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Abstract

We explore the title question. After some topological preliminaries,
we define a scalar “curvature isomorphism” between spacetimes. We
introduce a hierarchy of curvature conditions and show that at a cer-
tain level, a curvature isomorphism must be a homeomorphism. The
highest level of the hierarchy is satisfied by a spacetime if every smooth
scalar function on its manifold is an invariant scalar curvature function.
We show that such “maximally structured” spacetimes exist and that
a curvature isomorphism between them must be a diffeomorphism. We
highlight a number of connections between our project and the one in
which the topology of spacetime is determined from a causal relation
between spacetime points (Malament 1977). We emphasize that analo-
gous results are obtained here by considering only invariant properties
of spacetime points – no relations needed.

1 Introduction

It is well known that the causal structure of spacetime, if sufficiently
rich, determines the topology of spacetime (Malament 1977). For each
spacetime (M, g), a casual relation� onM is determined by the metric
g. A bijection ϕ : M → M ′ between spacetimes (M, g) and (M ′, g′)
is a “causal isomorphism” if, for all p, q ∈ M , we have p � q if and
only if ϕ(p) � ϕ(q). One then considers: under which conditions is
it the case that a causal isomorphism between spacetimes must be a
homeomorphism? A hierarchy of causal conditions plays a central role
in exploring the question. At a certain level of the hierarchy (past and
future distinguishability) one finds that a causal isomorphisms must
be a homeomorphism – indeed a diffeomorphism. This is false at a
slightly lower level (past or future distinguishability).

∗Special thanks go to David Malament for valuable comments on a previous draft. I
also appreciate Thomas Barrett for helpful discussions concerning the material.
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In the natural way, one can consider an analogous question with
respect to (scalar) curvature structure: if the curvature structure of
spacetime is sufficiently rich, does it determine the topology of space-
time? After some topological preliminaries, we define a “curvature iso-
morphism” between spacetimes. We introduce a hierarchy of curvature
conditions and show that at a certain level, a curvature isomorphism
must be a homeomorphism. The highest level of the hierarchy is sat-
isfied by a spacetime if every smooth scalar function on its manifold
is an invariant scalar curvature function. We show that such “maxi-
mally structured” spacetimes exists and that a curvature isomorphism
between them must be a diffeomorphism. We close with a brief remark
concerning the significance of the work.

2 Topological Preliminaries

In order to construct a hierarchy of curvature conditions, we need to
review some basic topology (Willard 1970 pp. 52-57). In what follows,
let Y and I be sets. For each i ∈ I, let Xi be a topological space and
let fi : Y → Xi be an associated function. The weak topology on Y
induced by the family of functions {fi} is the smallest topology on Y
for which fi is continuous for all i ∈ I. The characteristic property of
the weak topology is the following (Willard 1970, Theorem 8.10).

Lemma 1. Let the set Y have the weak topology induced by the family
{fi} of functions fi : Y → Xi and let Z be a topological space. A
function f : Z → Y is continuous if and only if fi ◦f is continuous for
each i ∈ I.

Let X =
∏
Xi be the direct product of the sets Xi which is defined

as the set of functions x : I →
⋃
Xi such that x(i) ∈ Xi for each i ∈ I.

For each x ∈ X the value of x at i ∈ I will be denoted xi rather
than x(i). For each i ∈ I, we have a projection map πi : X → Xi

defined by πi(x) = xi. Now let X have the weak topology induced
by the family of projection maps {πi}. This is the product topology
on X. The evaluation map e : Y → X induced by the family {fi}
of functions fi : Y → Xi is defined by e(y) = {fi(y)} for all y ∈ Y .
We see that πi ◦ e = fi for all i ∈ I. Let us say the family {fi} of
functions fi : Y → Xi separates points on the set Y if, for any distinct
y1, y2 ∈ Y , we have fi(y1) 6= fi(y2) for some i ∈ I. For any topological
spaces W and Z, we say that the map h : W → Z is an embedding if
the range restricted map h : W → h[W ] is a homeomorphism where
h[W ] has the subspace topology induced from Z. We have now come
to a foundational result (Willard 1970, Theorem 8.12).

Proposition 1. The evaluation map e : Y → X induced by the family
{fi} of functions fi : Y → Xi is an embedding if and only if: (i) Y has
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the weak topology induced by the family {fi} and (ii) the family {fi}
separates points on Y .

