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Abstract

We consider the duality between General Relativity and the theory of Einstein algebras, in
the extended setting where one permits non-Hausdorff manifolds. We show that the duality
breaks down, and then go on to discuss a sense in which general relativity, formulated using
non-Hausdorff manifolds, exhibits excess structure when compared to Einstein algebras. We
discuss how these results bear on a class of algebraically-motivated deflationist views about
spacetime ontology. We conclude with a conjecture concerning non-Hausdorff spacetimes
with no bifurcating curves.

1 Introduction

In standard textbook treatments of general relativity (GR),1 possible universes, or regions thereof,

are represented by geometric structures: viz. Lorentzian 4-manifolds, or relativistic spacetimes, which

are smooth four-dimensional manifolds endowed with a smooth metric. But as first observed by

Geroch (1972), a different formalism is also available. On this alternative, one would drop all

mention of a manifold and instead represent possible (regions of ) universes with a certain kind of

algebraic structure. These structures, which Geroch called Einstein algebras, consist of a

commutative ring satisfying certain conditions and endowed with further structure. Indeed, he

argued, the entire theory of GR could be developed using just the structure of Einstein algebras.

When Geroch first introduced Einstein algebras, he suggested they might be a step towards a

quantum theory of gravity. The idea was that within GR, it is implicitly assumed that events can be

treated as “point-like”, in the sense that they can be localized in space and timewith arbitrary precision.

But in a quantum theory, one should not expect arbitrarily precise determinables, including locations.

*Department of Logic and Philosophy of Science, UC Irvine. Jingyi.Wu@uci.edu; James.Owen.Weatherall@uci.edu
1Such as Wald (1984). See fn. 6 for further references.
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Thus, Geroch reasoned, point-like events, which play an apparently fundamental role in classical GR,

were unlikely to persist in a quantum theory of gravity. The Einstein algebra framework, meanwhile,

removes, or at least suppresses, the “manifold of point-like events”, thereby removing one of the hurdles

to constructing a quantum theory.

But philosophers of physics soon became interested in Einstein algebras for a different reason.

Not long after Geroch’s paper first appeared, John Earman (1977) suggested that Einstein algebras

might cast new light on the classic substantivalist/relationalist debate.2 Roughly speaking, the idea

was that standard geometric formulations of spacetime theories are “substantivalist”, in the sense

that one first posits a structure representing space and time – that is, the manifold – and then one

introduces matter by defining fields on that manifold.3 This approach looks like one according to

which spacetime is ontologically independent of, and prior to, matter within spacetime. Einstein

algebras, meanwhile, cut out the first step. One can think of the elements of an Einstein algebras as

possible global configurations of a (scalar) matter field, and so on this approach, one begins by

positing the possible configurations of some form of matter, and then proceeds to develop the theory

from there, without ever needing to introduce a manifold. Einstein algebras, in other words, look

like a natural formalism for “relationalism”.4 It seems that Earman had hoped that Einstein algebras

may lead to a formulation of GR that has less structure than the standard geometric formulation,

and this algebraic approach would be a way to excise the excess structure in the geometry.

More recently, Rosenstock et al. (2015) took up Earman’s suggestion, but with a twist. They

show, using a generalization of the Stone duality theorem, that there is a sense in which the Einstein

algebra and the standard geometric formalism of GR are equivalent.5 Roughly, they show that two

Einstein algebras are structurally equivalent (i.e. isomorphic) if and only if their corresponding

relativistic spacetimes are structurally equivalent (i.e. isometric). This allows us to reconstruct a

unique manifold given an algebra of possible matter distributions (in the form of smooth scalar

2For an overview of the recent debate, see Pooley (2013).
3Field (1984) famously defends this perspective; see also Friedman (1983).
4Earman goes on to argue that Einstein algebras are not fully relationalist, or at least not fully Leibnizian, since that

they do not satisfy the principal of sufficient reason (PSR): God has no grounds for choosing between the many distinct-
but-isomorphic Einstein algebras (Earman, 1977, 1986). One’s views on the PSR aside, this worry seems chimerical to us,
on the grounds that the apparent multiplicity of Einstein algebras derives entirely from how we construct mathematical
objects in set theory, and not from a multiplicity of the structures themselves (Bradley and Weatherall, 2022; Halvorson
and Manchak, 2022).

