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Abstract: Mathematical modelling of nature, due to its accuracy and universality, plays 
a key role in the scientific inquiry of the world. So important its function is that some 
authors have defended the existence of an ontological burden in the mathematical 
formalism used by scientists. According to this opinion, the appeal to certain formalism 
would entail an implicit commitment to the type of entities that populate the material 
world. In this paper, the aforementioned thesis will be analysed, as well as other versions 
of mathematical Platonism, with the conclusion that there are no reasons to support it and 
that, therefore, it does not pose a threat to a realistic metaphysics in any of its modalities, 
such as structural realism. 
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1. Introduction: ontologies in mathematics and physics 

Galileo's well-known observation that nature is written in mathematical characters 
is often cited as epitomizing the intellectual substratum that fuelled the Scientific 
Revolution of the 16th and 17th centuries. It said verbatim as follows (Galileo 1981 
[1623], p. 62-63): 

 
«[…].Philosophy is written in that huge book that we have open before our eyes, I 
mean, the universe, but it cannot be understood if one does not first learn to 
understand the language, to know the characters with which it is written. It is written 
in mathematical language and its characters are triangles, circles and other geometric 
figures, without which it is impossible to understand a single word; without them it is 
like spinning vainly in a dark maze.» 

 
However, such a point of view already had a long history when taken on by 

Galileo. Around the 6th century BC, Pythagoras of Samos had proclaimed that numbers 
are the ultimate foundation of natural reality, setting a tradition that continues up to our 
present times in the eccentricities of some few idealists. Plato developed certain aspects 
of the Pythagorean doctrines to build his own philosophy, presided over by a radical split 
between the material and the ideal world, where the first realm was regarded as a sad 
shadow cast by the second one. Platonic dualism left open the question of how ideal 
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entities were related to material objects, a question that has remained unresolved in all 
subsequent versions of idealism. 
 Mathematical Platonism seemed to receive a strong boost during the 20th century 
in the wake of Willard Van Ornam Quine's (1960, 1969) argument for the real existence 
of mathematical objects, according to which the quantification of mathematical objects is 
indispensable for science, either in its formal or factual facet. Now, if we have to admit 
this quantification as true, an ontological commitment to the veracity of such 
mathematical entities is derived from it, whose reality we must accept. Quine never came 
to specifically formulate this thesis, which was later reproduced by Hilary Putnam (1971), 
even though this author never fully endorsed it (Colyvan 2001; Deacock 2002; Liggins 
2008; Sereni 2015; Molinini, Pataut, and Sereni 2016; Bueno 2018). 

Quine's indispensability, despite his popularity in certain mathematical and 
philosophical circles, soon received quite remarkable counterattacks. This is how the 
work of the Franco-American Paul Benacerraf (1965) was interpreted, in which he 
insisted, more than on the numbers themselves, on the importance of the structures that 
arithmetic involved. From this change of perspective arose the so-called identification 
problem concerning the existence of various candidates the ordinals of Zermelo and 
those of Von Neumann for the treatment of natural numbers in terms of set theory. Later 
this very author exposed the epistemological problem (Benacerraf 1973), by virtue of 
which a justification of mathematical truth could be coherent with either a general 
semantic theory or a general epistemological theory, but not both at the same time. 

What was possibly the strongest attack against mathematical Platonism came from 
the ranks of the fictionists, who refused to grant mathematical entities the same reality as 
physical objects (Field 1980, 1989; Burgess and Rosen 1997; Balaguer 1998; Yablo 2002; 
Bueno 2009; Leng 2009; Kasa 2010; Liggins 2010; Nutting 2020; Clarke-Doane 2022). 
Fictionism holds that mathematical concepts are invented, not discovered, because the 
discovery itself only occurs when we operate with material systems, which are the only 
ones existing in this sense. The ideal entities of mathematics, therefore, do not inhabit an 
otherworldly limbo intellectually apprehensible, but exist only formally as part of the 
mental (cerebral) activity of specific individuals, who are generally able to communicate 
and share their ideas. These individuals on the fictionalist view possess sufficient 
cognitive faculties to detect the mathematizable aspects of the objective regularities that 
govern nature, which would explain the outstanding practical success of modern science 
(Bunge 1974, 1977; Marquis 2006, 2011, 2012, 2018; Thomasson 1999; Thomas 2000, 
2002). The reason that the world turns out to be mathematizable, at least in part, remains 
outside the walls of fictionism. 