Given a topological space Y and a family {fi} of continuous func-
tions fi : Y → Xi, a useful condition allows one to determine if the
topology on Y is the weak topology on Y induced by family {fi}. Let
us say that the family {fi} of functions fi : Y → Xi separates points
from closed sets on the topological space Y if, for any closed set C ⊂ Y
and any y /∈ C, we have fi(y) /∈ fi[C] for some i ∈ I. One can show
that if a family {fi} of continuous functions fi : Y → Xi separates
points from closed sets on Y , then the topology on Y is the weak
topology on Y induced by the family {fi}. One can also show that if
the topological space Y is such that {y} is closed for each y ∈ Y (i.e. if
Y is a T1 space), then whenever a family {fi} of functions fi : Y → Xi

separates points from closed sets on Y , then the family {fi} also sep-
arates points on Y . We have the following (Willard 1970, Theorem
8.16).

Corollary 1. If Y is a T1 space, then the evaluation map e : Y → X
induced by the family {fi} of continuous functions fi : Y → Xi is an
embedding if the family {fi} separates points from closed sets on Y .

3 Curvature Isomorphisms

For any manifold M , let S (M) be the collection of smooth real-valued
functions on M . Associated with each spacetime (M, g) is a collection
C (M, g) ⊆ S (M) of smooth invariant curvature functions f : M → R
constructed from the metric g and its associated Riemann curvature
tensor (Hawking and Ellis 1973, p. 35). There are a number of senses of
“constructed” that one might consider here. Under any sense, the Ricci
scalar curvature function R : M → R counts as a member of C (M, g).
Following the literature, one might also permit the use of basic alge-
braic operations so that, for example, a function like 108R−5/2 counts
as a member of C (M, g) when well-defined (Page and Shoom 2015). In
what follows, we shall even permit the use of arbitrary smooth func-
tions so that, for example, the function α(R) also counts as a member
of C (M, g) if α : R → R is smooth. The important thing to keep
in mind is that even under this liberal understanding of metric con-
struction, all functions in C (M, g) are invariant under isometries in
the following sense. Consider a pair of spacetimes (M, g) and (M ′, g′)
and an isometry ψ : M → M ′. Let f ∈ C (M, g) and f ′ ∈ C (M ′, g′)
be such that f is constructed from the metric g and its associated Rie-
mann curvature tensor in the same way that f ′ is constructed from the
metric g′ and its associated Riemann curvature tensor. Because ψ is
an isometry, we have ψ∗(g′) = g where ψ∗ is the pull back associated
with ψ. So ψ∗(f ′) = f and thus f ′ ◦ ψ = f .
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There are a number of senses in which the collection C (M, g) can
be used to determine the local geometry of spacetime (Sternberg 1964;
Ehlers 1981). But in general, the collection C (M, g) does not determine
the topology of spacetime; one finds, for example, that “local invariants
cannot distinguish a plane and a flat torus” (MacCallum 2015, p.6).
Let us make this claim precise.

Definition 1. Let (M, g) and (M ′, g′) be spacetimes and let C (M, g)
and C (M ′, g′) be indexed by a set I to generate the respective families
of functions {fi} and {f ′i} such that fi and f ′i correspond to the same
metric construction for each i ∈ I. We say a bijection ϕ : M → M ′ is
a (scalar) curvature isomorphism if {fi} = {f ′i ◦ ϕ}.

A curvature isomorphism between spacetimes captures a sense in
which the (scalar) curvature structures are preserved. One can verify
that for all spacetimes (M, g) and (M ′, g′), if ϕ : M →M ′ is a curva-
ture isomorphism, then so is ϕ−1. We can now show that, in general,
a curvature isomorphism need not be a homeomorphism.

Example 1. Consider Minkowski spacetime (M, g) and a flat space-
time (M ′, g′) where M ′ is a torus. Let C (M, g) and C (M ′, g′) be
indexed by a set I to generate the respective families of functions {fi}
and {f ′i} such that fi and f ′i correspond to the same metric construc-
tion for each i ∈ I. Consider any bijection ϕ : M →M ′. Because both
spacetimes are flat, we know that for any points p ∈ M and p′ ∈ M ′,
there are open neighborhoods O and O′ of the points p and p′ respec-
tively, and an isometry ψ : O → O′ such that ψ(p) = p′. It follows
that for any points p ∈M and p′ ∈M ′, we have fi(p) = f ′i(p

′) for each
i ∈ I. So fi = f ′i ◦ ϕ for each i ∈ I. So {fi} = {f ′i ◦ ϕ} and thus ϕ
is a curvature isomorphism. But of course, M and M ′ have different
topologies by construction so ϕ cannot be a homeomorphism.