5Their arguments are heavily indebted to prior work by Nestruev (2002). Rynasiewicz (1992) also responded to
Earman’s work on Einstein algebras by invoking general Stone-type dualities between functions and space.
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fields), and vice versa. They go on to suggest that this result supports a deflationary reading of the

substantivalist/relationalist debate, at least as understood by Earman and others in the late 20th

century. Because of the possibility of unique reconstruction, a manifold can be viewed as (nothing

but) a representation of possible configurations of matter, and the points of a manifold are just loci

of field (dis)agreement, characterizing the ways in which possible matter configurations might be

distinct. Thus, the “substantivalist” formalism of relativistic spacetimes does not posit “more

structure” than the “relationalist” formalism of Einstein algebras. The two formalisms are, in this

sense, equivalent.

Here we present several results that, while not necessarily undermining this picture, introduce

further texture. The principal observation is that the duality between Einstein algebras and

relativistic spacetimes on which Rosenstock et al. (2015) base their arguments depends on the

topology of the manifolds under consideration. In particular, if one expands the class of relativistic

spacetimes to includes ones that violate the Hausdorff condition, the duality no longer holds,

because now structurally non-equivalent manifolds can have structurally equivalent algebras of

smooth scalar fields. In other words, the Algebra to Geometry direction of the duality fails—we can

no longer reconstruct a unique manifold given an algebra of smooth scalar fields. As we go on to

show, this breakdown is asymmetric: equivalent manifolds always have equivalent algebras of

smooth scalar fields, and thus the Geometry to Algebra direction of the duality continues to hold in

this generalized context. We prove several propositions that further probe the character of the

breakdown of duality.

We take these results to be of interest for several reasons. Perhaps the most important is that

they cast the substantivalist/relationalist debate in GR in new light. As we discuss below, our main

results, in Section 3, suggest a strong sense in which the points of (some) non-Hausdorff manifolds

must be interpreted as having an ontological status independent of the possible configurations of

matter. This suggests that non-Hausdorff manifolds require a “substantivalist” interpretation.

Moreover, as we go on to show, in Section 4, there is a precise sense in which

not-necessarily-Hausdorff spacetimes have strictly more structure than their algebraic counterparts.

In this sense, something like Earman’s original vision is realized: in the not-necessarily-Hausdorff

context, the geometric formulation of the theory appears to prefer (or require) a substantivalist
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interpretation; but one can excise this extra substantivalist structure by moving to an algebraic

approach. But despite vindicating Earman’s intuitions, the results, and the version of

substantivalism at issue here, looks very different from characterizations of substantivalism in the

contemporary literature, for reasons we discuss in Section 6.

Moreover, recently, several philosophers of physics have argued that it is fruitful, for some

purposes, to drop the Hausdorff condition (Luc and Placek, 2020; Luc, 2020; Manchak, 2020). We

take the results here to show one potential cost to adopting this proposal: it blocks the deflationary

interpretation of spacetime events (and manifolds) suggested by Rosenstock et al. (2015).

Finally, these results show a sense in which expanding amodal space – that is, the space of possible

models allowed by a theory – has consequences for the sensible interpretation of models representing

individual possibilities. In other words, if one adopts a principle of uniformity of interpretation, then

once we consider non-Hausdorff manifolds, the physical significance of points in Hausdorff models

has to change as well.