The triumph of the empirical-mathematical method that characterizes modern 
science also invites us to ask ourselves about the ontology of material systems that happen 
to be so liable to abstract formalization in the hands of theorists. From the Aristotelian 
duo substance-accident to the Kantian pair noumenon-phenomenon, the Western tradition 
has shown a remarkable tendency to divide reality into, say, a window display 
(appearances) and a mysterious back room (being itself). That this is not the only 
possibility affordable to us is proved by the fact that, at least since Hume, the 
metaphysical theory of objects as bundles of properties has been available. From this 
point of view, material objects are identified with the network of their properties, 
understood as the "modes of being" of things. There would not be, then, a substratum to 
which we could reach at the limit even theoretically by depriving things of all their 
properties (Lafrance 2015; Barker and Jago 2018; Robert 2019). 

The combination and interconnection between those modes of being that we call 
properties will provide something more than a simple mereological sum, giving rise to 



the complex of properties and relationships that we call "object" in its broadest sense. The 
usual objection consists in pointing out the problem of change: when one of the properties 
that make it up is altered, the beam changes and, therefore, we would no longer be talking 
about the same object. This critique is greatly weakened when the physical object is 
identified with the chronological series of bundles of properties that constitute it at every 
instant, so that the change is incorporated into its very entity. Consequently, it is the 
structure of relationships between its properties over time that gives each thing its 
particular identity. 

Having established the foundations of the discussion, we now come to its main 
core, which is the possibility that the mathematical scaffolding carries an ontological load 
that influences, perhaps unsuspectedly, our scientific inquiry into the natural world. And 
if so, what would be the ontological content that the use of one or another mathematical 
repertoire inevitably provides us with in our theories about the material world? 

In the following sections we will address three possible interpretations of the 
presumed ontological load carried by the mathematical tools with which scientists 
operate. We will begin in the second epigraph with the most radical version of 
Pythagoreanism, in whose opinion all mathematical structure must be carried out in some 
way in the material world, and after rejecting it, in the third section we will move on to a 
moderate version in which it is argued that, although not every mathematical idea has to 
manifest itself in nature, everything we can scientifically know about reality does obey 
some mathematical prescription. The assumption that the choice of a specific 
mathematical tool anchors our theories on certain reference classes will be examined in 
the fourth section. The fifth section will consider whether the previous discussions can 
undermine our confidence in realism as the founding philosophy for scientific work, with 
special attention to its influence on structural realism. Finally, the sixth section will 
present some brief conclusions that will close this article. 

 
2. Modern Pythagoreanism and its objections 

A first meaning that could be associated with the ontological burden of 
mathematics gives us back to the Pythagorean spirit, whereby the ultimate foundation of 
reality is mathematics (Tegmark 2008; MacDonnell 2016; Baron 2023). And since 
everything arises from it, it would be in some way more real than matter itself. The 
Swedish-American Max Tegmark, defender of cosmic plurality under the name of 
“multiverse”, seems to have something like this in mind, a confusing concept that is 
usually dealed with an ease unbecoming of its intrinsic darkness. In Tegmark's opinion, 
one can speak of multiple universes in various senses, one of which includes the totality 
of conceivable mathematical structures, although we do not observe them as physical realities in 
our universe. It constitutes the most abstract class of possible multiple universes considered by 
this author and, therefore, the least intuitive of all. 

Even if we do not venture into the depths of parallel universes, it would be enough 
for us to remain in ours and subscribe to a more refined Pythagoreanism by claiming that 
all self-consistent mathematical ideas will be realized in one way or another in the 
physical world, although we have not yet discovered them. If so, there would be no 
ontological burden of mathematics greater than this, as suggested by the discovery of 
unsuspected physical interpretations in the Riemannian function  (Bender; Brody; 
Müller 2017; Bourgade & Keating 2012) as well as an algorithm for calculating  in the 
configuration of quantum levels of the hydrogen atom (Friedman & Hagen 2015). 
However, a closer examination of the situation points in just the opposite direction. 

A well-known example is provided by the Majorana fermion, a type of elementary 
particles theoretically studied at the beginning of the 20th century by the Italian physicist 



Ettore Majorana, whose existence has not been yet verified with absolute certainty. This 
sort of particle is characterized by being itself its own antiparticle, as explained by the 
detailed mathematical characterization due to its author (Pal 2011). And nonetheless they 
seem not to exist in nature; almost all known elementary particles violate Majorana's 
theory, although no one knows why. The only exception is the neutrino, whose 
assignment in this sense continues to be the subject of controversy.  