4 A Hierarchy of Curvature Conditions

One wonders under which conditions is it the case that a curvature
isomorphism between spacetimes must be a homeomorphism. In order
to answer the question, we now construct a hierarchy of curvature
conditions on spacetimes. As we do so, we will directly import some of
the central topological conditions considered above. We will also rely
heavily on Lemma 1 and Proposition 1. Let (M, g) be a spacetime and
let C (M, g) be indexed by a set I to generate the family of functions
{fi}. Recall that the family {fi} separates points on M if, for any
distinct p, q ∈ M , we have fi(p) 6= fi(q) for some i ∈ I. Consider the
following.

Definition 2. Let (M, g) be a spacetime and let C (M, g) be indexed
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by a set I to generate the family of functions {fi}. We say the space-
time (M, g) separates points if the family {fi} separates points on M .

This condition is analogous to the past and future distinguishing
condition on the causal structure of spacetime (Hawking and Ellis 1973,
p. 192). Just as that condition prohibits distinct points from having
the same causal structure, the separating points condition prohibits
distinct points from having the same (scalar) curvature structure. As
we shall see, the condition of separating points is the weakest of the
curvature conditions considered here. Even so, it sits atop a hierarchy
of spacetime “asymmetry” conditions (Manchak and Barrett 2023).
Because the strongest of these asymmetry conditions will be needed
later on, let us briefly review them here.

We say a spacetime (M, g) is giraffe if the identity map is the the
only isometry ϕ : M →M . We say a spacetime (M, g) is locally giraffe
if, for any open connected set O ⊆ M , the spacetime (O, g) is giraffe.
Finally, we say that a spacetime (M, g) is Heraclitus if, for any distinct
points p, q ∈M and any open neighborhoods Op and Oq of these points
respectively, there is no isometry ψ : Op → Oq such that ψ(p) = q.
One can show that (i) any spacetime that separates points must be
a Heraclitus spacetime, (ii) any Heraclitus spacetime must be locally
giraffe, and (iii) any locally giraffe spacetime must be giraffe. There are
examples showing that a giraffe spacetime need not be locally giraffe
and that a locally giraffe spacetime need not be Heraclitus. But it is
unknown if a Heraclitus spacetimes can fail to separate points. Let us
start now to keep track of open questions.

Question 1. Can a Heraclitus spacetime fail to separate points?

We now come to the next curvature condition in the hierarchy.
Let (M, g) be a spacetime and let C (M, g) be indexed by a set I to
generate the family of functions {fi}. Recall that the weak topology
on M induced from the family {fi} is the smallest topology for which
fi is continuous for each i ∈ I. We can think of the weak topology on
M as a type of “curvature topology” induced from C (M, g). Consider
the following.

Definition 3. Let (M, g) be a spacetime and let C (M, g) be indexed
by a set I to generate the family of functions {fi}. We define the
curvature topology on M to be the weak topology on M induced by
{fi}.

For any spacetime (M, g), one can verify that the curvature topol-
ogy on M is a subset of the manifold topology on M . This follows
from the fact that the manifold topology on M counts each member of
C (M, g) as continuous while the curvature topology on M is defined
as the smallest topology on M with this property.
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Proposition 2. For any spacetime, its curvature topology is a subset
of its manifold topology.

Proof. Let (M, g) be a spacetime and let C (M, g) be indexed by a
set I to generate the family of functions {fi}. Let τm and τc be the
manifold and curvature topologies on M respectively. So τc is the
smallest topology for which fi is continuous for each i ∈ I. Suppose
there is an O ∈ τc such that O /∈ τm. We show a contradiction.
Since the intersection of any pair of topologies is a topology, we know
τ = τm ∩ τc is a topology on M . Since O ∈ τc but O /∈ τm, we know
that τ is a proper subset of τc. Consider the function fi : M → R
for any i ∈ I and let U ⊆ R be any open set. Since both τm and τc
count fi as continuous, we have f−1i [U ] ∈ τm and f−1i [U ] ∈ τc. So
f−1i [U ] ∈ τ . So τ makes the function fi continuous for any i ∈ I.
Since τ is a proper subset of τc and τ makes the function fi continuous
for each i ∈ I, we see that τc is not the smallest topology with this
property: a contradiction.