The remainder of the paper will proceed as follows. We begin in Section 2 with some

preliminary remarks to fix ideas and notation, leading to a statement of the duality result that we

take as our starting point. We then proceed in Section 3 to state and prove the principal results of

the paper, showing that the duality breaks down asymmetrically (Propositions 1 and 2). In Section

4, we revisit the deflationary account in light of these results. This discussion motivates two further

results: first, there is a sense in which dropping the non-Hausdorff condition genuinely introduces

distinct algebraic possibilities (Proposition 3); and second, that there is a precise sense in which

non-Hausdorff manifolds (and, by extension, spacetimes) have more structure than the algebras of

smooth functions on them (Proposition 4). Finally, in Section 5, we propose a conjecture that, if

true, would lead to a novel hierarchy of “non-Hausdorfness” for manifolds. We conclude in Section

6 by elaborating on some of the themes mentioned above. Proofs of propositions appear in an

Appendix.
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2 Preliminaries

In standard approaches to GR, one begins with a smooth manifold M , points of which represent

events—localized occurrences—in space and time.6 This manifold is assumed to be equipped with

a smooth pseudo-Riemannian metric gab of Lorentzian signature, encoding spatiotemporal relations

between events, including the effects of gravitation. The metric is the principal dynamical field in the

theory, and standard treatments generally focus on properties of the metric and, especially, solutions

to Einstein’s equation, which relates the metric to the distribution of energy-momentum in space and

time. For our purposes, however, the metric will play no role. We focus just on the manifold.

The most general definition of a (smooth) manifold is that it is a setM endowed with an atlas. An

atlas, here, is a collection ofn−charts (U,φ), whereU is a subset ofM andφ is an injective map from

U to Rn, for fixed n, satisfying certain compatibility and maximality conditions. This atlas may then

be seen to induce both a topology and a “smoothness structure” onM , in the sense that it determines

which maps fromM to other manifolds are smooth.7

In standard presentations, however, more is often required. In particular, the atlas on M is

assumed to be such that the induced topology has several additional topological properties.8 Of

particular interest for the present paper is that M is standardly assumed to satisfy the Hausdorff

condition.

Definition 1. A topological space X is Hausdorff if for any points x, y, there exist open sets U and V

such that x ∈ U , y ∈ V , and U ∩ V = ∅.

Other conditions are also standard. For instance, It is also common to assume thatM is paracompact.

Definition 2. A topological spaceX is paracompact if any open cover admits a locally finite refinement.9

6 For background on the mathematical structure of GR using conventions similar to ours, see Wald (1984) or
Malament (2012); for a treatment directed at mathematicians, see, for instance, O’Neill (1983). For more on smooth
manifolds, also directed at mathematicians, see Lee (2013).

7See Malament (2012, §1.1) for a compact discussion. Throughout, we work specifically with Malament’s definition
and freely refer to his notions of n−chart, compatibility, maximilaity, etc. in the proofs of our propositions and
(occassionally) the main text.

8These assumptions are so common that many physicists and mathematical physicists work them into the definition
of manifold and then proceed to ignore them. For instance, Wald (1984) and Hawking and Ellis (1973) both assume
the Hausdorff and paracompactness conditions; and Malament (2012) assumes the Hausdorff condition and, later, the
Countable Cover Condition. Wald’s AppendixA provides a nice discussion of some of these conditions; see alsoManchak
(2020, Appendix). Note that on some presentations, one begins with a topological space satisfying certain conditions and
then places compatibility conditions on the atlas. The discussion below goes through mutatis mutandis on that approach.

9With less jargon: X is paracompact if, for any collection of open sets {Oα}α∈A satisfying ∪α∈AOα = M , there
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For connected manifolds, in the presence of the Hausdorff condition, paracompactness is equivalent

to another condition that is also sometimes assumed (instead), known as second countability.10

Definition 3. A topological spaceX is second countable if its topology admits a countable base.11

The condition we relax in Section 3 is the Hausdorff condition. This means that we will consider

smooth manifolds in the general sense described above, without also assuming that that the charts are

such that the induced manifold topology is Hausdorff. We will call such manifolds “not-necessarily-

Hausdorff ”. It might be instructive to think about the Hausdorff condition by thinking about when

it fails. If it fails, we would have points on the manifold that open sets (induced by the atlas) cannot

separate. A classic example of a non-Hausdorff space can be constructed from two lines with their

standard manifold structures. We identify every point on these two real lines except for the origin.

What we are left with is a real line with two origins. These two origins cannot be separated by any

two charts.