An even more obvious case of a non-existent physical object, although 
mathematically well defined, is that of the magnetic monopole. Unlike the two types of 
electric charge that exist separately in their corresponding elementary particles, there does 
not seem to be a counterpart to this situation in the physical reality for the magnetic case. 
The magnetic poles conventionally called north and south always appear in pairs, which 
is the reason why we speak of magnetic dipoles. From a theoretical point of view, the 
discovery of even a single monopole would help explain why electric charges appear 
quantized that is, in discrete quantities as multiples of a fundamental unit in the 
universe. However, even when the mathematical treatment of magnetic monopoles is 
solid and solvent (Dirac 1931; Malkus 1951;'t Hooft 1974; Drukier and Nussinov 1982; 
Cho and Maison 1997; Milton 2006), no indication has been shown so far that leads us to 
think about the existence of a real correlate of such a concept. 

In order to apply the entire mathematical apparatus of the infinitesimal calculus, 
it is essential not only to guarantee the smooth and differentiable character of our base 
manifold –specifically, physical space-time– but also that the differentiable structure 
defined on it be unique. Otherwise, we could not be sure that the integration or 
differentiation operations provide a unique result, and therefore we would not know 
whether we are comparing the appropriate numerical quantities with the experiments. 

However, four-dimensional manifolds such as our space-time, far from having a 
unique differential structure, admit an uncountable infinity of them (Donaldson 1990; 
Donaldson & Kronheimer 1990). Manifolds with a lower dimension always have a single 
differentiable structure, while those with a higher dimension can be classified according 
to whether they are differentiable or not. The simplest 4-dimensional manifold, R4, other 
than accepting atypical differentiable structures, can also possess an uncountably infinite 
number of non-equivalent differentiable structures (Sładkowski 1996; Taubes 2000).  

In quantum field theory (especially when dealing with typically non-abelian 
Yang-Mills extensions of the Standard Model) computational artifacts, called “ghosts”, 
are routinely introduced to ensure the theory's self-consistency. These quantum ghosts are 
non-physical states incorporated into the system despite their lack of physical meaning 
for purely instrumental reasons (DeWitt 2003). It is a kind of formal scaffolding, a useful 
fiction, which allows us to preserve convenient symmetries and restrictions for the 
internal coherence of theories as widely used as Feynman path integrals. These "ghosts" 
constitute further proof of the prolixity of tools offered by mathematics without direct 
connection to the physical world.   

Nor can we forget the problem of supersymmetry, a special type of symmetry that 
aims to link the two basic types of elementary particles considered in the standard model, 
fermions and bosons. These two classes are distinguished by the values of the internal 
quantum number that we call spin, with integer spins for bosons and half-integer spins 
for fermions. This schism would presumably become closed due to supersymmetric 
operations capable of allowing exchanges between both families of particles, at the price 
of introducing a whole new taxonomy of superparticles, hidden companions of the ones 
already known. And since the bosons substantiate the fundamental interactions, while the 
fermions constitute matter at its deepest level, supersymmetry comes to offer us a certain 
equalization between matter and forces. In the last quarter of the 20th century, 



supersymmetry raised hopes of some grand unified theory (GUT) encompassing all the 
fundamental forces except gravity. If verified, the supersymmetric features of this family 
of theories would make it possible to compensate for certain infinite divergences that 
usually hinder models without supersymmetry. 

No matter how beautiful supersymmetric theories may look to their supporters, 
the unquestionable fact is that nothing tells us that they really occur in nature (or, we 
would rather say that it is not a property of the theories with which we represent the course 
of natural phenomena). His defenders do not give up easily and assume that 
supersymmetry has suffered some kind of breakdown. This means that the superparticles 
must have a much greater mass than those discovered to date, which is the reason why 
they have not yet been observed despite the intense experimental efforts dedicated to it. 
However, after decades of unsuccessful search, it was decided to incorporate 
supersymmetry as the main ingredient of string theories thereafter superstrings 
although the superstring paradigm itself languishes after more than half a century without 
conclusive results (Smolin 2016). 

A much less noticed mathematical superfluity is called “functional freedom”, in 
relation to the profuse diversity of mathematical expressions with which we can describe 
the same natural phenomena (Penrose 2017). Without too much rigor it could be said that, 
when the field of a physical quantity takes its values in a certain manifold V, then what 
we call a configuration of the field would be identified with a section of the fiber bundle 
of V over space-time; in other words, we would have a function that associates values of 
V with points in space-time. The key here is to realize that the space of functions in V 
field settings is a manifold of infinite dimension (assuming that the local domain of 
these functions is compact in order to avoid major complications). Thus, if the degrees of 
freedom of a field at a certain point are parameterized by an infinite-dimensional 
manifold, V, then the spatiotemporal degrees of freedom would also have to be 
parameterized (mapped) by a space of functions also of infinite dimension. 