In general, the manifold and curvature topologies do not coincide.
Indeed, the curvature structure can be so impoverished in spacetimes
that the associated curvature topology is trivial. Consider the following
example.

Example 2. Consider Minkowski spacetime (M, g) and let C (M, g)
be indexed by a set I to generate the family of functions {fi}. Consider
the function fi : M → R for any i ∈ I. We know that for any points
p, q ∈ M , there is an isometry ψ : M → M such that ψ(p) = q. It
follows that for any points p, q ∈ M , we have fi(p) = fi(q). So the
function fi is constant; there is some a ∈ R such that fi(p) = a for all
p ∈M . Now consider the trivial topology {M,∅} on M and let U ⊆ R
be any open set. If a ∈ U , then f−1i [U ] = M which is open in the trivial
topology. If a /∈ U , then f−1i [U ] = ∅ which is also open in the trivial
topology. Either way, f−1i [U ] is open in the trivial topology and thus
fi is continuous relative to the trivial topology. Since fi was arbitrarily
chosen, we know that fi is continuous relative to the trivial topology
for any i ∈ I. Since the weak topology on M induced from {fi} is
the smallest topology on M with this property, the weak topology on
M must be the trivial topology on M . So the curvature topology on
Minkowski spacetime is the trivial topology.

Here, we find that the situation is completely analogous with one
concerning the causal structure. For each spacetime (M, g), one can
construct a “causal topology” on M , i.e. the Alexandrov topology
(Hawking and Ellis 1973, p. 196). One can show that the Alexandrov
topology is a subset of the manifold topology but that, in general, the
two topologies do not coincide. Indeed, we find that the causal struc-
ture can be so impoverished in some spacetimes (e.g. Gödel spacetime)
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that the resulting Alexandrov topology is trivial. Given the situation,
a natural causal condition to consider is one in which a spacetime is
required to have its manifold and Alexandrov topologies coincide. This
condition is equivalent to the so called strong causality condition and
implies a number of conditions at lower levels of the causal hierarchy
including the past and future distinguishing condition. Something like
this is true for the curvature case as well: if a spacetime is such that
its manifold and curvature topologies coincide, then it must separate
points.

Proposition 3. If a spacetime is such that its manifold and curvature
topologies coincide, then it separates points.

Proof. Let (M, g) be a spacetime and let C (M, g) be indexed by a set
I to generate the family of functions {fi}. Suppose that (M, g) does
not separate points. So the family {fi} does not separate points on
M . So there are distinct points p, q ∈M such that fi(p) = fi(q) for all
i ∈ I. Consider the function f : M → M defined such that f(p) = q,
f(q) = p, and f(r) = r for all r ∈M−{p, q}. By construction, f is not
continuous relative to the manifold topology on M . Since fi(p) = fi(q)
for all i ∈ I, one can verify that fi ◦ f = fi for all i ∈ I. We know
that, for all i ∈ I, the function fi is continuous relative to the the
weak topology on M induced from the family {fi}. So for all i ∈ I
the function fi ◦ f is continuous relative to the weak topology on M
induced from the family {fi}. By Lemma 1, the function f must also
be continuous relative to the weak topology on M induced from the
family {fi}. Since the function f is continuous relative to the weak
topology on M but not continuous relative the manifold topology on
M , we know that these topologies do not coincide. So the manifold
and curvature topologies do not coincide.

One wonders if the other direction also holds.

Question 2. Can a spacetime separate points if its manifold and cur-
vature topologies differ?

We now come to the next curvature condition in the hierarchy.
Let (M, g) be a spacetime and let C (M, g) be indexed by a set I to
generate the family of functions {fi}. Recall that the family {fi}
separates points from closed sets on M if, for any closed set C ⊂ M
and any p /∈ C, we have fi(p) /∈ fi[C] for some i ∈ I. Consider the
following.

