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The most prominent version of Bell’s theorem consists of the Bell-CHSH inequality and a 
quantum-mechanical example violating it. The inequality is shown to rest on the non-trivial 
presupposition that the values of elementary spin quantities are scalars, not, e.g., vectors. In the 
version considered, the theorem’s argument succeeds for scalars and fails for vectors. However, 
the reference to vector values can be motivated from the physics of spin. Hence, recognizing 
the presupposition suggests a critical reassessment of the theorem. 
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I. INTRODUCTION 

Bell’s theorem [1-2] shows that an assumption of locality 
is incompatible with the predictions of quantum mechanics 
(QM). The theorem consists of two parts: an inequality, 
derived by means of a locality assumption, and a quantum-
mechanical example exceeding the bound given by that 
inequality. Conjoined, both parts yield a contradiction, i.e., 
QM violates the inequality. There are different versions of the 
theorem using different inequalities and QM 
counterexamples. Here, we consider the best-known version: 
the Bell-CHSH inequality (named after its originators Clauser, 
Horne, Shimony, and Holt [3]), and show that it rests on the 
non-trivial presupposition that the values of elementary spin 
observables are scalars, not, e.g., vectors. Accordingly, in the 
version considered, the theorem’s argument succeeds for 
scalars but fails for vectors. Moreover, the use of vector values 
can be motivated from the physics of spin. Hence, recognizing 
the presupposition suggests a critical reassessment of the 
theorem. 

The Bell-CHSH inequality can be presented in the form: 

E (AB) + E (AB′) + E (A′B) – E (A′B′) ≤ 2,        (1) 

where E (AB), etc., are correlations, i.e., expectation values of 
products of physical quantities A and B, belonging to two 
different systems. The two most important derivations of 
inequality (1) are well-known; so it will suffice to sketch them. 
The first derivation begins with the sum of expectation values 
that is the LHS of (1) and combines it with a locality 
assumption to derive an inequality E (AB) + E (AB′) + E (A′B) 
– E (A′B′) ≤ |b + b′| + |b – b′| (where b = E (B) and b′ = E (B′)). 
From the inequality, we derive (1) by noting this simple 
algebraic fact:  
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|b + b′| + |b – b′| ≤ 2,         (2) 

where b, b′ ϵ [−1, 1]. Locality in this derivation manifests as 
the equation E (AB) = E (A) E (B), etc., used in the first step 
(see [4]). 

The second derivation of (1) takes a different course.  
It begins with the following fact:  

a b + a b′ + a′ b − a′ b′ = ±2,        (3) 

where a, a′, b, b′ ϵ {−1, 1}. We derive (1) from (3) and 
properties of expectations in three steps: the LHS of (1) = 
E (AB + AB′ + A′B – A′B′) = E (±2) ≤ 2, where the first and 
third step follow from the definition of an expectation and the 
second step is (3). As a result, we have an inequality  
E (AB) + E (AB′) + E (A′B) – E (A′B′) ≤ 2, which is (1). 
Locality here is present in the assumption that the value, say, 
a is the same whether we are measuring b or b′, possibly far 
away. Formally, this is represented in the triviality that in (3) 
the two instances of ‘a’ refer to the same real number a 
(similarly for a′, b, b′) (see [5]). 

In the literature, many proofs of the first kind (e.g.,  
[4, 6-8]) or the second kind (e.g., [5, 9-10]) can be found. 
Arguably, every proof of (1) uses either fact (2) or fact (3). 
Below, we will refer to these two facts repeatedly. 

The systems to which (1) refers are copies of a system M, 
with subsystems MA and MB, taken from a suitable set of 
systems. Both derivations of (1) refer to a classical, not a QM 
description of system M. Accordingly, the expectations used 
in (1) have the usual statistical definitions. E.g., the 

expectation E (AB) is defined as ∑ ab p (ab |A, B), .  
Here A and B are physical quantities representing properties 
of subsystems MA and MB, with a, b as their respective values, 



2 
 

   
 

such that, e.g., E (AB) is the sum of the products of values a 
and b, weighted by the respective probabilities. As we see, 
these explanations refer to physical systems MA and MB but 
contain no QM. So, we may call expectations defined in this 
way classical. Note that, for such a classical expectation, e.g., 
E (AB), the constraint E (AB) = E (A) E (B) follows iff every 
function p (ab| A, B) within E(AB) factorizes into p (a|A) and 
p (b|B), i.e., the expectations factorize iff the respective 
probabilities do. 

