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Abstract

We give a conceptual exposition of aspects of gravitational radiation, especially
in relation to energy. Our motive for doing so is that the strong analogies with
electromagnetic radiation seem not to be widely enough appreciated. In particular,
we reply to some recent papers in the philosophy of physics literature that seem to
deny that gravitational waves carry energy.

Our argument is based on two points: (i) that for both electromagnetism and
gravity, in the presence of material sources, radiation is an effective concept, un-
ambiguously emerging only in certain regimes or solutions of the theory; and (ii)
similarly, energy conservation is only unambiguous in certain regimes or solutions
of general relativity. Crucially, the domain of (i), in which radiation is meaning-
ful, has a significant overlap with the domain of (ii), in which energy conservation
is meaningful. Conceptually, the overlap of regimes is no coincidence: the long-
standing question about the existence of gravitational waves was settled precisely
by finding a consistent way to articulate their energy and momentum.

1 Introduction

Heuristically, gravitational waves are propagating ripples in the fabric of spacetime; ripples that
we can now detect as originating in some of the most energetic events in the universe, such as the
merger of two black holes. In recent years, instruments such as LIGO (the Laser Interferometer
Gravitational-Wave Observatory) have made it possible to measure these remarkably elusive
waves. Since the first direct detection in 2015, there have been numerous detections, including
the merger of two neutron stars and the collision of two black holes. It is not hyperbole to say
we have developed a new type of sensor with which to observe the cosmos.

But in earlier decades, gravitational waves were controversial. The theory governing their
behaviour had a turbulent origin. Proposed by Albert Einstein soon after the discovery of
general relativity, gravitational waves were shortly thereafter confused with mere artefacts
of a bad coordinate choice; and so their existence was denied. But Einstein himself was
thereafter convinced they were not just coordinate artefacts, and so came to realise the waves
are real (Kennefick, 2007). But these controversies are now long past. The work of Penrose,
Bondi, Metzner, van der Burg and Sachs in the 1960s provided an invariant formulation with

∗University of Oxford, Oriel College, OX1 4EW, United Kingdom; gomes.ha@gmail.com
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which to describe gravitational radiation at asymptotic distances from their sources. Crucially,
gravitational waves were shown to carry energy in an unambiguous, fully covariant manner.

But scepticism about whether these waves carry energy lingers on in some of the philoso-
phy of physics literature (see e.g. Duerr (2019); Fletcher (2023); Hoefer (2000); Lam (2011)).
Their sceptical arguments have two main foci: they attempt to (i) show germane dissimilar-
ities between gravitational and other types of physical interactions, and to (ii) weaken the
significance of asymptotic conservation laws. In the course of the paper, we will—one might
say, unduly—focus on Duerr (2019). But there is a simple reason: it is the most recent and
complete illustration of (i) and (ii).

Thus we plan to review the established work from the 1960s (and some later developments),
including the analogies between gravitational radiation and electromagnetic radiation, with its
much better understood energy transfer: and thereby reply to these sceptical arguments.

There is general philosophical debate that we do not intend to here address about (i) the
nature of idealizations and approximations and (ii) the nature of the contrast between emergent
or effective regimes, and fundamentals. That is why we use electromagnetic radiation as a foil:
reasonable views on (i) and (ii) should apply equally to electromagnetic and gravitational
radiation.

In the rest of this Section, we briefly introduce the paper’s themes, and give a prospectus.
One argument against gravitational radiation carrying energy is that it can be sourced by

objects that are following geodesics, and are thus ‘force-free’. But the generation of gravita-
tional waves depends on the quadrupole moment of the source’s motion: that is a statement
about relative motion between different bodies, or parts of a body. Whether or not the individ-
ual bodies or parts of a body follow ‘force-free’ motion, that motion produces real tension, and
thus work, within an extended body. Thus, being force-free is compatible with the emission or
absorption of energy.

We can see this very clearly in the electromagnetic analogy. Take the question of whether a
freely falling charge radiates or not. This was satisfactorily answered in the 1960s by Rohrlich
and Fulton (Fulton & Rohrlich, 1960). Their answer was that the freely falling particle can be
taken to radiate, for us, in Earth’s frame, but not for a local, comoving observer.

The reason this answer is (perhaps surprisingly) not in conflict with the equivalence principle
is that, generically, we can’t unambiguously extract the wave part of the electromagnetic field
from its electro-magneto-static part, within spatial regions that are close to the source of the
wave. Even in a Minkowski spacetime, this extraction is only unambiguous at large distances:
the so called wave-zone (see appendix A).

And there is a very analogous picture for gravitational waves. In a weak-field approximation,
it is in the wave-zone of the source that we can only unambiguously discern the part of the
linearised field that is radiative. To accomplish something similar in full general relativity, we
also need to invoke something akin to the wave-zone: asymptotic infinity. Generically, it is
only asymptotically that we have an objective split between the “Newtonian” (or Poisson, or
Coulombic) part, and the radiative part, of the field.

At this point it is worthwhle to disambiguate between two different meanings of ‘radiation’.
For one could ascribe to ‘radiation’ a very weak, and even vague, meaning: the propagating
effect of a given change in initial conditions (an effect that by all accounts travels within the
light-cone).1

1Both general relativity and electromagnetism respect relativistic causality, which means that, given two
solutions of the equations of motion that agree on a proper subset of a Cauchy initial slice Σ, i.e. that agree
on Σ0 ⊂ Σ, will agree on D+(Σ0) (the domain of dependence of Σ0). See (Choquet-Bruhat, 2008, Appendix
III, Theorem 2.15) and (Landsman, 2021, Appendix B) for a proof, which is based on the fact that both the
Einstein and the Maxwell equations are quasi-linear hyperbolic equations. By the same token, differences in
initial data constrained to a subset will evolve into differences within the chronological future of that subset.
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But the weak meaning of radiation is not the one that features in discussions of gravitational
waves in the weak-field limit, and they are not the sense we are mostly concerned with here.
The stronger meaning of radiation that we are concerned with here is similar to the meaning
it has in flat spacetime: waves should propagate along null directions, and have transversal
polarizations, oscillatory behavior, and, when sourced by compact sources, the correct fall-off
behavior.

Thus we see that, properly understood, ‘radiation’ is a derivative concept; it is a property of
the field that in limited regimes emerges out of the fundamental ontology of each theory. In both
the gravitational and electromagnetic cases, generically, it is only only at asymptotic distances
that we can unambiguously distinguish radiative and ‘Coulombic’ components. And in both
cases there are similarly special circumstances—that are again similar in the electromagnetic
and gravitational cases—in which we can distinguish these derivative or emergent properties
everywhere.

In sum, singling out the ‘waving’ part of the field is subtle both for electromagnetism and
gravity, and in similar ways. We will thus argue that dissimilarities between electromagnetic
and gravitational waves are irrelevant to the issue at hand. That is, we can happily admit that
spacetime curvature and matter fields are fundamentally distinct—“marble and wood”, as Ein-
stein called them.2 Nonetheless, in both theories, we can only objectively and unambiguously
characterise the waves in similarly special circumstances. Both the electromagnetic and the
gravitational fields come to us as whole, and we must carve out the part that corresponds to
radiation; but the joints are, in both cases, only apparent at very large distances.

As to the energy carried by the waves, we find a happy overlap of regimes.
First, it is important to state upfront that an energy-momentum tensor is well-defined for

electromagnetism, but it is not, in general, for the gravitational field. Therefore we can always
define the local energy of the electromagnetic field at a spacetime point and in a given frame,
while in general we cannot do so for the gravitational field.3

Moreover, our intuitions for electromagnetism are mostly based on its applications in
Minkowski spacetime, where the energy-momentum tensor of the electromagnetic field is not
only well-defined but conserved. In gravity, we can associate energy to the gravitational field
only in certain regimes. For instance, we can do so in the weak-field regime of general rela-

There is of course the tricky question of how to actually build solutions that match in some subset but differ
elsewhere, which we discussed in footnote 4.