The dimensionality of V does not always have to be infinite, so VN could be written 
to indicate any number N of dimensions. The reluctance of critics such as Penrose in this 
regard is due in large part to attempts to subsume theories dependent on VN in others 
characterized by VNʹ when usually N << N. Therefore, Penrose's critique stresses that in 
such a case the vastly greater sometimes infinitely greater number of field 
configurations that N would allow should manifest themselves in some much more 
visible way (to the point that, under certain conditions, they could make the models 
deduced from extended theories physically incoherent). If this is not the case, it should 
be explained why, as it would be in Penrose’s opinion the typical situation for 
superstrings nowadays. 

The examples detailed in the previous paragraphs, taken from whatever area of 
physics, point in the same direction: the mathematical language used to study nature has 
redundancies and annexes without a straight relation to the real world. This fact suffices 
to refute the possibility that the ontological burden of mathematics if such a thing exists 
relies on its ability to create reality. 
 
3. Nature as a mathematical book 

If we discard the idealist solution that identifies mathematics with the ontological 
root of the material world, perhaps a softened version of this extreme view could be 
acceptable. It may not be true that every conceivable mathematical structure already 
known or still to be elucidated has to be carried out in nature, although it could well be 
that all the phenomena of the universe obey some mathematical guideline, presumably 



within the reach of human reasoning. Expressed in other words, this is the message of 
Galileo's oft-repeated observation about the book of nature, mentioned in the 
introduction. 

Perhaps not all the mathematical concepts that inhabit the Platonic limbo have 
their correlate in the material world, but all existing natural processes would have a 
mathematical counterpart in that ideal realm. This is a parallel approach to that of natural 
philosophy understood as the search for a general comprehension of nature through 
mathematics as a basic conceptual tool (Truesdell 1966, p. 86 – 88): 
 

«The first objective of natural philosophy is to describe and study natural phenomena 
by means of the most accurate mathematical concepts. The most accurate ones need 
not be the most fashionable, although they can be; […]. The second difference in 
method is deeper. Most physical scientists regard mathematical treatment as belonging 
only to a later stage in the development of a theory. […]. In modern natural 
philosophy, the physical concepts themselves are made mathematical from the start, 
and mathematics is used to formulate theories.» 

 
Whether admitted or not, this seems to have been the implicit creed that has guided 

modern scientists and many of the ancient philosophers in their inquiries into the cosmos. 
The very word “cosmos” comes from the Greek word “order” (κόσμος), as opposed to 
“disorder” or “chaos” (Χάος); and one might wonder where we can find a greater 
perfection than in the mathematical order. Beyond assessing meanings, repelling 
inconsistencies and quantifying with precision, the use of mathematics in scientific 
research tends to exert an irresistible fascination in its most devoted practitioners who 
seem to be nearly always a genuine perplexity  on the right track. This is not invariably 
the case, but with an intriguing frequency the course of nature seems to run along paths 
previously paved with mathematical ideas whose connection with physics had not been 
intuited before.  

Ptolemy and his followers claimed to describe the celestial trajectories by means 
of an abstruse superposition of circles, the epicycles and deferents. This model, as long-
lived as it was, was surpassed by modern astronomy, although two thousand years later a 
great French mathematician partially vindicated the Alexandrian astronomer. Thanks to 
the Fourier series, we now know that an adequate combination of circular functions sines 
and cosines manages to reproduce any closed curve with the desired degree of accuracy, 
which explains the relative effectiveness of the Ptolemaic method (Bochener 1991). 
Kepler failed in his attempt to match the orbits of the planets visible at the time to the 
beauty of the Platonic solids (Koyré 1966), although he did take the first step in 
discovering that the physically real orbits consist of the conic curves studied millennia 
earlier by the Greek Apollonius. 

Newton and Leibniz created the infinitesimal calculus along with their 
mathematical studies of motion, studies that culminated in the work of Euler and the 
eighteenth-century geometers, true architects of rational mechanics in its classical form. 
The fusion of mathematical analysis with geometry gave rise to differential geometry, 
today an essential tool in the theories of fields and continuous media. When the German 
Woldemar Voigt introduced the tensor concept in the 19th century to deal with stresses 
in elastic solids, he could not imagine that several decades later, in the hands of Einstein, 
his creation would be used to illuminate a new concept of gravitation and a novel 
cosmology. 

The examples could be multiplied, although if we look for a claim in favour of the 
indispensability of mathematics in natural science we will find few as powerful as the one 



offered by the method of gauge symmetries. After an unsuccessful attempt by Herman 
Weyl in 1918 to incorporate gravity and electromagnetism as properties of space-time, it 
was soon found that its true utility laid in the then nascent quantum physics (Alemañ 
2015). When we take the characteristic phase angle of the wave functions and subject it 
to a global modification by changing its value by the same amount at all points in space-
time, the dynamical equations of the theory remain invariant. This symmetry is lost by 
relaxing the requirements for the phase change when allowing it to occur locally, that is, 
differently at every spacetime point. Such a procedure is equivalent to now considering 
the phase as a field variable, due to which the invariance of the equations will only be 
preserved by introducing a new field that compensates in every place the arbitrary 
variation of the phase. This new field, susceptible to quantization, turns out to be the one 
corresponding to the electromagnetic interaction. 