For future reference, we also sketch the second part of 
Bell’s theorem, i.e., the QM example violating inequality (1). 
Bell’s proposal, originating from Bohm, was to consider a  
two-particle spin-½ system in the singlet state  
ΨS = 1/√2 (|01> – |10>). (Here we have abbreviated  
|ab> := |a> ⊗ |b>, and defined |0> and |1> as the eigenstates 
of Pauli matrix σz for the eigenvalues +1 and −1 respectively.) 
Let the quantities A and B be associated with vectors a and b 
corresponding to measurements of a · σ on subsystem MA and 
of b · σ on subsystem MB, where σ = (σx, σy, σz) is the  
Pauli vector with respect to either MA or MB.  
According to QM, we then have the expectations  
<AB> := <(a · σ) ⊗ (b · σ)> ΨS = − a · b = – cos θab,  
where θab is the angle between a and b ([11]). 

For suitably chosen vectors, we now can produce a 
violation of (1). Consider four vectors a, a′, b, b′ in the  
1, 2-plane (R2). Let { e1, e2 } be an orthonormal basis of the 
plane. Let the four vectors be fixed by the following identities: 
a = e1, a′ = e2, b = 1/√2 (– e1 – e2), b′ = 1/√2 (– e1 + e2). 
Then we obtain:  

<AB> + <AB′> + <A′B> – <A′B′> = 2 √2.         (4) 

Finally, we assume the classical and QM sums of 
expectations, i.e., the LHSs of (1) and (4), to be identical. 
Given this assumption, we have 2 = 2 √2 – a contradiction. 

 

II. SCALAR AND VECTOR VALUES OF 
QUANTITIES 

We return to the classical expectations  

E (AB) = ∑ ab p (ab |A, B), , etc. In these expressions, the 
values a, a′, b, b′ are the values of elementary physical 
quantities A, A′, B, B′, and the values of products of quantities 
are products of the values, such that, e.g., the value of AB is 
the product of a and b, i.e., ab. But what are the elementary 
values a, a′, b, b′, mathematically? The obvious suggestion is 
that they are scalars.  

But this is not the only possible interpretation. Instead of 
taking the values to be scalars, we can interpret them, e.g., as 
vectors a, a′, b, b′ ϵ R2. If so, we can (employing the inner 
product of vectors in R2) assume that, while the elementary 

values themselves are vectors, their inner products and sums 
of products, i.e., the expectations, are scalars as before. We 
thus have an alternative way to define classical expectations, 
one that, for whatever reason, we might prefer to the original 
one. We can assume that these new expectations have the 

form: E (AB) = ∑ 𝐚𝐛 p (𝐚𝐛 |𝐀, 𝐁)𝐚,𝐛  (etc.), where A, A′, B, B′ 
(written in boldface!) are elementary quantities whose values 
are vectors and a, a′, b, b′ (again in boldface) are the vectors 
themselves. In a similar fashion, we can define vector 
expectations, e.g., E (A) = ∑ 𝐚 p (𝐚 |𝐀)𝐚 , where, as just 
defined, A is an elementary quantity that can take on  
vectorial values and a is a vectorial value of A  
(and similarly for A′, B, B′).  

We should take this alternative option seriously and include it 
in our analysis of Bell’s theorem. Recall that above, in 
equations (2) and (3), the values a, a′, b, b′ were assumed to be 
scalars (elements of [−1, 1] or {−1, 1}) without any 
discussion. We immediately see the unexplored possibility 
here. Instead of taking the values to be scalars, we could 
interpret them as vectors. And so, where earlier, in a classical 
approach to the elementary physical quantities A, A′, B, B′, 
we took their values a, a′, b, b′ to be scalars, we now – again 
in a classical approach – consider elementary physical 
quantities A, A′, B, B′, with vector values a, a′, b, b′, and 
explore the implications. 

In the context of Bell’s theorem, the question whether 
physical quantities have scalar or vector values is crucially 
important. For no premise of the two derivations in sec.1 does 
it matter whether the values involved are scalars or vectors – 
excepting the two algebraic facts reported in (2) and (3). If we 
exchange the scalars on the LHSs of (2) and (3) by vectors, 
then: (i) the exchange does not affect the locality assumptions, 
but (ii) the exchange does affect the RHSs of (2) and (3). 