2The labels are usually taken to mean that the geometric side of the equations (the Einstein tensor and
cosmological constant) was smooth and pristine—like marble—whereas the right-hand side of the Einstein
equations (the energy momentum tensor), was of a different, knottier, or rougher nature, ‘like low-grade wood’.
But as discussed in (Lehmkuhl, 2019, Sec 3), it is not quite what Einstein meant:

Einstein seeing the left-hand side of the Einstein equations as fine marble and the right-hand side
as low-grade wood has nothing to do with geometry. It is about quanta. He believed that the
left-hand side of the Einstein equations gave an accurate picture of the gravitational field, but
that the right-hand side of the equations did not give an accurate picture of matter, for it does
not account for the quantum features of matter. It is only a docking station for results of theories
like classical hydrodynamics and electrodynamics, which do not do justice to the quantum nature
of matter either. Thus, Tµν in GR is a place-holder for a theory of matter not yet delivered.
(Lehmkuhl, 2019, p. 180)

Here we seek only to invoke a distinction between the natures of the gravitational and electromagnetic fields:
a meaning closer to the folklore than that intended by Einstein.

3The energy momentum tensor is locally, covariantly conserved: this is a consequence of the definition of
the energy-momentum tensor via a diffeomorphism invariant Lagrangian which is a sum of a part that depends
on the matter content and a part that doesn’t; conservation holds irrespectively of the Einstein equations. The
corrresponding conservation laws for the gravitational field are mathematical identities, known as the Bianchi
identities: these are satisfied automatically if the Riemann tensor is defined in the standard way as a function
of the metric.
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tivity. In this regime the analogy between gravity and electromagnetism is very strong: we
can treat perturbations of the gravitational field in much the same way as we treat the elec-
tromagnetic field: as a kind of matter field on a rigid background geometric structure. For
these gravitational perturbations, we can infer the same conclusions about radiation and energy
conservation as we do for electromagnetism.

In a generically curved spacetime, as is well known, the notion of conserved energy is,
to say the least, complicated. Generically, energy conservation is not locally meaningful—
irrespective of whether that energy refers to gravitational or electromagnetic waves. If we
allow geometries to vary arbitrarily in some region we can still make sense of the energy of
the gravitational field by assuming spacetime to be asymptotically flat. In that context, we
can interpret the spacetime as representing an isolated subsystem. The energy of the entire
spacetime is interpreted as the total energy of the subsystem in the fulness of time; and we can
also interpret the flux of radiative energy ‘carried away’ to infinity from the system as time
passes. As Bondi, Penrose and others showed, gravitational waves objectively carry energy away
to asymptotic null infinity; as Arnowitt et al. (1962) showed, the entire energy of a spacetime
is registered at asymptotic spatial infinity; and finally, as Geroch, Ashtekar and others showed,
the energy carried away to null infinity can be seen as part of the energy contained in the entire
spacetime.4

But asymptotic infinity is a hard place to get to. So why is it so useful in general rela-
tivity, even for experimental predictions? Because it is how we represent isolated subsystems
in theories with long-range forces, like electromagnetism and gravity. Fortunately, in some
circumstances, given a frame and appropriately separated relative scales, we can also identify
gravitational energy and its transfer to bodies, even without going ‘all the way out’ to infinity.
For instance, the scale separations between the size of our LIGO detectors and the distance to
what it is observing suffice for us to identify a component of the gravitational field here that
represents the outgoing radiation emitted by the astrophysical sources. Or, in the sticky-bead
example (see Section 3.1), the scale of the bar, the beads, and the curvature already allow us
to distinguish a radiative component that does work: we can verify that the gravitational wave
will have less energy at infinity than if it had not encountered the bar.

In sum, we will present two main arguments in favour of the received view about the energy
of gravitational energy. First, whether or not spacetime is asymptotically flat, radiative energy
transfer—a redistribution of the total conserved energy into identifiably distinct components
of a solution of the theory—occurs, or fails to occur, in conceptually similar circumstances for
the gravitational field as for the electromagnetic field. Thus we will argue that sceptics who
maintain that we don’t understand energy transfer for gravitational radiation, must also claim
we don’t understand it for electromagnetic radiation; even if the energy-momentum tensor
is generically well-defined for electromagnetism but not for gravity. Second, in the case of
gravitational radiation, because of the compounded subtleties of coordinate invariance and non-
linear field equations, the question of carving out the objectively radiative components of the
gravitational field was more explicitly tied to the question of whether these components carried
energy. Heuristically, defining a wave requires a rigid background and this same background
can be used to define energy conservation. .

We thus conclude that though there are many dissimilarities between gravitational radiation
and electromagnetic radiation, they do not license a relevant distinction with respect to energy
transfer. The fact that the energy of the gravitational field is not generally well-defined is

4We are here avoiding the question of what kind of data on a compact subset allows an asymptotically flat
treatment. For spatial infinity, there is considerable freedom in the initial data one can glue to an asymptotically
Kerr spacetime: see Carlotto & Schoen (2016) for a review. And thus the context in which ADM energy is
well-defined is well-understood. But for asymptotic null infinity, the question involves teleological conditions
on the full evolution of initial data, which is less understood.

4



consistent with both points of our conclusions: that the notion of energy carried by a wave is
valid in a (very relevant) regime of general relativity; and that gravity and electromagnetism
swing together in this respect: the effective notion of gravitaional radiation that emerges in
this regime is as well-defined and as part of the basic furniture of the world as electromagnetic
radiation.

Here is how we plan to proceed. In Section 2 we give a succinct list of technical results that
we will invoke in this paper (we give a more detailed account in the appendix). In Sections 3 and
4 we address the recent philosophers’ scepticism: in Section 3 we will compare gravitational
and electromagnetic radiation and in Section 4 we discuss energy conservation and isolated
subsystems.

2 Technical results

Here we remind the reader of the following crucial points about electromagnetism and gravi-
tational waves ( labelled for later reference):

First, regarding the wave behavior of the fields:

R(i) Both the gravitational and the electromagnetic field obey constraints: these are equa-
tions that are not dynamical, but must be satisfied by any valid initial data for the
theory. For instance, one of way of parsing the electromagnetic field according to con-
straints and dynamics is to say that the field has a component that is determined by
the simultaneous distribution of charges and one component that has its own dynamics;
loosely called ‘radiative’.

In vacuum, in a contractible space, due to its linearity, the entire electromagnetic field
can be unambiguously characterised as radiative. But in general, e.g. when compact
sources are present, there is no single local decomposition of either the gravitational or
the electromagnetic fields into a radiative and a ‘Coulombic’ part: for a given region
of a generic spacetime, different decompositions can lead to different conclusions about
radiation.

R(ii) The ‘waving part’ of an electromagnetic field is unambiguously identifiable far away
from the source, as the ‘component of the field’ that falls-off as 1/r; the region in which
this behavior occurs is called the wave-zone.

In asymptotically flat spacetimes, we can use the Penrose-Newman null tetrad formalism
to directly characterise the different components of the electromagnetic field that fall-off
at the different rates: this is the electromagnetic Peeling Theorem. This theorem allows
us to identify the components of the field that ‘become more and more’ representative
of electromagnetic radiation as one moves away from the source: these are the scalars
Φ2.

R(iii) Similarly to the electromagnetic case, in the weak field limit of vacuum general relativity,
in which we ignore everything but linear perturbations of the Minkowski metric, and
in a particular choice of gauge (transverse-traceless), the metric perturbations satisfy
the usual wave equations on the Minkowski background and thus are entirely radiative.
In this gauge, it is clear that there are two propagating degrees of freedom of the
perturbation, as expected from the canonical counting of the physical degrees of freedom
of the gravitational field. If the perturbations are sourced by matter, precisely as in the
electromagnetic case, we can identify the radiative parts of the perturbation as those
components with the appropriate 1/r fall-off, in the wave-zone. These components
depend on the quadrupole moment of the sources.
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R(iv) Moving away from the weak field limit we have to deal with the non-linearities of the
Einstein field equations head-on. But there are no dimension-length constants in the
theory that could characterize the onset of the strong field regime in general relativity.
This implies the strong field regime is not associated with a particular length scale, and
instead can be reached at any scale if some characteristic radius representing curvature
becomes “small”. It is this comparison of length scales that justifies the extrapolation
of idealised asymptotic features of general solutions to finite distances in individual
solutions.

