value in the sense 

that a robust modelling result can be considered true of real-world phenomena. Even though 

there is general consensus in the literature that RA on its own does not provide an evidential 

import of that kind, different proposals of its alternative epistemic functions have been put 

forward. As our discussion shows, RA can help to improve not only our understanding of the 

inner functioning of models, but also our causal and explanatory insights obtained by them. 

Yet, for RA to play such a role it has to be combined with empirical methods, on the basis of 

which the model and its results can be empirically embedded in the first place. Whether and 

to which extent this is possible remains a challenge for each domain of modelling, especially 

for those that employ either highly idealized, theoretical models or highly complex but 

difficult-to-validate models. Moreover, which types of RA are most epistemically useful in 

such cases – and whether negative results of RA can be as much of a Good Thing as 

positive results – is another question that may vary from one modelling context to another. 
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1 See, e.g., Soler et al. (2012) for discussions of robustness analysis in various contexts of 

application. 
2 This means that we leave out other forms of robustness analysis, which would fit under Wimsatt’s 
more encompassing ‘multiple-determination’ heading. For instance, scholars have written about 
evidence robustly corroborating theories (Eronen 2015; Calcott 2011), about phenomena being 
robustly present in different contexts (Calcott 2011), or about robustness of scientific knowledge in a 
given domain (Šešelja & Straßer 2014). 
3 The same goes for understanding robustness analysis in terms of robustness arguments, e.g., 

Stegenga and Menon (2017), in which the set of statements in our scheme are the premises for the 
conclusion that p is more likely to be true. 
4 For instance: many authors follow Woodward (2006) in referring to parameter and structural 

robustness as ‘derivational robustness’; Kuhlmann (2021) calls representational robustness ‘multiple-
model robustness’; etc. 
5 We prefer the term ‘structural' to ‘derivational’ RA since, similar to ‘parameter’ RA, it indicates the 

aspect of a model that is varied during the generative process of analysis. 
6 Kuorikoski et al. (2010) also distinguish ‘Galilean assumptions’ which are idealizations used to 

isolate the purported causal mechanism from all other interfering factors (see also, e.g., Mäki 1994). 
7 While Kuorikoski et al. (2010) consider derivational RA as an RA with respect to tractability 

assumptions, Raerinne (2013) introduces RA with respect to substantial assumptions as ‘sufficient 
parameter RA’ since different parameter values could be based on different substantial assumptions 
in the model. 
8 In a similar defense of RA, Michael Weisberg (2006) refers to the “low-level confirmation” of central 

modelling assumptions. Houkes and Vaesen (2012) identify some complications in this account. See 
Lloyd (2009) for an application of evidential RA to climate models based on Weisberg’s account, and 
Parker (2011) and Justus (2012) for a discussion of complications. 
9 “Robustness analysis is about coping with unavoidable falsity rather than finding the truth” 

(Kuorikoski et al. 2012: 899, emphasis in original).  
10 Schupbach (2018; Section 2) provides an in-depth review of other attempts to coin out the 

evidential value of RA. Also see Fuller and Schulz (2021) and Casini and Landes (2022). 
11 One way to develop this idea is in terms of open formulae - templates for formulating hypotheses 

that should then be empirically examined (Odenbaugh and Alexandrova 2011: 769). 
12 Paternotte and Grose (2017) discuss this and other explanatory roles of RA, focusing on 

evolutionary biology. 
13 Schupbach (2018; Section 3.2) reconstructs this role of RA so that it can have evidential value 

(e.g., with regard to mutually exclusive competing explanations). We discuss it as an alternative role 
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here since identifying this eliminative role does not seem to depend strictly on this reconstruction; 
Forber (2010), for instance, identifies a similar role for RA prior to empirical testing. 