To see (i), we replace the scalars a, a′, b, b′ in the 
definitions of expectation values by vectors a, a′, b, b′, such 

that the definitions become E (AB) = ∑ 𝐚𝐛 p (𝐚𝐛 |𝐀, 𝐁), , 
etc., as just introduced. This choice allows us to derive  
E (AB) = E (A) E (B) iff every function p (ab| A, B) within 
E(AB) factorizes into p (a|A) and p (b|B) – as was the case 
with scalars. Hence, the switch from scalars to vectors does 
not alter the role of the locality assumption used to derive (1) 
from (2). 

Similarly for locality in the derivation of (1) from (3). 
Beginning with the LHS of (3), the first step is, say,  
a b + a b′ + a′ b – a′ b′ = a (b + b′) + a′ (b – b′), which 
presupposes that the two instances of 'a' on the LHS of (3) refer 
to the same real number a, and likewise for a′, b, b′. This 
structure recurs in a vector version (3′) of (3), where the 
equation a b + a b′ + a′ b – a′ b′ = a (b + b′) + a′ (b – b′) 
presupposes that the two instances of 'a' on the LHS of (3′) 
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refer to the same unit vector a, and likewise for a′, b, b′. 
Again, the switch from scalars to vectors leaves the role of the 
locality assumption in (3′) untouched.  

To see (ii), we again replace scalars a, a′, b, b′ by vectors 
a, a′, b, b′ on the LHSs of (2) and (3). As a result, both the 
inequality (2) and the equations (3) are no longer true in all 
cases. Indeed, if we choose the specific angles assumed in (4), 
then, instead of the LHS of (2) (i.e., |b + b′| + |b – b′|), we have 
|b + b′| + |b – b′| and thus, instead of (the RHS of) (2), we get: 

|b + b′| + |b – b′|  =  2√2.         (5) 

But this means that a vector version of (1) that yields a bound 
of 2 cannot be derived. Instead, a vector version of (1), 
yielding a less rigid bound, follows. In analogy  
with the derivation of (1) from (2), we have:  
E (AB) + E (AB′) + E (A′B) – E (A′B′) ≤ |b + b′| + |b – b′|. 
From this, using (5), we obtain: 

        E (AB) + E (AB′) + E (A′B) – E (A′B′)  ≤  2√2.        (6) 

Equation (6) illustrates how a classical system can transcend 
the classical bound in (1) with classical means (i.e., respecting 
locality). This becomes possible if we assume that the values 
of the relevant physical quantities are vectors. As we have 
seen, locality is not at issue here because, depending on 
whether we consider scalar values or vector values,  
either E (AB) = E (A) E (B) can be assumed for quantities with 
scalar values, or E (AB) = E (A) E (B) for quantities with 
vector values. 

A similar result follows if we reconsider the derivation of 
(1) from (3). Suppose that we replace the LHS of (3)  
(i.e., a b + a b′ + a′ b − a′ b′) by a b + a b′ + a′ b – a′ b′. 
Assume again that a, a′, b, b′ are unit vectors defined  
as in (4). Then, we immediately get, instead of (3):  

a b + a b′ + a′ b – a′ b′ = – 2√2.        (7) 

From (7), we get: 

a b + a b′ + a′ b – a′ b′ = ± 2√2.        (8) 

For given unit vectors a, a′, b, b′, the sum AB + AB′ +  
A′B – A′B′ is a constant such that the expectation  
E (AB + AB′ + A′B – A′B′) = E (a b + a b′ + a′ b – a′ b′). 
Using (8) plus this last equation and the linearity of 
expectations, we get, as before: E (AB) + E (AB′) + E (A′B) 
– E (A′B′) = E (AB + AB′ + A′B – A′B′) = E (± 2√2) ≤ 2√2. 
Thus, we obtain a second derivation of (6). Indeed, just as we 
earlier derived (1) from either (2) or (3), two algebraic facts, 
we now have derived (6) from either (5) or (7), two geometric 
facts. Moreover, neither from (5) nor from (7) a contradiction 
with the QM equation (4) arises because (6), the vector version 
of (1), exhibits a more relaxed bound than (1) itself does. 