R(v) As in the electromagnetic case, in asymptotically flat spacetimes, we can use the
Penrose-Newman null tetrad formalism to directly characterise the different compo-
nents of the gravitational field that correspond to gravitational radiation. The Peeling
theorem for the curvature also let’s us identify components that fall off as 1/r, and
that, asymptotically, become ‘more and more’ like the radiative modes of the weak-
field approximation: these are the Weyl scalars Ψ4. In the bulk of the spacetime, the
scalars Ψ4 strongly depend on a choice of null tetrad basis. In certain algebraically
special spacetimes these choices can be physically constrained and the Ψ4 can be taken
to correspond locally to gravitational radiation in a strict sense. But generically, an un-
ambiguous notion of radiation is only available at asymptotic infinity (see (D’Ambrosio
et al., 2022, Ch. 6-8)).5

Next, regarding the conservation of energy:

E(i) Given the background Minkowski metric and its associated Killing vector fields, one
has meaningful notions of energy conservation for matter fields (i.e. the right-hand-
side of the Einstein field equations), which apply equally to the electromagnetic field
and to the linearised gravitational degrees of freedom. More generally, conservation
laws can be deduced for spacetimes that are suitably algebraically special. But for a
generically curved spacetime, no covariant, quasi-local conservation laws exist without
the introduction of some background structure.6

E(ii) Energy transfer is not solely radiative. In the case of electromagnetism in a Minkowski
spacetime, energy transfer through a surface is given by the flux of the Poynting vector.
But the Poynting vector can be non-zero for a non-radiative source: a Lorentz boost
of a purely Coulombic field gives rise to both an electric and a magnetic field and to
a non-zero Poyinting vector; but that field is not radiative. In accord with item R(ii),
the magnitude of such a non-radiative Poynting vector falls-off with distance faster than
a radiative Poyinting vector; indeed, the former’s flux vanishes at asymptotic infinity,
unlike the latter’s.

5The original definition that encapsulates the modern usage can be traced back to (Sachs & Bondi, 1961,
p. 333) “A covariant characterization of spaces that are free of mixed radiation at light-cone infinity has been
suggested. The characterization seems to agree with every thing that is known about gravitational radiation
fields at present. The final definition proposed [is] that a field with asymptotically geodesic rays is one that is
free of mixed radiation at large distances...”

6The canonical reference here is Szabados (2004), who states (p. 9): “contrary to the high expectations
of the eighties, finding an appropriate quasi-local notion of energy-momentum has proven to be surprisingly
difficult. Nowadays, the state of the art is typically postmodern: Although there are several promising and
useful suggestions, we have not only no ultimate, generally accepted expression for the energy-momentum and
especially for the angular momentum, but there is no consensus in the relativity community even on general
questions (for example, what should we mean e.g. by energy-momentum: Only a general expression containing
arbitrary functions, or rather a definite one free of any ambiguities, even of additive constants), or on the list
of the criteria of reasonableness of such expressions.”
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E(iii) In the asymptotically flat case, using the Penrose-Newman null tetrad formalism, we
can again identify different fluxes at infinity. We have conserved charges at asymptotic
spatial infinity that correspond to the integral of non-radiative components. For in-
stance, for electromagnetism and gravity we get the total electric charge and the ADM
energy-momentum, respectively. And we have an energy flux that corresponds to an
integral over null asymptotic infinity whose arguments include only radiative compo-
nents. One can interpret the difference between the ADM energy and the energy of the
radiation up to a certain (retarded) time as the ‘leftover’ energy of that spacetime at
that time Ashtekar & Magnon-Ashtekar (1979).

3 Gravitational radiation in thought and in reality

We will now deploy Section 3’s similarities between gravitational and electromagnetic radia-
tion in discussing two iconic, and historically significant, “experiments”. One is a thought-
experiment (Section 3.1); the other is a decades-long observational programme (Section 3.2).
(For historical details, cf. again e.g. Kennefick (2007)). In the course of this, our disagreements
with the sceptics about radiative gravitational energy will become clear, since they also focus
on these two cases.

3.1 The sticky bead

After disavowing his theoretical discovery of gravitational waves in the 1930’s, Einstein was set
right by Infeld and (indirectly) Robertson. With their help, he became convinced that he had
misinterpreted the coordinate artefacts of his and Rosen’s construction. Rosen, his collaborator
on the original disavowal, was less convinced, alongside many others.

The state of play remained relatively inconclusive until the famous 1957 conference in
Chapel Hill, in which Feynman gave his famous “Sticky Bead” thought-experiment. Leading
up to the conference, Pirani and Robinson had been emphasising the role of tidal effects and
of the Riemann curvature in providing a coordinate-independent description of gravitational
radiation. Using these ideas, Feynman pictured a rigid rod with two ring-like beads, free to
slide with friction on the rod, placed in the path of a gravitational wave. Thus, since the beads
would slide back and forth on the bar, and through the action of friction heat up the bar,
Feynman concluded that the bar can only heat up if the gravitational waves transfer energy to
it. Rovelli (1997, p. 197) expresses the idea forcefully:

A strong burst of gravitational waves could come from the sky and knock down the
rock of Gibraltar, precisely as a strong burst of electromagnetic radiation could.7

But many philosophers demur. For instance, (Duerr, 2019, p. 30) writes:

Therefore, even if [...] we did register an increase in thermal energy of a Sticky
Bead detector, we wouldn’t be licenced to infer a transfer of energy from the GW,
so as to restore energy balance. Rather, it would seem more natural to accept an
alternative stance: Energy conservation simply ceases to hold in GR. The detector
would just heat up - without there being a causal story about it that would allow us
to track the lost energy. Energy conservation is just violated (quantifiably!), when
a GW hits a detector.

7The quote continues: “Why is the first “matter” and the second “space”? Why should we regard the second
burst as ontologically different from the second? Clearly the distinction can now be seen as ill-founded.” Here
we wish to remain agnostic about this stronger statement. We can admit a significant ontological difference
between spacetime curvature and other forces—e.g. electromagnetic—while still taking radiation in each theory
to be equally capable of trasmitting energy.
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Other arguments, in recent years common among philosophers, proceed in a similar spirit.
As is often pointed out, one can realize the relevant sliding motion of the beads through any
geodesic deviation; e.g. in the exterior Schwarzschild metric, as the beads fall towards the
center of the planet.

Before criticising these arguments, let us first make a concession. It is true that, had we
placed the beads close to the source, it would be impossible to univocally distinguish the energy
they obtained solely from gravitational radiation, since, by item R(i) (see also R(iii)), at that
distance, there is no unique, unambiguous decomposition of the curvature into an outgoing
radiative and a non-radiative component. This is analogous to placing an electromagnetic
antenna very close to an oscillator, in the near-field zone (see R(ii)): there is definitely a
changing electromagnetic field that does work on the antenna, but what part of that work is
solely due to radiation?8

In the same manner, we believe all parties would agree that talk about energy transfer from
gravity to a sticky bead, or to a glass of water, only requires a regime where the sticky bead or
the glass of water itself can be well approximated in standard non relativistic terms (in their
frame). Then they have a well defined local energy, which is measurable, and if this energy
grows and their only interaction is gravitational, it is legitimate to say that there was transfer
of energy from gravity to the object.

But the question is whether that transfer is due to an objectively defined gravitational
wave, and whether, when it is, if the approximations required also allow us to attribute energy
to that wave.

We contend that the assumption underlying Feynman’s picture of a discernible gravitational
wave hitting the sticky bead is equivalent to an assumption of the weak field regime or of
sufficient distance from the source. That is, the beads are at a distance such that, according
to R(iv), the Newman-Penrose components Ψ4—which are defined everywhere but retain some
frame dependence that is irrelevant under the intended interpretation of asymptotic infinity—
provide good approximate notions of outgoing radiation (as in (Sachs & Bondi, 1961); see
(D’Ambrosio et al., 2022, Ch. 8) for a pedagogical review). These notions are approximate in
the sense that the difference between their values where the beads are and their asymptotic
values is smaller than some quantity—e.g. the experimental error bars—and this difference
decreases monotonically with distance. In other words, for each particular spacetime model of
the scenario, we can compute Ψ4 at ever farther geodesic distances from the source, on a frame
that has a well-defined physical interpretation, and verify that its difference to the value taken
asymptotically is bounded by some relevant (e.g. experimental) limit.