And it is not the only one; by using the currently most successful model, 
fundamental particles are conceived as localized excitations of quantum fields subject to 
two types of continuous symmetries. One of them is the space-time symmetry of the 
Poincaré group SO+(1,3), which requires associating a quantity called spin with every 
quantum field, with a semi-integer value for fermions and an integer value for bosons. On 
the other hand, there are gauge symmetries associated with the interactions between 
particles, as the product of the Lie groups SU(3)SU(2)U(1). Demanding invariance of 
the fields under local transformations of these gauge symmetries allows us to deduce the 
existence of strong, weak and electromagnetic interactions. 

It would seem that we are dealing here with an obvious case of ontological 
determination of a physical entity (for example, the electromagnetic field) by means of a 
formal requirement (the gauge symmetry). A closer look will reveal that things are not 
exactly like that. The electromagnetic field it is true follows from gauge symmetry 
when it is imposed to preserve the invariance of the dynamic equations of the theory. But 
it is no less true that such invariance comes to give a mathematical appearance to 
characteristics of the physical world, such as the homogeneity and isotropy of space-time 
or the indistinguishability of some reference frames. It is formally expressing a specific 
hypothesis about the universe that can be verified or not summarized in the claim that, 
if natural processes can be grouped into certain equivalence classes, the equations that 
rule them must present certain symmetries that guarantee the equality of their 
mathematical framework in such equivalent cases. 

Analysing the question with the care it deserves, we find a fundamental difficulty 
in the language used. Is it really correct to say that nature is mathematical in the sense 
that mathematical formalisms are properties of the material world itself? Perhaps it would 
be much more prudent to limit ourselves to accepting that the mathematical character 
belongs to our statements about the universe, and not so much to the universe itself. The 
question then acquires another dimension, since we would immediately have to question 
ourselves about the reasons that make the use of a mathematical language so effective in 
intelligibly representing the events of the cosmos. Kant would not have hesitated for a 
moment in answering that the concepts of mathematics arise from the a priori forms of 
our sensibility and for this reason they are inescapably accurate. It is not that mathematical 
tools have been used in the creation of the cosmos, but rather that human understanding 
is shaped in such a way that it cannot grasp it in any other way. From this perspective, if 
there are parcels of reality outside the power of mathematics, we will never be able to 
know it since our knowledge will never cross the borders of what can be mathematized 
(Kant 1989, p. 30 – 31). 

Those who consider the Kantian proposal largely superseded by the passage of 
time may be tempted to replace the a priori forms of intuition with Darwinian natural 



selection, transferring the unknown to a new stage. The possession of great mathematical 
gifts far exceeds the qualities necessary for our most distant ancestors to survive in the 
wild, so that it is very doubtful to attribute their origin to the patient labour of natural 
selection. Arguing that it would be a formidable evolutionary concomitance does not 
solve the problem either. If the human mind has been evolutionarily forged from inert 
matter, it is of little use to say that our mathematical aptitudes reflect the character of the 
regularities to which the matter from which we come is subjected. 

With all of this, we are very far from being able to ensure that reality is entirely 
within the reach of our ability to know it, as Barrow (1997, p. 98-99) acutely points out: 

  
«We have distinguished between operations that are computable and those that are 
not. But in real life, being computable might not be very useful if the program that 
does the required computation takes a million years to do. The world could be 
mathematical, and even full of computable functions, and yet it could be of such depth 
and complexity that we would be unable to find them on our fastest computers even 
if they were running for thousands of years.» 

 
At this point we find ourselves at a crossroads: either we simply admit as a brute 

fact that the material universe is like this a fact that a religious temperament would 
attribute to the divine will or else we resort to a dubious proliferation of universes among 
which ours has been selected by a no less debatable postulate, such as the famous 
“anthropic principle”. Be that as it may, mathematics does not seem to stipulate any 
ontological constraints on physical reality here, except perhaps that it is comprehensible 
to the human mind, which would rather be said to be a prerequisite for any rational 
investigation of the world. 

 
4. Does mathematics require an ontological commitment? 

The third possibility to give a clear meaning to the notion of "ontological burden" 
applied to mathematics comes from the line of thought according to which there is no 
clear border between the mathematical structure of a scientific theory and its ontology, 
because the latter is irremediably incorporated into the former. That is to say, by choosing 
a certain mathematical formalism we would be assuming at the same time, whether we 
like it or not, an ontological commitment regarding the referents of the theory (Psillos 
1995, 1999; Madrid 2010). 