We have argued for the following claim: Bell’s theorem, 
in the CHSH version, is based on the tacit presupposition that 
the values of the quantities A, A′, B, B′ are scalars, not vectors. 
Mentioning this presupposition would be superfluous if it 
were a triviality. But as we just saw, this is not the case. We 
have a reasonable alternative that is motivated by an 
elementary physical assumption: that the values of the 
components of spin are indeed vectors. Thereby, the 
alternative avoids the fatal contradiction of Bell’s theorem. 

 

III. DISCUSSION (values and outcomes) 

Bell’s theorem proves that QM and locality are 
incompatible. This result is of great significance for the 
foundations of physics. But if the theorem’s proof is based on 
a tacit presupposition, then it is not as general as we assumed. 
A quick reply to this challenge might be to reject the 
presupposition as superfluous. The assumptions of scalar 
values in (2) and (3) suffice for the contradiction and 
additional assumptions are simply unnecessary. In particular, 
the argument of Bell’s theorem can be presented for 
measurement outcomes that surely can be viewed as scalars. 
This was arguably Bell’s own line of thought. He writes that 
the “difficulty” (i.e., the contradiction between (1) and (4)) is 
“created by the predictions about the correlations in the visible 
outputs of certain conceivable experimental set-ups.” [12] In 
effect, this means that the Bell-CHSH inequality can be 
presented in terms of “visible outputs” and we can identify the 
outputs with scalar values. What sense does it make to add 
vectorial values to this picture? None, apparently. But of 
course, this reply misses the point. We have not assumed that 
vector values can be added gratuitously to the theorem’s set-
up but have argued that if they are added, as replacements of 
scalar values, then the contradiction of Bell’s theorem will not 
come about.  

As far as outcomes are concerned, we should keep in mind 
that in real experiments we are interested not in outcomes but 
in what can be concluded from them about the target systems. 
Thus, we are not interested in the “visible outputs” but in the 
invisible system properties that can be inferred from them. The 
system quantities and values, inferred from the outcomes, may 
well be very different from these outcomes. To clarify this 
possibility, we consider three options: 

Option 1: the values a, a′, b, b′ of quantities A, A′, B, B′ 
are outcomes labelled by arbitrary labels, say ‘↑’ and ‘↓’. From 
these labels we cannot derive (1) for a trivial reason. The 
classical expectations introduced above are defined as E (AB) 

= ∑ ab p (ab |A, B), , etc., so cannot incorporate outcomes 
‘↑’ and ‘↓’, as for them addition and multiplication are 
undefined. 
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Option 2: the values a, a′, b, b′ of quantities A, A′, B, B′ 
are outcomes labelled by scalars ± 1. In this case, we can 
derive the Bell-CHSH inequality (1), using (2) or (3), without 
any reference to “a quantum-mechanical system”, which is 
just what Bell originally intended [13]. Here, the relation 
between outcomes and system values remains open. 

Option 3: the values a, a′, b, b′ of quantities A, A′, B, B′ 
are inferred from outcomes labelled by arbitrary labels but are 
not identical with them. (An example would be the inference 
from an outcome labelled ‘↑’ (or ‘↓’) to ‘the left electron has 
a positive (or negative) spin in the Z-direction’.) Here, by 
assumption, outcomes and system values are related by an 
inference but are not identical. So, it is possible to assume that 
these entities are of different types. The system values  
(a, a′, b, b′ of A, A′, B, B′) are scalars while the outcomes are 
arbitrary labels. Similarly, for the alternative theory from 
sec.2, the system values (a, a′, b, b′ of A, A′, B, B′), are 
vectors, while the outcomes again are mere labels.  

It seems strange to consider spin without directly 
addressing QM, the only serious theory of spin. But of course, 
we can imagine a primitive classical theory of spin and must 
be able to do so to have a classic theory competing with QM. 
If QM and the competitor theory did not address the very 
systems and values referred to in the definitions leading to eq. 
(4), then the desired contradiction between (1) and (4) would 
not arise. The expressions in (1-3) refer to such a classic 
competitor theory. The values a, a′, b, b′ of quantities  
A, A′, B, B′ are elements of this theory, and it is understood 
that the elements are unspecified entities but might be values 
of spin. Similarly for vector values a, a′, b, b′ of vector 
quantities A, A′, B, B′, which represent a second classical 
theory competing with QM. In sec.2 it was argued that the first 
competitor theory fails (produces the contradiction of Bell’s 
theorem) but the second does not (avoids the contradiction).  