Of course, spacetime could fail to admit the relevant notion of “increasing distances”, or
otherwise fail to admit discernible, frame-independent gravitational waves. The possibilities for
spacetime geometries are enormous after all, and have little respect for the geometric intuitions
we get from our tame surroundings. It would be absurd to require that generic spacetimes
should admit clearly discernible gravitational waves; and yet it is virtually guaranteed that
extended bodies placed in those spacetimes would be subject to changing tidal effects, and
thus to tension and work. As for the beads, they could heat up the bar via tidal forces
related to any arbitrarily varying (in their frame) Riemann tensor; this is guaranteed by the

8Indeed, as the excellent Wikipedia entry on Electromagnetic Radiation correctly states:

the term “radiation” applies only to the parts of the electromagnetic field that radiate into infinite
space and decrease in intensity by an inverse-square law of power, so that the total radiation energy
that crosses through an imaginary spherical surface is the same, no matter how far away from the
antenna the spherical surface is drawn. Electromagnetic radiation thus includes the far field part of
the electromagnetic field around a transmitter. A part of the “near-field” close to the transmitter,
forms part of the changing electromagnetic field, but does not count as electromagnetic radiation.
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geodesic deviation equation (3.1), and no more.9 Absent any background structure, including
asymptotic conditions, we would not know how to define the spacetime’s energy (as per item
E(i)). In these cases we can agree that the beads’ gain or loss of energy—however it is defined
in the beads’ frame—are due to tidal forces, even if it is meaningless to say that the energy
encoded in the spacetime curvature has diminished or increased.

Nonetheless, in either of the two regimes where we can clearly discern outgoing radiation,
Duerr is mistaken to say that we cannot tell a causal story about transfer of energy from the
wave to the detector. In these regimes, the accounting of energy is explicit, just as it is with
electromagnetic radiation. Thus a gravitational wave will have less energy at infinity than if
it had not encountered the bar. The point here is that if one assumes outgoing gravitational
radiation has been emitted from a body and can be discerned, one is bound to give an account
of that radiation. And the cases in which we know how to do that either require algebraically
special spacetimes, with associated conservation laws; or asymptotically flat spacetimes, where
the phenomenon takes place very far from the source, where asymptotic conservation laws are
approximately observed.

Turning to the second argument: it is true that beads that are freely falling in a Schwarszchild
background would slide—not necessarily back and forth, but creating friction nonetheless. That
is, as described above, the gravitational field would impart energy to the bar even in a station-
ary spacetime, such as Schwarzschild. Since it is agreed by all that such vacuum spacetimes do
not carry gravitational waves, the sticky bead argument, by itself gives us no reason to believe
that it is the gravitational waves that are transferring energy.

So we submit that this appraisal gets things backwards. The sticky bead argument never
claims that radiation is the sole purveyor of gravitational energy transfer: as described in
item E(ii), the fact that energy transfer occurs non-radiatively is no mystery, and it is equally
true in the case of electromagnetism, where we can obtain a non-zero Poynting flux from
electro-magneto-stationary sources. If we assume no gravitational wave is present, obviously
its causal powers must also be absent. But here we are assuming the existence of a discernible
gravitational wave to begin with, and that it is the only source of tidal effects.

In sum, so as long as we picture the sticky bead in the weak field approximation of general
relativity—as it was meant—gravitational energy transfer is solely radiative. Leaving the
weak-field approximation, the same conclusion holds to ever higher degrees of approximation
as we place the sticky beads farther and farther from the source. As described above, given
the relative scales, we need not even involve the idealisation of asymptotic infinity directly (see
item R(iv)).

3.2 The binary pulsar

In 1974, almost two decades after the introduction of the sticky bead argument, Russell Hulse
and Joseph Taylor discovered a binary star system (now known as the Hulse-Taylor binary)
consisting of a neutron star and a pulsar, which emitted regular pulses detectable on Earth.
Theoretically, that system would be a source of gravitational waves. The question then was,
would the quadrupole formula give a reasonable approximation of the source strength of this
system? Between then and the early 1980’s, joint efforts by many theoreticians—most no-
tably Clifford Will and Thibault Damour, who introduced a new method especially tailored
for computing the third-post-Minkowskian, gravitational field outside two compact bodies—
culiminated in a successful calculation, making precise predictions in a post-Newtonian ap-
proximation up to fifth order (c−5). The precise mathematical results about the orbital decay
agreed with exquisite precision both with the standard, quadrupole formula for gravitational

9We could even split the Riemann tensor into its Ricci and its Weyl parts: the latter is taken as independent
of the matter content, and thus usually associated to the purely geometric degrees of freedom.
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radiation in the weak field limit and with the observations of the Hulse-Taylor pulsar. The
evidence pointed directly to radiative energy transfer.10

Still, in recent conversations and in print, some philosophers demur. One argument, the
more easily countered, is that:

the pulsars (modelled as dust particles) are in free-fall. Hence they move inertially.
Shouldn’t their kinematic state therefore remain unaltered? Duerr (2019, p. 26)

But the more common and (superficially) convincing argument against the received wisdom
about the binary pulsar is that we can bypass explanations employing energy transfer by
resorting to numerical simulations for solutions of the Einstein field equations directly.

Let us take these comments in turn. For a freely-falling cloud of pressureless dust particles,
one can find an adapted coordinate system in which the position of the particles don’t change.
Without any calculation (Duerr, 2019, Sec. 2.1), we can conclude that the naive notion of
kinetic energy adapted to this coordinate system cannot change.

First, we point out that under the motion induced by a passing gravitational wave what
changes are relative positions of particles, not their individual velocities. This relative motion
is best described by the geodesic deviation equation. For va the tangent vector to the time-like
geodesics, and ra the transversal displacement vector, we get, an entirely covariant, non-zero
acceleration:

D2ra

dt2
:= vc∇c(v

d∇dr
a) = Ra

bcdv
bvdrc. (3.1)

So under a frame that is adapted to the time-like geodesics, we can easily associate a non-trivial
notion of kinetic energy to the accelerated relative motion.

Second, the fact that motion is geodesic requires further analysis in order to conclude that
it emits or absorbs, or fails to emit or absorb, radiation, or whether that provides a suitable
explanation.11

Indeed, as mentioned in the introduction, Rohrlich and Fulton showed in the 1960’s that a
freely falling charge could be taken to radiate, in Earth’s frame, but it would have no detectable
radiation to a comoving observer. But the matter here is subtle, and involves global properties
of the accelerated observer in Earth’s frame and of the inertial charge.12 Thus, in their review
article, (de Almeida & Saa, 2006, p. 2) write:

We need to recognize that the concept of radiation has no absolute meaning and
depends both on the radiation field and the state of motion of the observer.

The second argument, about the explanatory usefulness of radiation, can be illuminated by
the question of “radiation-reaction”, originally discussed by Dirac and DeWitt and Brehme.
Let us elaborate.

A charged particle or an extended or spinning body—like the components of the binary
pulsar—can’t be taken to follow the paths of neutral point-like particles, namely, the geodesics
of a background spacetime. For unlike neutral point-like particles, these objects necessarily

10But these computations do not give precise predictions for the gravitational wave-forms: for that, we
need numerical methods in full general relativity. This is a distinct and enormously complicated task, whose
breakthrough moment came much later, in Pretorius (2005).

11Here is a proof of principle for doubting a necessary connection: in the Kaluza-Klein framework electro-
magnetic forces are geometrised. In that framework, charged particles undergoing motion in a background
electromagnetic field are interpreted as following geodesics, and nonetheless absorb radiation.

12The main difficulty in locally analyzing the radiation emitted by an inertial charge in the context Rohrlich
and Fulton discussed is the fact that, in general, because the current associated with such a charge does not
have a compact support, it cannot be completely confined in any Rindler wedge. A different definition of
inertial charges—that takes the infinite limit of acceleration and thus confines these sources to the Rindler
wedge—concludes that these accelerated observers would find no radiation.