In order to guarantee the clarity of the arguments, it would be convenient to 
specify first what we understand here by ontology as a term opposed to the mathematical 
structure. Following Bergliaffa, Vucetich and Romero (1993, p. 12): 

 
«[…]The ontology of the theory is the factual restriction of the set formed by the 
union of the domains of all the variables related to the logical quantifiers that appear 
in the axiomatic basis of the theory (by factual restriction we understand a restriction 
of the domain of the subsets formed by all non-conceptual elements). In the axioms, 
we quantify on the elements of the generative base or on the conceptual objects 
generated by it. […]. In our restricted sense, the ontology coincides with the reference 
class of the theory.» 

 
The reference class of a theory, in its broadest sense, can be made up of conceptual 

or material objects. In the first case we would have a pure mathematical theory and a 
physical theory in the second one. Those who advocate the ontological burden of 
mathematics do not usually reflect on the consequences of applying this notion to 



mathematics itself; perhaps because it is immediately clear that there is no an inextricable 
link between a theoretical formalism and its class of reference. An emblematic example 
is offered by Heisenberg's matrix mechanics, which typically replaces the algebra of 
functions on the phasic space of classical mechanics by a non-commutative algebra. But 
non-commutative algebra, considered as a general theory, can be applied in many other 
situations: the space of irreducible representations of a discrete group, the non-simply 
connected spaces of a non-abelian fundamental group, the space of sheets in the foliation 
of a manifold, quantum groups (quantum counterpart of the Lie groups of classical 
differential geometry), etc. All these cases constitute models of a theory 
noncommutative algebra with a higher degree of abstraction, in a logical sense, not an 
epistemological one (where “model” would mean the abstract representation of a concrete 
object). 

The traditional geometric connections, from which the concept of curvature 
derives, expanded its scope due to the notion of bundled spaces (Darling 1994; Taubes 
2011). With these tools it was possible to establish links between physical theories based 
on differential geometry and others apparently far from them, such as the gauge theory of 
electromagnetism. In the latter, the electromagnetic potential would be equivalent to the 
connection and the field itself derived from it would play the role of curvature in the 
pertinent fiber space. Another type of geometry, the so-called symplectic, has turned out 
to be a basic structure of both classical mechanics and quantum physics, thereby revealing 
its lack of commitment to any possible external referent. 

By granting this freedom to mathematics with respect to itself, is any ontological 
commitment imposed on physical theories that adopt a certain mathematical language? 
The answer to this question will critically depend on whether or not a sharp separation 
between the structure and the ontology of a physical theory is admitted, or rather, between 
its formal basis and its basis of primitive concepts, which are semantically interpreted by 
means of the axioms of the theory. In other words, does the choice of a particular formal 
basis limit the conceptual basis in any way, perhaps restricting the available semantic 
hypotheses? If so, the same mathematical structure would not be compatible with 
different ontologies reference classes since the ontological neutrality of formalism 
would be lost. 

The history of physics, and even our daily routine, roundly discredits this view. 
As early as the 19th century, the work of Hamilton and Jacobi demonstrated that the 
Hamiltonian equations constituted such a non-specific format as to account equally for 
classical particle mechanics and wave optics (Goldstein 1990). The Heaviside step 
function and the Dirac delta evolved into a respectable formalism through the theory of 
Schwartz distributions. Today these generalized functions are used fruitfully in many 
areas of physics and mathematics far away from their original source. 

Especially unfortunate is the recourse to De Broglie's wave-particle duality to 
maintain that the change in the interpretation of a theory is due to the alteration of its 
mathematical structure. In the early days of quantum physics, it was not possible to 
discern that the classical elementary particles should be replaced by time-dependent 
quantized fields characterized by complex numbers. It is not possible to equate them to 
elastic or electromagnetic waves (since the Schroedinger equation is not of second order 
in the derivatives with respect to space and time), so it is extremely wrong to use the 
phrase "wave mechanics", as is still customary nowadays (Alonso 1994). 

Those who reject the possibility of divorcing the mathematical structure of 
physical ontology denying that they are essentially independent domains usually 
situate the axis of their criticism in the continuous-discontinuous dichotomy, or in terms 
more typical of natural science, the field-particle antagonism. The thesis that quantum 



indeterminism broke the marriage between physics and differential equations by 
introducing discontinuities is belied by the fact that Schroedinger's equation is a 
differential equation, set aside that eigenvalue equations arose in numerous physical 
situations where discontinuities were assiduously handled long before quantum theory. 