By default, we assume that not-necessarily-Hausdorff manifolds do satisfy paracompactness and

second countability. We state this assumption only to ensure that the claims below are unambiguous

and precise. Most of the propositionswe state and prove below involve existence claims. The examples

we give to prove them generally do satisfy the paracompactness and second-countability conditions.

In this sense we do not relax those conditions. Note, however, that Prop. 2, which is a universal claim,

does not require any of the topological conditions we have stated here. It holds for not-necessarily-

Hausdorffmanifolds, as stated; but also for not-necessarily-paracompact and not-necessarily-second-

countable manifolds.

We now turn to the algebraic side of things. As we noted in the introduction, our motivation

for pursuing the questions discussed here is to explore interpretational issues raised by the Einstein

algebra reformulation of GR. On that approach, the subject matter of GR is represented by algebras

exists a collection of open sets {Vβ}β∈B such that (a) for every β ∈ B, there exists α ∈ A for which Vβ ⊆ Oα, (b)
∪β∈BVβ = M , and (c) for every point p ∈ M , there exists an open setW containing p that has non-empty intersection
with only finitely many elements of {Vβ}β∈B .

10For a clean proof of the equivalence claim, see Tanaka (2014). Note that in some sources, e.g. Malament (2012), one
finds the following “countable cover” condition imposed on the atlas associated with a manifold: there exists a countable
collection of charts {(Ui, φi)}i∈I such that ∪iUi = M . This condition is not a topological condition as stated, but if
it holds, then the manifold topology induced by the atlas is second countable. This result holds independently of other
topological conditions, including the Hausdorff condition; it follows from the facts that Rn is second countable and the
manifold topology makes chart maps continuous.

11That is, if there exists a countable collection of open sets {Oi}i∈I such that for any open set U , there exists J ⊆ I
for which ∪i∈JOi = U .
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satisfying certain further conditions and endowedwith further structure that plays the role of ametric

and which satisfies dynamical equations.12 But just as we focused only on manifolds in our discussion

above, for present purposes the full mathematics and physics of Einstein algebras will play no role.

Only the algebras themselves will be relevant.

To motivate the algebraic approach, consider a smooth manifoldM , and let C∞(M) denote the

collection of smooth maps from M to R.13 This collection turns out to inherit some nice algebraic

properties from the structure ofM . In particular, C∞(M) forms an Abelian group under pointwise

addition, with identity given by the constant function 0; it forms a commutative (associative and

unital) ring over that group under pointwise multiplication, with multiplicative identity given by the

constant function 1; and it forms a real algebra over that ring via pointwise scalar multiplication by

constant functions. Many structures one can define on a manifold M can be re-expressed as

structures on C∞(M). For instance, a smooth vector field is an R-linear function from C∞(M) to

itself satisfying the Leibniz rule: ξ(fg) = fξ(g) + gξ(f) for all f, g ∈ C∞(M). And so on.

This construction provides the basic idea behind the Einstein algebra approach. One begins

with an algebra, which can be represented by C∞(M) for some manifold M . This algebra is taken

to represent possible configurations of (scalar) matter or properties of matter. Other types of matter

fields and possible metrics are represented as tensor fields, which are defined in terms of their action

on algebra elements. One can further define structures such as stress-energy tensors, derivative

operators, and curvature tensors on the algebra, and state Einstein’s equation. In this way, one can

drop all reference to the manifold at all.

How are these algebras related to relativistic spacetimes? Consider, first, the case of smooth,

Hausdorff, paracompact manifolds. In that case, the relationship between manifolds M and the

algebras C∞(M) associated to them is very strong. We have the following fundamental result.

Theorem 1 (Generalized Stone). Given two (smooth, Hausdorff, paracompact) manifoldsM andM ′,

M andM ′ are diffeomorphic if and only if C∞(M) and C∞(M ′) are isomorphic.

Proof. See Rosenstock et al. (2015).

12For more about Einstein algebras and their physical interpretation, see Geroch (1972), Heller (1992), or Rosenstock
et al. (2015). Further details about the mathematical structures described here can be found in Nestruev (2002).