10



contribute to the energy-momentum tensor, and thus change the spacetime geometry. The
approximation schemes used to find their true trajectory given a background geometry are
precisely what we mean here by radiation reaction. The idea is that the background geometry
scatters the electromagnetic, or the gravitational field, sourced by the particle’s whose motion
we are trying to determine. In more detail, an electromagnetic field originates on the charge in
the past, is scattered by a gravitational field some distance away, which then produces a non-
zero force in the present. Though the equation determining the deviation from the comparative
motion of the uncharged particle will involve non-local contributions— through the value of
Green’s functions acting on the (retarded) past of the particle—there is nothing mysterious in
the non-local character of the force. It is the result of reducing the interaction between fields
(gravitational and electromagnetic) to a finite dimensional description in terms of the source’s
motion alone (see Quinn & Wald (1999) and Poisson et al. (2011) for a comprehensive review).

And again, in certain contexts in which we can define suitable local conservation laws,
namely, in a globally hyperbolic, stationary spacetime, we can use the radiation reaction to
give a precise account of quasi-local conservation laws.13 As described in (Quinn & Wald, 1999,
p.3): “This provides justification for the use of energy and angular momentum conservation to
compute the decay of orbits due to radiation reaction.” Reference to radiation and scattering
is crucial to this explanation. How could we deligitimize the use of such effective terms within
a theory without condemning the vast majority of physical concepts to the same fate?

We will come back to this topic about the concepts of physics in the Conclusions. But
for the main message of this paper we don’t need to be so general: the explanatory utility of
the concept of radiation is again analogous for the electromagnetic case; the strength of the
analogy—and the ubiquituous use of electromagnetic radiation in physics—suffices to shift the
onus of explanation to the sceptic about gravitational radiation and its energy transfer.

Being explicit: Yes, it is true that the motion of the LIGO detector plates can in principle
be described without ever using the notion of energy transfer. Such motion could be entirely
accounted for by free fall and violations of free fall due to non gravitational forces. But the
same formal manouvers are available in electromagnetism. So, if we discard an “explanation”
because there is in principle an account that is more general, then we must discard energy
transfer as an explanation equally for gravity and for electromagnetism. Conversely, if we
count the use of regularities that hold in special regimes as explanatory, then energy transfer
by waves is equally explanatory in general relativity and in electromagnetism.

4 Asymptotic flatness and dynamical isolation

Lastly, we turn to the role of asymptotic flatness in considerations of energy conservation. This
is a last resort for the sceptic, who may try to bite the bullet and deflate the ontic significance
of any wave’s energy transfer on generic curved spacetimes. Duerr (2019) writes:

[p. 30] Asymptotic flatness would have to be shown to be a “working posit” of (i.e.
essential for) relativistic astrophysics. But this is questionable. ...

[p. 34... asymptotic flatness is] an idealisation in Norton’s sense: The embed-
ding spacetime is an unrealistic, surrogate spacetime. Consequently, realism about
notions of gravitational energy based on asymptotic flatness isn’t straightforward.

The argument here is that, since asymptotic flatness is not fundamental in general relativity,
any concept or quantity that depends on this assumption must also be less than fundamental

13In the gravitational case, one can only explicitly show this for the linearised theory around Minkowski
spacetime, but in principle the method could be extended to include the linearised theory around the Kerr
family of solutions (Quinn & Wald, 1999, p. 23).
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in the theory. This is a blunt argument, condemning our understanding of energy transfer,
simpliciter, in generic curved backgrounds.

And, amongst philosophers, we have witnessed a distinct, frequent misunderstanding of the
meaning of the asymptotic integrals that are involved in the definitions of the relevant energies.
Namely, that different notions of energy are ‘holistic’, that they cannot distinguish between the
energies due to gravitational waves and due to other, non-radiative contributions. For instance,
in a recent talk Fletcher (2022) describes the situation thus:14

It is extremely tempting, on the story that I have given, to say that because we find
that the Bondi energy decreases with time, that gravitational radiation carries away
positive energy from a radiating system. But [...] we should resist getting carried
away, because strictly speaking gravitational waves don’t have any Bondi energy of
their own. [...] these global notions of energy are assigned to whole space times, so
we can’t divide the energy content into one part which is associated with one part
of a space-time and another [...] with [...] the gravitational waves. [...] therefore
we can’t say that the gravitational waves have Bondi energy that is carried away.
All we can say is that the Bondi energy decreases.

Are they right? Let us once again take their claims in turn: first Duerr and then Fletcher.
Is asymptotic flatness a working posit for astrophysics? Agreed: not in full generality, but

it surely is a working posit to study gravitationally isolated subsystems. What undergirds the
assumption of asymptotic flatness is just dynamical isolation of subsystems; conceptually, dy-
namical isolation is what grounds both an unambiguous separation of radiative and Coulombic
modes and conservation of energy. To talk about energy transfer, we need to be able to clearly
distinguish subsystems within the theory. And again, this condition (of dynamical isolation)
is necessary to discuss energy conservation in general—even in the familiar case of Newtonian
mechanics—not just in general relativity.

In general relativity we cannot set the gravitational field to zero at a supposed boundary
between subsystem and environment. What we can do is demand that gravitational (tidal)
forces become less and less pronounced at far enough distances from the subsystem. Once
again, there is no decree in the theory that every spacetime should have subsystems that are
sufficiently isolated: the very idea of removing oneself farther and farther from a subsystem can
fail. But if we want to talk about concepts that require dynamical isolation, such as radiation
and energy, we have no other recourse. Here is Penrose (1982, p. 182) making this exact point:

“Asymptotically flat spacetimes are interesting, not because they are thought to be
realistic models for the entire universe, but because they describe the gravitational
fields of isolated systems, and because it is only with asymptotic flatness that
general relativity begins to relate in a clear way to many of the important aspects
of the rest of physics, such as energy, momentum, radiation [...]

Indeed, this kind of assumption extends even to Newtonian mechanics. There, to apply the
laws and obtain conservation of energy, we must describe the system in an inertial reference
frame. But how do we ensure our description is in an inertial frame?

Corollary IV in Newton’s Principia says that, if we can ignore external influences on some
subsystem, the center of mass of said subsystem will move uniformly with respect to absolute
space (or be at rest).15 Jointly with Corollary V,16 we conclude that, if we can ignore external

14We do not mean to single out Fletcher for what may not be his considered views. But this passage illustrates
concisely what seems to us a widespread view among philosophers of physics.

15“The common centre of gravity of two or more bodies does not alter its state of motion or rest by the
actions of the bodies among themselves; and therefore the common centre of gravity of all bodies acting upon
each other (excluding external actions and impediments) is either at rest, or moves uniformly in a right line..”

16“The motions of bodies included in a given space are the same among themselves, whether that space is at
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influences and are not in circular motion, we can for all practical purposes treat the center
of mass of our subsystem as being at rest with respect to absolute space. The underlying
assumption of ‘dynamical isolation’ here is that our subsystem is sufficiently far removed from
other, external, bodies. Is this a fully general presupposition of Newtonian mechanics? Once
obtained, will it obtain for all time? ‘No’ is a conceivable answer to both questions. Nonethe-
less, the presupposition is necessary for conservation of energy, along most other practical
applications of the theory.17

Let us now turn to the second type of misunderstanding, about the holistic nature of
asymptotic notions of energy. A common mistake is to take the relevant notions of energy to
arise from integrals over entire Cauchy surfaces—for ADM energy-momentum—or even ‘from
slices that don’t intersect radiation escaping out to infinity’. In truth, the relevant quantities
are strictly integrals over either asymptotic null infinity or over asymptotic spatial infinity.18

And so the relevant integrals are already calculated over a surface where it is possible to
uniquely distinguish the radiative from the non-radiative components.