Definition 4. Let (M, g) be a spacetime and let C (M, g) be indexed
by a set I to generate the family of functions {fi}. We say the space-
time (M, g) strongly separates points if the family {fi} separates points
from closed sets on M .
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We have the following.

Proposition 4. If a spacetime strongly separates points, then its man-
ifold and curvature topologies coincide.

Proof. Let (M, g) be a spacetime and let C (M, g) be indexed by a set
I to generate the family of functions {fi}. Suppose (M, g) strongly
separates points. So the family {fi} separates points from closed sets
on M . So the manifold topology on M is the weak topology on M in-
duced from the family {fi} (recall the discussion just after Proposition
1). So the manifold and curvature topologies coincide.

One wonders if the condition of strongly separating points is equiv-
alent to the condition of having the manifold and curvature topologies
coincide. If so, it would be yet another parallel with the causal struc-
ture case in which strong causality is equivalent to the condition that
the manifold and Alexandrov topologies coincide. We have the follow-
ing.

Question 3. Can a spacetime fail to strongly separate points if its
manifold and curvature topologies coincide?

We now come to the highest level of the curvature hierarchy. This
condition requires that every smooth scalar function on a spacetime is
an invariant scalar curvature function.

Definition 5. We say the spacetime (M, g) is maximally structured if
C (M, g) is the collection S (M) of smooth functions on M .

One can show the following.

Proposition 5. If a spacetime is maximally structured it also strongly
separate points.

Proof. Let (M, g) be a maximally structured spacetime. So C (M, g) =
S (M). Let C (M, g) = S (M) be indexed by a set I to generate the
family of functions {fi}. Let C ⊂M be any closed set and let p /∈ C. A
foundational result states: for any manifold M , any point p ∈M , and
any neighborhood O of p, there is a smooth bump function f : M → R
such that f(p) = 1 and f(q) = 0 for all q ∈M−O (Lu 2011, p. 144). It
follows that there is a smooth function f : M → R such that f(p) = 1
and f(q) = 0 for all q ∈ C. So f [C] = {0} = {0} and thus f(p) /∈ f [C].
Since f is smooth and C (M, g) = S (M), we know f = fi for some
i ∈ I. So fi(p) /∈ fi[C] for some i ∈ I. So the family {fi} separates
points from closed sets on M . So (M, g) strongly separates points.

Naturally, we have the following.

Question 4. Can a spacetime fail to be maximally structured if it
strongly separate points?

8



Let us now put all the results together to form a hierarchy of con-
ditions. Consider the diagram below. The highest four levels are cur-
vature conditions, the lowest three are asymmetry conditions. Each
of the six arrows is an implication relation. The lowest two arrows do
not run in the other direction. It is unknown if the highest four arrows
run in the other direction. Could it be that the Heraclitus condition
is equivalent to the maximally structured condition?

Maximally Structured

Strongly Separates Points

Manifold Topology=Curvature Topology

Separates Points

Heraclitus

Locally Giraffe

Giraffe

5 Topology from Curvature Structure

Let us now show that a curvature isomorphism must be a homeomor-
phism under sufficiently strong curvature conditions. If the manifold
topology and curvature topology coincide, the desired result is straight-
forward (see Proposition 6 below). Again we have an analogy with the
causal structure situation. If the manifold topology coincides with
the Alexandrov topology, it is straightforward to show that a causal
isomorphism must be a homeomorphism (Hawking and Ellis 1973, p.
197).

Proposition 6. If a pair of spacetimes is such that each one has its
manifold and curvature topologies coincide, then a curvature isomor-
phism between them is a homeomorphism.

Proof. Let (M, g) and (M ′, g′) be spacetimes and such that the mani-
fold and curvature topologies coincide on M and similarly for M ′. Let
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C (M, g) and C (M ′, g′) be indexed by a set I to generate the respective
families of functions {fi} and {f ′i} such that fi and f ′i correspond the
same metric construction for each i ∈ I. Suppose ϕ : M → M ′ is a
curvature isomorphism. So {fi} = {f ′i ◦ ϕ}.