 

IV. DISCUSSION (spin) 

The interpretation of values of spin quantities as vectors is 
by no means far-fetched; instead, it is suggested by the physics 
of spin. This can be seen from the careful explication of spin 
as a vector quantity: 

“Spin in QM is a vector quantity S associated with 
the ‘internal’ degrees of freedom of a system. We 
denote the observables corresponding to the X-, Y-, 
and Z-components of spin relative to a Cartesian 
reference frame by Sx, Sy, and Sz, respectively … We 
assume that the observables Sx, Sy, Sz (more correctly 
their associated self-adjoint operators) obey the same 
commutation relations as those applying in the case 
of ‘orbital’ angular momentum …” [14]  

Here we learn that, on the one hand, “the X-, Y-, and Z-
components” of spin S are vectors because S itself is a vector, 
and on the other hand, that to every spin component there 
corresponds an observable “Sx, Sy, and Sz”, or its “associated 
self-adjoint operator”. Note that “the X-, Y-, and Z-
components of spin” are physical entities that every theory of 
spin must address. By contrast, the observables Sx, Sy, and Sz 
and the associated operators are creatures of QM and its 
mathematics. It is unclear whether their values or eigenvalues 
are physical entities that every theory of spin must address. 

Consider a system M and let the X-component of spin S, a 
vector, be a property of M. We assume that this component is 
a unit vector ex. Consider the corresponding observable Sx. 
The value of Sx is a property of M. Is that value a scalar 
property of M? If so, then M has two different properties 
related to direction X: a vector property ex and a scalar 
property that is the value of Sx. This seems implausible. 
Instead, the value of Sx should be viewed as a vector that can 
be interpreted as being identical with the vector ex. 

By definition, the operator associated with Sx has a scalar 
eigenvalue. Does this fact carry over to observable Sx (in the 
sense that the value of Sx is a scalar)? If so, the earlier problem 
remains: M has two different properties for direction x: the 
vector ex and the scalar value of Sx. Can we give up the idea 
that the X-component of S is a vector? If so, we have 
renounced our starting point that spin in QM “is a vector 
quantity S” with vector components. It is much more plausible 
to relinquish the identification of values of spin components 
with certain scalars, e.g., the eigenvalues of self-adjoined 
operators. Instead, we can identify the eigenvalues (of the 
operator associated with observable Sx) with the signs of 
vectors ± ex and the vectors ± ex themselves with the values of 
Sx. We thus distinguish mathematical entities (eigenvalues) 
from physical ones (values of observables); the latter can still 
be identified with the components of spin S, and in the case of 
component Sx with the vector ex. 

These considerations are internal to QM; they concern the 
above-quoted explication of spin in QM and its consequences. 
The underlying problem is how to harmonize the operator 
formalism of QM with the QM (!) requirement that the 
components of S are vectors. But the explication of spin as  
“a vector quantity” is the first step into the QM of spin and the 
operator formalism is built on it as a second step. Every theory 
of spin – QM as well as a classic competitor – should address 
this first step: that S is a vector quantity with vectorial 
components that can be vectorial properties of systems. 

With respect to this criterion, our two classic theories of 
spin differ markedly. The scalar values theory from sec.1 
addresses spin by just introducing scalar values a, a′, b, b′, 
while the vector values theory from sec.2 introduces vector 
values a, a′, b, b′ (both theories do so to construct their 
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different expectation values). But the theory that is faithful to 
the vectorial character of spin S and its components, the one 
that incorporates the physical nature of spin, is the vector 
values theory. 

 

V. CONCLUSION 

We have reconsidered Bell’s theorem and confirmed that 
the standard version, interpreting the values of elementary 
spin quantities as scalars, ends in the familiar contradiction 
between locality and QM. But in the course of this 
reconsideration, we have learned that a version interpreting 
the values as vectors creates no contradiction. Such a version 
can reproduce the QM bounds while respecting the locality 
assumptions used in Bell’s theorem. Moreover, it can be 
motivated from the physics of spin. Hence, recognizing the 
choice between scalar and vector values of spin quantities 
suggests a reappraisal of the theorem. 
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