The integrated Bondi energy flux is given in (B.13) in Appendix B; the ADM energy is
better-known, but would require the introduction of terminology that is besides the point
of this paper. The ADM energy is usually interpreted as the total energy available in the
spacetime. As it is a quantity calculated at spatial asymptotic infinity, it is ‘static’, and does
not evolve, unlike the Bondi energy. So what is the relation between the Bondi and ADM
energies? Consistently, the Bondi energy can be interpreted as the energy remaining in the
spacetime at the “retarded time” after the emission of gravitational radiation. For, as shown
by Ashtekar & Magnon-Ashtekar (1979), the Bondi energy at a certain cross-section of I
differs from the ADM energy by the integral (B.13), up to the retarded time given by that
cross-section. So Fletcher may be right that the Bondi energy does not distinguish the energy
due to radiation, but it is the Bondi-energy flux that can be seen as ‘subtracting energy’ from
the spacetime. Thus the difference of Bondi energies at two different times is unambiguously
associated to the energy of the radiation that leaves spacetime in that interval.

In sum, the radiated energy depends only on the components that encode gravitational
waves, as understood both in the linearized and asymptotic limit. And these different notions
of energy are remarkably consistent: if we understand the energy at spatial infinity as the
energy of the entire spacetime, we can understand a difference between the total energy at
spatial infinity and the energy radiated away along null infinity up to a given retarded time as
the energy left in the spacetime at that given (retarded) time. Thus, if a part of the gravitational
wave is absorbed and turned into e.g. thermal energy, we will find a corresponding subtraction
in the energy radiated away to infinity.

Again, an analogy applies to electromagnetism: the Gauss law gives us the total charge
in the spacetime; this is an integral over spatial infinity. A different integral over different
components gives us the radiated electromagnetic energy from the spacetime.19

rest, or moves uniformly forward in a right line without any circular motion.”
17‘Ignoring external influences’ is subtle business: it does not necessarily mean that all external forces on

a subsystem have to vanish. As argued in Saunders (2013), to empirically apply the laws, Newton has to
implicitly resort to Cor. VI, which says that: “If bodies, any how moved among themselves, are urged in the
direction of parallel lines by equal accelerative forces; they will all continue to move among themselves, after
the same manner as if they had been urged by no such forces.”. So we can empirically apply the laws if our
subsystem is sufficiently distant from external sources so that they would act equally (in parallel) on all of its
components.

18Of course, in some cases one could use Stokes theorem to convert these integrals into an integral of different
dimension, but the details of the fields on the further dimensions would be irrelevant to the value of the integral.
This is the case when we are dealing with quantities that only depend on the initial and final values at I , such
as the supermomentum (cf. (D’Ambrosio et al., 2022, E. 6.17)).

19The analogy here is only limited by the fact that the total charge is constant, since it does not track a loss
of energy and there is no flux of charges at infinity.
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Thus, contrary to a straightforward interpretation of Fletcher’s passages, asymptotically,
we can precisely separate the energy of the system into one part which is associated with the
gravitational waves and one part that is related to other charges of the isolated subsystem.

And while it is true that constants such as the ADM mass of a spacetime may not dis-
cern e.g. whether a given spherically symmetric solution has singular behavior (i.e. vacuum
Schwarzschild) or a star at its centre, there is no reason to think this is problematic for any of
the concepts discussed here.20

4.1 Why can’t we define gravitational waves in the bulk of a generic spacetime?

Finally, let us address a possible point of confusion: why couldn’t we take Ψ4, described in
Appendix B, to describe gravitational radiation, for any region of a generic spacetime? The
short answer is that the choice of null-tetrad is arbitrary, and different choices can change the
values of the Weyl scalars. But in certain spacetimes, there are physically significant choices,
that can uniquely determine the values of (some of) the Weyl scalars.

This is the case of algebraically special spacetimes that characterise gravitational radiation
spacetimes as being of Type N. In this case, there is a particular choice of null direction k,
representing the direction of the wave, such that

C d
abc kd = 0. (4.1)

For these types of spacetimes, we find, for some compatible choice of null tetrad :

Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0.

See Szekeres (1965) for a derivation of the explicit geometric relation between Ψ4 and gravita-
tional radiation in Type N spacetimes (and for the geometric interpretations of the other Weyl
scalars discussed in Appendix B as well).

One important point for this paper is that, since these solutions are algebraically special,
they will come with some background structure which can be used to define conservation laws
(see e.g. Aksteiner et al. (2021) for a recent review of conserved quantities in algebraically
special spacetimes).21

Going back to the generic case of asymptotically Minkowski spacetime, using the smooth
limit of the Schouten tensor to I and its relation to the Weyl tensor, we straightforwardly
obtain, in that limit, a constraint equation of precisely the form (4.1), saying that asymptot-
ically, we approach a spacetime that (can) include a gravitational wave as understood in the
algebraically special case.22

Consistently, as remarked after equation (B.11), the entire, coordinate independent con-
formal geometry of I is encoded in the conformally invariant limit of the shear, i.e. in the
conformally invariant limit of ∇a`b as it approaches I +. Since it is encoded by a varying
shear, radiation acquires a geometric—coordinate-independent—gloss. In sum, the conformal
geometry of I + is entirely determined by the radiative degrees of freedom; and conversely, by
construing radiation geometrically we limit the role that different choices of frame can have on
its value.23

20Indeed, as Misner & Wheeler (1957) have long ago argued, with sufficiently complicated topologies, we can
even trap electric fields in wormholes and thereby obtain ‘charge without charge’.

21However, we should point out that, unlike the case of gravitational waves in a general spacetime, the
discovery of these special waves was not linked to conservation of energy.

22In more detail, the entire physical Weyl tensor vanishes at I . What one uses instead for these computations
is the asymptotic Weyl tensor, defined as Kabcd = Ω−1Cabcd. Since `a = Ω2 ̂̀

a, we still have K d
abc `d → 0.

23As shown by Geroch (1977), the (retarded) time derivative of the shear—the News tensor—vanishes in an
asymptotically flat spacetime if and only if it is stationary; hence the name ‘News’ is well deserved. Asymptot-
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The moral is that asymptotic infinity gives us enough structure to unambiguously define
gravitational waves because it is associated with a “direction” that is infinitely far away from
compact sources: n rules I —it gives a choice of retarded times at I —and ` is the radial
direction away from I towards the bulk. In the bulk, even if we can physically characterize `
and n, we would not be able to characterise radiation independently of the remaining choices
of the frame/coordinate system.24

5 Conclusions

Even the philosophers that are sceptical about gravitational radiation will concede that a
gravitational wave is special in that it has a long range: how could they not? But what these
sceptics fail to realise is that this is a constitutive property of radiation, and that it is shared
by electromagnetic waves. Generically, both types of fields come to us as a whole; and at close
range there are no apparent joints to be carved. Nonetheless, there are conditions under which
the joints become apparent—at great distances from the source for example—and these are
the conditions under which we understand both radiation and energy transfer.

In this paper, we have not touched on topics in the philosophy of science that may be
relevant to this issue. But one seems unavoidable, and indeed was briefly touched on at the
end of Section 3.2. That is the idea that the only notions that are well defined are those that
can be defined in all regimes encompassed by a theory; and that only such notions can claim
to be part of the furniture of the world (according to the theory). As we have emphasised,
the ”local energy of gravity” doesn’t fit that bill, since it is not defined in all regimes. Thus,
the sceptic will say, “the local energy of gravity does not exist”. But physics rarely trades in
fundamental ontology: it wouldn’t have gotten much done if it did! Physics, and indeed science
more generally, trades in effective notions—like the energy of the wave, the horizon, the orbit,
the black hole—that are perfectly well-defined for specific solutions, or for specific regimes, and
that have exceptional explanatory value. A philosophy of science that denies any ontological
status to these notions leads to an impoverished picture of science, that we must reject.

In the case of general relativity, gravitational waves had particularly turbulent origins, and
were only accepted with the introduction of a fully invariant account. This account either
required algebraically special spacetimes and perturbations therein, or asymptotic infinity. In
both cases, these further structures could be related to notions of conservation, which further
established the reality of the waves. This is reassuring, and another example of the great
unity of theoretical physics. But it would be a mistake to elevate this reassurance to a form of
sanctioning: our theoretical commitment to robust wave patterns is not conditional on their
being subject to energy conservation. Nor should we seek such sanction: ‘energeticism’—the
XIXth century hope of reducing all natural phenomena to ’manifestations of energy’—is long
dead in theoretical physics, and for very good reasons.

ically, the first derivative of the shear along n (i.e. along retarded time) gives the News tensor, and its second
derivative gives Ψ4, which thereby inherits an invariant meaning, conditional on an intended interpretation of
the directions represented by ` and n (see Equation (B.6)).