Differential equations require a mathematical, not a physical, continuum to be 
applied to. This means that in order to use them profitably, it is enough to assume that the 
set of elements under study behaves in some respect as if it constituted a continuous 
medium, and excellent results are usually obtained with this approximation. For example, 
the Lotka-Volterra equations for predator-prey dynamics belong to the family of 
nonlinear first-order differential equations, even though we all know that interacting 
populations of animals do not form a mathematical continuum at all. Truesdell and Noll 
(1965, p. 5) underlined this very aptly in the following excerpt, with italics from the 
original: 

 
«It is widely misunderstood that continuum theorists believe that matter “really is” 
continuous, denying the existence of molecules. This is not like this. Continuum 
physics presumes nothing concerning the structure of matter. It confines itself to 
relationships between raw phenomena, leaving aside the structure of matter on smaller 
scales. Whether the continuum approximation is justified, in any particular case, is a 
matter not for philosophy or the methodology of science, but for experimental testing. 
[…]» 

 
Moreover, since the middle of the 20th century, theorems have been proved 

according to which the statistical approach which presupposes a discrete structure and 
the continuum one, when applied to material systems, lead to the same macroscopic 
behaviour. For any set of particles (equal or different from each other, few or numerous, 
free or affected by any external or internal forces of interaction), subject to any admissible 
probability distribution, it is possible to define dynamic magnitudes, by means of suitable 
averages of the variables in the phase space, which exactly satisfy the equations of 
continuum (Noll 1955; Dahler and Scriven 1963). It does not seem, therefore, that 
mathematical formalism carries any ontological burden, since it does not incline towards 
any preference regarding the continuity or discontinuity of its referents and its 
macroscopic results do not force us to decide between such alternatives. 

 
5. Scientific realism vindicated 

Realism, far from being just another metaphysical option, is presented as a 
precondition of human knowledge in general and of scientific knowledge in particular. 
No scientist seriously believes that the world whose regularities are explored is a ghostly 
product of our own consciousness, or that it pops in and out of existence depending on 
whether someone deigns to observe it. Science deals with enquiring and discovering 
existing phenomena prior to our knowledge of them, that persist when we do not devote 
our attention to them, which constitutes the nerve and root of philosophical realism. There 
are no true "scientific unrealists" and whoever claim to be so only casts doubt on their 
own intellectual honesty. 

The numerous variants of this doctrine lead to as many surnames for it: structural, 
epistemic, ontic, perspectivist, selective realism, etc. All these nuances agree on the 
existence of an extramental world independent of our perceptions of it, but they differ on 
what and how it can be known. The most successful line of thought so far is traced by 
structural realism, which holds the persistence of the underlying mathematical structures 
over the theoretical replacements that we call scientific progress. Accordingly, when a 



scientific theory accepted up to that moment is replaced by another one more closely 
adapted to the facts, the mathematical structures that formed the fuselage of the relegated 
theory are maintained in the new proposals. In a famous example, Worrall (1989, p.117) 
stated: «Fresnel completely misidentified the nature of light, but it is no miracle that his 
theory enjoyed the predictive empirical success it did; […], Because he […] attributed to light 
the correct structure». 

This is the case due to the evident logical independence between the formalism of 
the theory, which delimits the conjectured structures for the analysed process, and the 
interpretation that fixes the reference class or “ontology”, if you prefer to put it that way. 
There is no place here for the semi-realist position of Chakravartty (1998), who combines 
realism regarding structures with anti-realism regarding referents. Indeed, it is not 
possible to accept the reality of certain relationships without also admitting the reality of 
those individuals to whom they apply. That is why the defense of ontic structuralism in 
the attempt to substitute the notion of object for that of structure is so counterproductive 
(French and Ladyman 2003). A world of structures only, without objects, would resemble 
the Cheshire cat created by Lewis Carroll for his novel Alice in Wonderland whose 
smile remains as her face fades away. As Van Fraassen (2007, p. 55) insightfully notes: 
«Does it make sense to conceive of a structure that is not a structure of something? A 
structure of nothing is nothing». 

The most reasonable position in this field recognizes that the mathematical 
structures of our most powerful theories reflect in some way the patterns and objective 
regularities that constitute the way of being of the material world. The structures are not 
real in the same sense that the tree we stumble upon while absentmindedly wandering 
through the woods is real. We are the ones who, with more or less sagacity, project onto 
the universe the structures that our intellect elaborates, while hoping that they will grasp 
and reveal some of their intimacies to us. The referents of those structures the ultimate 
constituents of the cosmos, in the fundamental theories are only partially known to us, 
so that the possibility of modifications and amendments to the concepts that we weave 
around them always remains open. 