For each i ∈ I, let Xi be a copy of R and let X =
∏
Xi be the direct

product with the product topology. Let e : M → X and e′ : M ′ → X
be the evaluation maps induced from the families {fi} = {f ′i ◦ ϕ} and
{f ′i} respectively. Since (M, g) is such that its manifold and curvature
topologies coincide, from Proposition 3 we know that (M, g) separates
points. So the family {fi} = {f ′i ◦ ϕ} separates points on M . Since
(M, g) is such that its manifold and curvature topologies coincide, the
manifold topology on M is the weak topology on M induced from
the family {fi} = {f ′i ◦ ϕ}. Since M has the weak topology induced
from the family {fi} = {f ′i ◦ ϕ} and since {fi} = {f ′i ◦ ϕ} separates
points on M , it follows from Proposition 1 that the evaluation maps
e and e′ are embeddings. Let e[M ] and e′[M ′] be given the subspace
topology induced from X. Since e and e′ are embeddings, we can
restrict the ranges in the natural way to construct the homeomorphisms
h : M → e[M ] and h′ : M ′ → e′[M ′].

We now show that h′ ◦ϕ = h. Consider any point p ∈M . Since the
evaluation map e was induced from the family {fi} = {f ′i ◦ ϕ}, we see
that h(p) = e(p) = {fi(p)} = {(f ′i ◦ϕ)(p)} = {f ′i(ϕ(p))}. Now consider
h′◦ϕ. Since the evaluation map e′ was induced from the family {f ′i}, we
see that (h′ ◦ ϕ)(p) = h′(ϕ(p)) = e′(ϕ(p)) = {f ′i(ϕ(p))}. So h′ ◦ ϕ = h.
It follows that ϕ = h′−1 ◦ h which is homeomorphism since h and h′−1

are both homeomorphisms.

Of course, one wonders if the result will go through if the cur-
vature condition is weakened. Is a curvature isomorphism between
two spacetimes that separate points necessarily a homeomorphism?
This question is analogous to the question: is a causal isomorphism
between past and future distinguishing spacetimes necessarily a home-
omorphism? The answer to the second question eventually turned out
to be yes though this was not straightforward (Malament 1977). We
have the following.

Question 5. Is there a curvature isomorphism between spacetimes
that separate points that is not a homeomorphism?

Naturally one also looks for the strongest condition under which a
curvature isomorphism fails to be a homeomorphism. One can easily
find a counterexample among locally giraffe spacetimes. Consider the
following.

Proposition 7. A curvature isomorphism between locally giraffe space-
times need not be a homeomorphism.
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Proof. We know there exist locally giraffe spacetimes that are not Her-
aclitus (Manchak and Barrett 2023). Let (M, g) be any such spacetime.
Let C (M, g) be indexed by a set I to generate the family of functions
{fi}. Since the spacetime is not Heraclitus, there are distinct points
p, q ∈ M , respective open neighborhoods Op and Oq of these points,
and an isometry ψ : Op → Oq such that ψ(p) = q. Since ψ(p) = q,
we know that fi(p) = fi(q) for all i ∈ I. Let ϕ : M → M be the
bijection defined such that ϕ(p) = q, ϕ(q) = p, and ϕ(r) = r for all
r ∈ M − {p, q}. By construction, ϕ is not continuous and therefore
not a homeomorphism. But since fi(p) = fi(q) for all i ∈ I, we have
fi ◦ ϕ = fi for all i ∈ I. So {fi ◦ ϕ} = {fi} and thus ϕ is a curvature
isomorphism.

Can one find a counterexample among Heraclitus spacetimes? We
have the following.

Question 6. Is there a curvature isomorphism between Heraclitus
spacetimes which fails to be a homeomorphism?

6 Maximal Curvature Structure

It turns out that maximally structured spacetime have sufficiently rich
curvature structure that, not only is a curvature isomorphism between
such spacetimes a homeomorphism, it must also be a diffeomorphism.
We have the following.

Proposition 8. A curvature isomorphism between maximally struc-
tured spacetimes is a diffeomorphism.

Proof. Let (M, g) and (M ′, g′) be maximally structured spacetimes.
Let C (M, g) and C (M ′, g′) be indexed by a set I to generate the re-
spective families of functions {fi} and {f ′i} such that fi and f ′i cor-
respond the same metric construction for each i ∈ I. Since (M, g)
and (M ′, g) are maximally structured, we have C (M, g) = S (M) and
C (M ′, g′) = S (M ′). Suppose ϕ : M → M ′ is a curvature isomor-
phism. So {fi} = {f ′i ◦ ϕ}. Let f ′ : M ′ → R be any smooth function
on M ′. Since C (M ′, g′) = S (M ′), we know f ′ = f ′i for some i ∈ I.
Since {fi} = {f ′i ◦ ϕ} it follows that the function fi = f ′i ◦ ϕ = f ′ ◦ ϕ
is a member of C (M, g) = S (M). So f ′ ◦ ϕ is smooth and thus ϕ is
smooth. An analogous argument shows that ϕ−1 is smooth. So ϕ is a
diffeomorphism.