13For present purposes, the topological considerations above play no role, so we do not assume them.
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This Theorem says that if two algebras associated with smooth, connected, Hausdorff,

paracompact manifolds are isomorphic, then the manifolds they are associated to are diffeomorphic;

and, conversely, if the algebras are not isomorphic then the manifolds are not diffeomorphic. This

provides a sense in which the entire structure of a smooth manifold is captured by its algebra of

smooth functions.

In fact, even more is true. As Nestruev (2002) show and Rosenstock et al. (2015) discuss, one

can identify necessary and sufficient conditions on an algebra A for it to be isomorphic to C∞(M)

for some smooth, connected, Hausdorff, paracompact manifold M . Moreover, given such an

algebra one can reconstruct a smooth, connected, Hausdorff, paracompact manifold, unique up to

diffeomorphism, that gives rise to that algebra by the construction above. These results show that

one can describe the entire subject matter of GR beginning with purely algebraic structures,

satisfying certain conditions and endowed with further structure, in such a way that the standard

geometric presentation arises as a certain kind of representation of the algebraic structures as

algebras of smooth functions on a particularM .

Furthermore, we have a certain precise sense in which GR, formulated in the standard way using

Lorentzian manifolds, is theoretically equivalent to a theory that represents spatiotemporal structure

using Einstein algebras.14 As Rosenstock et al. (2015) show, one can establish that the relationship

between smooth manifolds and their associated algebras is (contravariantly) functorial in the sense

that the relationships between manifolds and algebras lifts to a natural map from diffeomorphisms to

algebra isomorphisms, and vice versa; and that the functors determined in the way form a categorical

equivalence between a category (actually, groupoid) of smooth, connected, Hausdorff, paracompact

manifolds and a certain category of algebras. This equivalence can be extended to spacetimes (i.e.,

manifolds with metrics) and Einstein algebras, in such a way that it preserves the empirical content

of both theories on a natural understanding of what that means.

We now proceed to ask: how much of this picture extends to the case where one considers not-

necessarily-Hausdorff manifolds? Is it the case that if not-necessarily Hausdorff manifolds give rise

to isomorphic algebras of smooth functions, then they are diffeomorphic? As we will see in the next

section, the answer to this question is “no”.

14For a recent overview of the theoretical literature, including this particular notion of equivalence, see Weatherall
(2019a,b). Weatherall (2021) describes some of the limitations of this notion of equivalence.
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3 Duality Spoiled

As indicated above, the main results of this section may be summarized as follows. If we allow for

not-necessarily-Hausdorff manifolds, then there exist non-diffeomorphic manifolds with isomorphic

algebras of smooth maps. In other words, if we consider the duality results discussed above in this

new context, we find that theAlgebra toGeometry direction breaks down, in the sense that an algebra

of smooth functions does not uniquely determine a smooth manifold, even up to diffeomorphism.

However, as we show below, the Geometry to Algebra direction still holds, even in the absence of

the Hausdorff condition: if two not-necessarily-Hausdorff manifolds are diffeomorphic, then their

algebras of smooth functions are isomorphic.

To establish the first result, we will begin with a construction by which one takes an arbitrary

Hausdorff manifold, M , and generates a new (non-Hausdorff ) manifold, N , by “adding a point”.

We will then show thatM andN are not diffeomorphic. Finally, we show thatC∞(M) andC∞(N)

are nonetheless isomorphic. The result that there exist non-diffeomorphic not-necessarily-Hausdorff

manifolds with isomorphic algebras of smooth functions follows immediately.

We begin with our basic construction. Let (M, C) be a smooth, not-necessarily-Hausdorff

n−manifold and let p be an arbitrary point ofM . LetN be the setM ∪ {p′}, where p′ 6∈M . First,

observe that every n−chart in C is automatically an n−chart onN . Now, for each chart (U,φ) ∈ C

containing p in its domain, let U ′ be the set U ′ = {p′} ∪ U \ {p} and let φ′ : U ′ → Rn be the

(injective) function defined by φ′ : q 7→ φ(q) if q 6= p′ and q 7→ φ(p) if q = p′. Then (U ′, φ′) is

also an n−chart on N ; call it the “mirror chart” determined by (U,φ). Finally, let C ′ consist of the

collection of all n−charts on N compatible with both C and all mirror charts on N . We have the

following lemma.