24There are many different ways to define ‘surfaces of constant retarded time’ along I . In Minkowski
spacetime, one could construct a preferred one by sending null rays to infinity along a given time-like geodesic.
But in a general curved spacetime, one could have several physical effects e.g. lensing, that make the ruling of
I less operationally definite, which is why one usually goes the opposite way: defining a null-tetrad at I and
propagating it inward. Supertranslations are part of the symmetry group of I and their effect can be seen as
changing the surfaces of constant retarded time in a way that can depend on the angles of S2. Fortunately, by
associating the relevant notions of radiation to the geometry of I , i.e. to the trace-free part of the Schouten
tensor at I (i.e. the News tensor in a particular choice of gauge—Bondi gauge), or to the limit of the shear,
it is shown that the existence of radiation is independent of these choices.
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We finish with two quotes: both confirm our main message, even if the second aimed to
sum up the very scepticism we are here rebuffing.

(D’Ambrosio et al., 2022, p. 100) write:

The fluxes [see Eq. (B.13)] represent a landmark in the discussion on the existence
of gravitational waves, which culminated in the nineteen-sixties. Since the incep-
tion of gravitational waves in 1916 by Einstein, there has been much debate about
whether they are a real physical phenomenon, or whether they are a mere coor-
dinate artifact. Eventually, this dispute was settled by the mathematical rigorous
framework presented here, as it provides a gauge-invariant description of gravita-
tional waves. In particular, it provides a gauge-invariant description of the flux of
energy and momentum carried by gravitational waves.

And towards the end of his paper, (Duerr, 2019, p. 35) writes:

Three considerations bear upon the choice between failure of energy conservation
and energy transfer: 1. the contingency of energy conservation on symmetries, 2.
the existence of a satisfactory formal account/representation of the energy trans-
port, and 3. the explanatory value of postulating energy transport rather than
energy decrease simpliciter, respectively.

We have here shown that gravitational radiation does as well as electromagnetic radiation on
all accounts.
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APPENDIX

This Appendix is based on D’Ambrosio et al. (2022). HG is thankful to Sebastian Muguertio
Ramirez for pointing me to that source for this topic.

A Electromagnetic radiation

Wave equations for the electromagnetic field are easily derived from Maxwell’s equations, and
so are formal solutions to these equations in the presence of sources. Generally, the radiation
field should have three characteristic properties: it should oscillate, it should be transversal,
and it should decay as 1

r
as we move away from the source.

The difficult question is whether we can determine, locally, whether a given source, Jµ :=
(ρ,~j), generates a radiation field. And the answer to the difficult question is that we can only
determine whether a given source generates radiation asymptotically far away from the source.

Consider an electromagnetic source Jµ confined to a finite spatial region at the scale d.
Given this source, the vector potential that satisfies the Maxwell equations is:

Aµ(t, ~x) =
1

4π

∫
Ω

d3x′
∫
R

dt′
Jµ(t′, ~x′)

‖~x− ~x′‖
δ (t′ − t+ ‖~x− ~x′‖) . (A.1)
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The difficulty mentioned above arises from the fact that the source may have static parts
which only produce Coulombic fields and it may have radiating contributions. But the fields
come to us as a whole: we do not yet know how to disentangle the different contributions.

Thus, assume there is radiation and that it has a wavelength λ = 2π
ω

. Moreover, assume an
observer is located at the radial distance r from the source (we will compare r with d later).

We can decompose our source into static contributions, Jµstat(~x), and radiative contributions,
Jµrad(t, ~x), where the radiative contributions are assumed, without loss of generality, to oscillate
like e−iωtJµ0 (~x). That is:

Jµ(t, ~x) = Jµrad(t, ~x) + Jµstat(~x)

= e−iωtJµ0 (~x) + Jµstat(~x). (A.2)

By inserting this ansatz into the formal solution (A.1), we obtain

Aµ(t, ~x) =

∫
Ω

d3x′ Jµ0 (~x′)
eiω‖~x−~x

′‖

‖~x− ~x′‖
e−iωt + Aµstat(~x), (A.3)

where Aµstat(~x) contains the static contributions.
Finally, we must take into account the position of the observer relative to the source, which

can be organised into three different zones:

1. The near zone: d� r � λ

2. The transition zone: d� r ' λ

3. The far/radiation zone: d� λ� r

The behavior of the vector potential is different in the three zones and this directly impacts
the observer’s ability to locally infer the existence of electromagnetic radiation.

Let us analyse the near and the far zone. In the former case, the condition r � λ allows
us to expand the exponential in (A.3) and we find, by also applying an expansion of (A.3) in
spherical harmonics,

Aµ(t, ~x) =
∞∑
l=0

∑
|m|≤l

e−iωt

2l + 1

Ylm(θ, φ)

rl+1

∫
Ω

d3x′Jµ0 (~x′) r′lY ∗lm(θ′, φ′) + Aµstat(~x) (for r � λ). (A.4)

Although this expression is time-dependent, the dependence is not the one expected of radiation,
since the oscillation does not depend on the distance to the source. Fields that oscillate in this
way are called quasi-static (Jackson, 1975). Moreover, the fall-off is not 1

r
, but rather a sum

over terms with 1
rl+1 as coefficients. Again, this is not the behavior of a radiation field, and so

an observer would not be able to unambiguously infer the existence of electromagnetic waves
in this region.

In the far zone, we implement the condition λ� r and expand ‖~x− ~x′‖ as

‖~x− ~x′‖ ≈ r − ~n · ~x′, (A.5)

where ~n is a unit vector in the direction of ~x. Using this approximation in (A.3), we obtain:

lim
r→far zone

Aµ(~x, t) =
1

4π

eiω(r−t)

r

∫
Ω

d3x′ Jµ0 (~x′) e−iω~n·~x
′
+ Aµstat(~x). (A.6)

The first term in the above expression has the expected properties: it oscillates, it decays like
1
r
, and it is transversal: this is a genuine radiation field.
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The conclusion of this argument is that the observer has to be far enough away from the
source to effectively detect radiation. Too close, and the vector potential is quasi-static.

One could attempt to characterise radiation by the energy and momentum that they carry.
But while the flux carries energy and momentum, a non-zero flux may have no associated
electromagnetic radiation. As mentioned in the main text, the Poynting vector alone cannot
parse radiation and other field contributions, except asymptotically.

For consider the Poynting vector ~S := ~E × ~B with its associated Poynting flux,
∮

S2
~S d2σ,

where S2 is a 2-sphere and d2σ = r2 sin θ dθ dφ. The Poynting vector is not a Lorentz invariant
quantity and it therefore depends on a choice of reference frame. As an example, consider
the Coulomb solution, i.e., the field of a point charge for an observer in the rest frame of the
particle. Clearly, for such an observer the magnetic field is zero and consequently the Poynting
vector vanishes. But a boosted observer will see a current, rather than a static charge, and
thus an electric and a magnetic field, and so:

~Srest frame = 0 6= ~Sboosted. (A.7)

But the Poynting flux carries information about electromagnetic radiation, in the asymp-
totic limit. An explicit computation for the above example shows that the boosted observer
sees a Poynting vector which decays like 1

r4
, and thus the Poynting flux of the boosted observer

vanishes at infinity. That is, we obtain

lim
r→∞

∫
S2

~Srest frame d2σ = 0 = lim
r→∞

∫
S2

~Sboosted d2σ. (A.8)

Both observers now agree that there is no electromagnetic radiation. Going to infinity filters
all but the radiative parts of a field. More precisely, the Poynting flux of static contributions
vanishes at infinity while the Poynting flux of electromagnetic waves is non-zero.

The standard way to disentangle different components according to their fall-off conditions
is to use a conformal compactification of asymptotically flat spacetimes, and a Penrose-Newman
null tetrad decomposition, to which we now turn. (See (D’Ambrosio et al., 2022, Ch. 3,4).