Of course, one wonders if the result goes through if the curvature
condition is weakened. Is a curvature isomorphism between two space-
times that strongly separate points necessarily a diffeomorphism?
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Question 7. Is there a curvature isomorphism between spacetimes
that strongly separate points that fails to be a diffeomorphism?

We know there exist spacetimes that separate points (Manchak and
Barrett 2023). But we have yet to show the existence of spacetimes
that satisfy the three stronger conditions on the curvature hierarchy.
It turns out that even maximally structured spacetimes exist. We have
the following.

Proposition 9. A maximally structured spacetime exists.

Example 3. Let the manifold M be the set of points (t, x) ∈ R2 such
that (i) t2 − x2 > 0, (ii) t > 0, and (iii) x > 0. Let Ω : M → R be the
smooth positive function defined by Ω(t, x) = 1/(t2 + x2). Let gab be
the metric on M given by Ω2[−∇at∇bt +∇ax∇bx]. Let R : M → R
be the Ricci scalar curvature function and let Q : M → R be the
scalar curvature function defined by gab(∇aR)∇bR. One can show that
R(t, x) = 8(t2 − x2) and Q(t, x) = −32R(t, x)Ω(t, x)−2 = −256(t2 −
x2)(t2 + x2)2 (Manchak and Barrett 2023). Because of condition (i),
we find that Q < 0 < R on M .

Let C1 : M → R and C2 : M → R be the scalar curvature functions
defined by C1 = R/8 and C2 = (−Q/32R)1/2. One can verify that
because Q < 0 < R on M and t2 +x2 > 0, the functions C1 and C2 are
well-defined and smooth on M . Indeed, we find that C1(t, x) = t2−x2
and C2(t, x) = t2 + x2. Now let T : M → R and X : M → R be
the scalar curvature functions defined by T = ((C1 + C2)/2)1/2 and
X = ((C2 − C1)/2)1/2. One can verify that since C1 + C2 = 2t2 > 0
and C2 − C1 = 2x2 > 0 and because of conditions (ii) and (iii) above,
the functions T and X are well-defined and smooth on M . Indeed, we
find that T (t, x) = t and X(t, x) = x.

Now let f : M → R be any smooth function. Of course, f is just a
rule which maps certain ordered pairs of real numbers to real numbers.
Let us use this rule f to construct a smooth invariant scalar curvature
function F : M → R. We do this by setting F (p) = f(T (p), X(p))
for all points p ∈ M . Since T (t, x) = t and X(t, x) = x, we find that
F (t, x) = f(T (t, x), X(t, x)) = f(t, x) which shows that F = f . Since
f is well-defined and smooth, so is F . Since F is a scalar invariant
function, we know F ∈ C (M, g) and thus f ∈ C (M, g). Since f was an
arbitrarily chosen smooth function on M , we have C (M, g) = S (M).
So (M, g) is maximally structured.

7 Remark

We have shown a sense in which the (scalar) curvature structure of
spacetime determines its topology. Along the way, we have drawn at-
tention to a number of ways in which the situation with respect to
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curvature structure in analogous to the one with respect to causal
structure. Here, we which to highlight a sense in which they come
apart. The causal structure of spacetime is encoded in a particular re-
lation between spacetime points. The result of Malament (1977) shows
that, under certain conditions, one can use this relation to uniquely de-
termine the topology of spacetime. Now consider the scalar curvature
structure of spacetime. It differs significantly from the causal structure
of spacetime in the sense that it is not encoded in a relation (or in a
collection of relations) between spacetime points. Instead, each scalar
curvature function gives rise to an invariant property of each spacetime
point. The scalar curvature structure of spacetime is encoded in the
collection of all such properties of all spacetime points. Here we have
shown that, under certain conditions, one can use these properties of
spacetime points to uniquely determine the topology of spacetime – no
relations needed.
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