Lemma 1. (N, C ′) as just defined is a smooth, non-Hausdorff manifold. Moreover, it is second countable

if (M, C) is.

Wewill refer to thismanifold (N, C ′) as “M with an ‘additional’ p”. Observe, now, that if (M, C) is

Hausdorff, themanifold that results by adding any “additional” p is not diffeomorphic to themanifold

with which we began. To prove this, we first introduce a definition and another lemma.

Definition 4. LetM be a non-Hausdorff manifold. Call points p1, p2 ∈M witness points if, given any
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open sets O1 and O2 containing p1 and p2, respectively, O1 ∩O2 is non-empty.

Observe that for any manifoldM with an “additional” p, the points p and the additional point p′ are

witness points. We now have the following two results.

Lemma 2. If p1 and p2 are witness points of some smooth, non-Hausdorff manifold M , then for any

smooth scalar field f :M → R, f(p1) = f(p2).

Lemma 3. Let (M, C) be a smooth, Hausdorff n−manifold, let p ∈ M be some point, and let (N, C ′)

beM with an “additional” p. Then (M, C) and (N, C ′) are not diffeomorphic.

Whatwe have established thus far is that given any smoothHausdorffmanifold, we can construct

a non-diffeomorphic, non-Hausdorffmanifold from it by adding an “additional” point to it. Note that

in Lemma 3, we assumeM to be Hausdorff. We might wonder: does the Lemma hold ifM is non-

Hausdorff? What we know is that the Lemma fails if M is non-Hausdorff and non-paracompact

(think a Hausdorff manifold with p duplicated countably infinite many times. This manifold and it

with p duplicated one more time are diffeomorphic). What would happen if M is non-Hausdorff

and paracompact? This leads to the following open question, but Proposition 1 holds regardless.

Conjecture 1. Let (M, C) be a smooth, paracompact, not-necessarily-Hausdorff n−manifold, let

p ∈ M be some point, and let (N, C ′) beM with an “additional” p. Then (M, C) and (N, C ′) are not

diffeomorphic.

The final step in the main result is to establish that any smooth manifold M has an algebra of

smooth functions that is isomorphic to that ofM with an “additional” point.

Lemma 4. Let (M, C) be a smooth, not-necessarily-Hausdorff manifold and let (N, C ′) beM with some

“additional” point p. Then C∞(M) ∼= C∞(N).

The main result follows immediately from the foregoing lemmas. We have established

Proposition 1. There exist non-diffeomorphic smooth not-necessarily-Hausdorff manifolds with

isomorphic algebras of smooth functions.

Thus we have a many-to-one relationship, even up to diffeomorphism, between smooth

not-necessarily-Hausdorff manifolds and algebras of smooth functions. It follows, as claimed, that
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the Algebra to Geometry direction of the duality fails in this context, as it is hopeless to reconstruct

a unique not-necessarily-Hausdorff manifold from an algebra of smooth functions.

Now consider the other direction, from Geometry to Algebra. It turns out that this direction of

the generalized Stone Theorem does hold, even for not-necessarily Hausdorff manifolds.

Proposition 2. If not-necessarily-Hausdorff manifolds M and N are diffeomorphic, then C∞(M) ∼=

C∞(N).

Observe that Prop. 2 would still hold even if we relaxed second countability or paracompactness,

by an essentially identical proof. It remains an open question, to our knowledge, as to whether the

analogues of Prop. 1 would hold if different topological conditions were relaxed.

4 Deflation Revisited, and TwoMore Results

The results just presented, taken together, have consequences for the interpretation of GR. If we

adopt the Hausdorff condition, then the deflationary interpretation of spacetime points described in

Section 1 is a viable option for interpreting the points of a manifold representing our actual world:

manifolds are (just) ways of encoding the possible configurations of matter; points reflect the ways

in which matter configurations can agree or differ. But if we expand to not-necessarily Hausdorff

manifolds, this deflationary interpretation is no longer available—at least not for all models. We

apparently cannot take spacetime points to be (nothing but) loci for differentiating possible matter

configurations.