B Gravitational radiation

Let (M̂, ĝab) be a physical spacetime which satisfies Einstein’s field equations with vanish-

ing cosmological constant, R̂ab − 1
2
R̂ ĝab = 8π T̂ab.

25 We call this spacetime asymptotically
Minkowski if it satisfies the three following conditions

1) There exists a conformal completion (M, gab,Ω) such that M := M̂ ∪I is a manifold with
a boundary and the boundary has the topology I ' S2×R. Moreover, the conformally
rescaled metric and the physical metric are related by gab = Ω2 ĝab. The conformal factor
is assumed to satisfy Ω =̂ 0 and ∇aΩ ̂6= 0, where hatted equalities are equalities on I .

2) Ω−2T̂ab has a smooth limit to I .

3) The normal vector field to I , na := gab∇bΩ
∣∣
Ω=0

, is complete.

This definition still allows full conformal freedom at I ; a canonical partial fixing of this freedom
is given by a divergence-free conformal frame, for which ∇an

a =̂ 0. The choice of such a
frame still allows a conformal rescaling on S2 (that is dragged along by n). Moreover, using

25Hatted quantities are the physical quantities, so why encumber notation with hats? Because in this subject,
the corresponding asymptotically completed notions are more used, and so they are honoured with the unhatted
symbols.
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the asymptotic limit for the Einstein equations in the conformally completed spacetime, we
obtain:

∇anb =̂ 0 (B.1)

The conditions Ω =̂ 0 and ∇aΩ ̂6= 0 tell us that Ω is a good coordinate near I , that I has
a well-defined normal na := ∇aΩ|Ω=0, and that Ω is heuristically the same as 1

r
.26 Thus the

condition that Ω−2 T̂ab has a smooth limit to I tells us that T̂ab falls-off at least like 1
r2

. One
finds that this is a condition which is satisfied by all reasonable compact sources.

The null tetrad is given, in the physical metric, by null vectors n̂, ̂̀, m̂, m̂, satisfying the
following conditions:

n̂ầa = −1, m̂am̂a = 1, (B.2)

and all other inner products vanishing. This definition implies we can write the metric as:

ĝab = −2n̂(a
̂̀
b) + 2m̂(am̂b). (B.3)

Given a conformal compactification, there exists a corresponding conformally rescaled null
tetrad `a and m,m that is well defined at I (with `a = Ω−2̂̀a and ma = Ω−1m̂a).27

And we can then use these to decompose the electromagnetic field tensor as:

Φ2 := Fabn
amb

Φ1 :=
1

2
Fab
(
na`b +mamb

)
Φ0 := Fabm

a`b. (B.4)

Given the relationship between Ω and 1/r, and the relationship between the physical tetrads
and the conformally completed one, we obtain a Peeling theorem for the electromagnetic tensor:
a definite fall-off rate for each of the scalars above. The only component that falls-off as 1/r
is Φ2: that is the component that we asymptotically associate with radiation. Morever, the
Maxwell equations leave the behavior of Φ2 at I unconstrained, whereas the behavior of Φ0

and Φ1 are fully determined by their value at either spatial or time-like infinity.
In the gravitational case, we apply a similar treatment to the Weyl curvature. Although,

unlike the Faraday tensor, the Weyl curvature vanishes at I (see (D’Ambrosio et al., 2022, Sec.
3.D)), one applies the decomposition to the conformally rescaled Weyl tensor, Kabcd = Ω−1Cabcd:

Ψ4 := Kabcd n
ambncmd

Ψ3 := Kabcd `
anbmcnd

Ψ2 := Kabcd `
ambmcnd

Ψ1 := Kabcd `
anb`cmd

Ψ0 := Kabcd `
amb`cmd (B.5)

26Were we to take a stronger convergence for the conformal completion, say Ω = 1
r2 , then we wouldn’t obtain

a null generator from the conformal factor, since ∇aΩ =̂ 0.
27In fact, it is convenient to go in the opposite direction: defining a null tetrad in I + and then dragging it

back into the bulk (see (D’Ambrosio et al., 2022, Sec. 3.C)). First, we chose na as the first null normal to I .
This vector field is defined on all of I and it allows us to introduce an affine parameter u which foliates I .
We have then introduced (θ, φ) coordinates on the u = const. leaves of the foliation. Put together, (u, θ, φ)
provides us with a globally defined coordinate system for I . Next, we have introduced a Newman-Penrose null
tetrad {˚̀a, n̊a, m̊a, m̊

a} on a cross-section S̊2. This “reference” null tetrad is normalized in the usual way and
it serves as “generator” of a null tetrad on all of I . In fact, we can generate such a null tetrad by Lie dragging
(or parallel transporting, which is the same in this context) the reference tetrad along na (or along its integral
lines). Finally, we have extended the null tetrad from I into a neighborhood of I by Lie dragging it along `a

into the bulk of spacetime.
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From this we can find again a Peeling theorem, that leads again, just as in the case of elec-
tromagnetism, to a neat separation of the different components. We find that Ψ4 encodes
the radiation field, since it decays like 1

r
; and Ψ2 encodes the “Coulombic” information of the

gravitational field (i.e., the mass of the source which generates the field).
That is, denoting the limit of the Weyl scalars at I by Ψ◦, one can write:

Ψ◦4 = −σ̈◦ (B.6)

where σ◦ is the asymptotic shear, defined as

σ◦(u, θ, φ) = − lim
r→∞

(
mamb∇a`b

)
, (B.7)

where we have extended all fields into the bulk of spacetime.28

This limit can be explicitly computed and compared with the linearized theory, where h+

and h× encode the radiative modes. In this linearised regime we find

σ◦(u, θ, φ) =
1

2

(
h◦+ + i h◦×

)
(u, θ, φ). (B.9)

We refer to h◦+ and h◦× as the strains of the gravitational wave where we defined

h◦+(u, θ, φ) := lim
r→∞

rh+(u, r, θ, φ),

h◦×(u, θ, φ) := lim
r→∞

rh×(u, r, θ, φ). (B.10)

Thus we find:

Ψ◦4 = −1

2

(
ḧ◦+ − iḧ◦×

)
, (B.11)

Thus, we have established a connection between the Newman-Penrose scalar Ψ◦4 and the
strains of the gravitational wave we use in the linearized theory. The label “radiation field”
is thus well-justified for Ψ◦4. It is worth remarking that this links theory to observations and
data analysis. In fact, Ψ◦4 is a key quantity which is computed in Numerical Relativity and
integrating it twice over du, isolates the strains. This is what is ultimately used in waveform
models and plotted in the famous waveform plots.

There is, of course, much more to be said, about conservation laws—which refer to the
symmetry group of I —and, equally important, about how σ◦(u, θ, φ) (and its complex con-
jugate) encodes the entire conformal geometry of I , with a vanishing shear corresponding to
no radiation.

28Here we have avoided explicitly discussing the intrinsic geometry of I , which is degenerate, with a degen-
erate metric qab—that is non-degenerate on the two dimensional hypersurfaces (isomorphic to) S2 foliating I ,
and degenerate along u, or n (so its inverse is ambiguous, and all results must be shown to be independent of
this ambiguity). In fact, the shear tensor can be described by qab and the intrinsic covariant derivative on I ,
which we label D, as the trace-free:

σ◦
ab := −Da`b +

1

2
qabq

cd(Dc`d). (B.8)

It is the trace-freeness that guarantees that the end result is fully conformally invariant. Since the shear tensor
σab is transverse, trace-less, and symmetric (that is, it satisfies σabn

b = 0, qabσab, and σ[ab] = 0) this implies
that the shear is of the form

σab = −(σ◦mamb + σ◦mamb).

From this equation we obtain (B.7).
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Indeed, the Bondi News tensor is constructed entirely from geometric properties of I :
namely, it is uniquely determined by the trace-free part of the Schouten tensor at I . And it
is related to the asymptotic shear as follows:

Nab = 2Lnσ◦ab =: σ̇◦ab. (B.12)

In terms of conservation laws, the energy flux across a portion of I can be expressed as

FE(∆I ) =

∫
∆I

NabNcdq
caqbd du d2ω (B.13)

This is as much as we can fit into this small appendix.
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