This lesson is clearly captured in the Indian fable of the three blind wise men who, 
after inspecting different parts of an elephant by touch, each deduce separately that they 
are different animals. It would seem absurd that these scholars, faced with the 
contradiction between their opinions, conclude that the animal whose identity they intend 
to find out simply does not exist. Our information about the deep nature of reality will 
always be incomplete and precarious, which does not imply in any way that we should 
adopt unrealistic beliefs. Each new discovery may shed light on new properties, or new 
relationships between those already registered, of an object previously known in other 
aspects. This does not mean that we hold the existence of different objects every time our 
understanding increases, because what is successively altered are the intellectual 
constructs that we devise to represent it, not the object itself 

The phenomena explained by geometric optics, being the same, acquire a new 
consistency by virtue of wave optics, which in turn is surpassed in breadth and depth by 
quantum field theory (although Feynman path integrals or renormalization techniques 
have yet to acquire a logically closed form). The case of Heisenberg's matrix theory and 
Schroedinger's wave theory, often used as an example against it, appears as one of the 
best arguments in favour of the ontological independence between physics and 
mathematics. It was Heisenberg, and not his mathematical method, that perhaps 
presupposed the existence of corpuscular particles, although he gave up any mental 
imagery to focus on the transition frequencies between atomic orbitals. And it was 
Schroedinger not the equation that bears his name who wanted to redirect the nascent 



quantum theory towards the familiar wave physics, but his failure demonstrated that his 
equation, free of ontological commitments, could accommodate functions very different 
from those representing traditional waves. Ultimately, both researchers understood that 
the concepts of wave and particle only constituted classical limits of a physical object as 
radically new as the quantum field. 
 It is a serious mistake to assume that two mathematically equivalent theories that 
is, with isomorphic mathematical structures that equally satisfy the same empirical 
evidence, must share the same ontological substratum; let us put forwards the case of 
fluid equations and the electromagnetic field which, despite their mathematical 
equivalence, point to very different physical referents. Rather, it should be said that the 
reference classes of both theories are made up of elements, some of whose properties 
and relationships between such properties correspond to each other, thus tolerating the 
same mathematical structures in certain aspects of their formal description. The key lies 
in the fact that this correspondence is not isomorphic but rather a homomorphism (Bueno, 
French and Ladyman 2002), which expresses the always partial and revisable nature of 
the link between our theories and the real world. And we need nothing more, since it is 
another serious misunderstanding to require isomorphisms in order to regard as legitimate 
the realistic inferences about nature from theoretical structures. It is enough for us the 
deductive possibilities that connect the theory with the material universe, and not the other 
way around, because the opposite path contains an impossible demand: If we are the ones 
who project the structures we invent onto nature, we can only hope that the bridge 
between both domains will be traveled in a single direction. 
 
6. Conclusions 
 The possible influence of mathematical formalisms on the type of world that we 
can describe with scientific theories continues to feed a passionate debate that will 
probably take a long time to be exhausted. In the present work we have examined three 
possible interpretations of the statement according to which mathematics carries an 
ontological burden that necessarily orients in a certain direction the choice of the 
ontological base with which we equip each physical theory. The accumulated historical 
experience and a cursory analysis of the acquired knowledge leads us to reject the extreme 
Platonism of those who maintain that all self-consistent mathematical ideas must be 
realized in nature. Nor does the Galilean metaphor that equates the material world with a 
book written in mathematical language seem to be justified. Nature is not a text, whatever 
the language used to describe it, 
 The third possibility suggests that the mathematical tools used in physical theories 
entail a certain ontological commitment about the class of entities whose existence such 
theories presuppose. However, examination of this issue inevitably leads to an 
unfavourable verdict. Mathematics does not involve any ontological commitment when 
it is used as the basic framework of our knowledge of the world. It is the semantic 
hypotheses included in the axiomatic basis of a theory that determines its connection with 
the material universe, by specifying the physical referents of that theory. There is no 
inescapable link between the semantic dimension of a physical theory and the 
mathematical formalism in which it is expressed. 
 Contrary to the opinion of some authors, this freedom provided by the lack of 
ontological commitment of mathematical methods does not cause the slightest problem 
for realism as a metaphysical assumption of scientific knowledge. Physical objects exist 
independently of our limitations in knowing them, and we are not able to demand from 
our theoretical representations more than what is logically possible to expect. Our best 
mathematical theories about the physical world will never be complete, perfect and 



definitive, and it does not mean that we must refrain from inferring what those very 
theories allow us to deduce, despite their inevitable deficiencies. The theoretical 
underdetermination of physical reality, by which it will always be logically possible to 
develop more than one theory to explain the same set of facts, will always accompany 
scientific work without an illusory ontological burden of mathematical instruments 
alleviating what ultimately constitutes an essential ingredient of human knowledge. 
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