Instead, it seems that one must adopt an interpretation according to which at least some points

(specifically, pairs of witness points) in non-Hausdorff spacetimes represent locations in space and

time whose existence cannot be probed, even in principle, via exploring the possible distributions of

matter. The differences between those manifolds are not reflected in differences between (any) of the

matter configurations. Whatever the differences are, they must be characterized in some other way,

such as a brute ontological difference between those points.

As we suggested above, this situation has a distinctly “substantivalist” character. (Some) points,

on this interpretation, take on an ontological status independent of, and not exhausted by, spatio-

temporal relations between matter properties. It is hard to see how a relationalist or deflationist can
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make sense of these points. Indeed, one might argue that if we had empirical evidence that non-

Hausdorff manifolds were necessary for physics, it would strike a serious blow to the relationalist and

deflationist positions.

How might the algebraically-minded relationalist reply? One promising possibility would be to

turn the arguments above on their head. One might insist that the physical significance of the

spacetime manifold is exhausted by the possible configurations of matter that could be defined on it.

From this perspective, there is no physical difference between universes represented by manifolds

with isomorphic algebras of smooth functions. A smooth manifold M and that manifold with an

“additional” p (for instance) represent the same facts concerning the possible ways in which matter

properties can be distributed. Since matter fields cannot “see” the extra point, it has no physical

significance. It is not really there.

An algebraically-minded relationalist may take this line of thought even further. They might

hope, for instance, that expanding the class of possibility to non-Hausdorff manifolds does not add

distinct algebraic possibilities. More precisely, one might hope that every non-Hausdorff manifold

would be an element of an equivalence class of manifolds with the same algebra of smooth functions;

and that each of those equivalence classes would contain one (and, by Theorem 1, only one, up to

diffeomorphism) Hausdorff representative. If this were true, then expanding the space of models to

include non-Hausdorff manifolds would not change the space of physically possible worlds, because

the physical content of the additionalmodels would be exhausted by that of theHausdorff spacetimes.

Non-Hausdorff manifolds would turn out to be superfluous.

This hope is moot, however, because of the following result.

Proposition 3. There exists a non-Hausdorff manifoldM whose algebra of smooth functions C∞(M) is

not isomorphic to that of any Hausdorff manifold.

The example we give is a one-dimensional manifold with two “branches.” This manifold has an

associated algebra that is non-isomorphic to that of any Hausdorff manifold. In what follows, we

will call non-Hausdorff manifolds whose algebras of smooth functions do not admit a

representation as functions on any Hausdorff manifold detectably non-Hausdorff.

There are several observations to make about this proposition. First, it follows that one cannot

collapse all non-Hausdorff manifolds into Hausdorff manifolds that are physically equivalent in the
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sense of admitting the same algebra of smooth functions. Adding non-Hausdorff manifolds to the

mix really does increase the space of possibilities, even if the physical significance of a manifold is

entirely contained in its associated algebraic structure.

Second, this result has an immediate corollary, concerning the character of the algebras associated

with detectably non-Hausdorff manifolds. Recall that we said above that Nestruev (2002) provides

necessary and sufficient conditions for a commutative algebra to have a representation as the algebra

of smooth functions on a (Hausdorff )manifold. The details requiremachinery that would be beyond

the scope of this paper, but briefly, there are three conditions: an algebra admits a representation as

the algebra of smooth functions on a (Hausdorff ) manifold if and only if it is complete (Nestruev,

2002, §3.28), geometric (Nestruev, 2002, §3.7), and smooth (Nestruev, 2002, §4.1). Thus we have

Corollary 1. There exists non-Hausdorff manifoldsM for whichC∞(M) is not complete, geometric, and

smooth.15

Wedonot at present have necessary and sufficient conditions for an algebra to have a representation of

smooth functions on a not-necessarily-Hausdorff manifold. We do not claim that this is impossible.

But doing so successfully would be a prerequisite to presenting an autonomous generalization of the

theory of Einstein Algebras to include (all) non-Hausdorff manifolds.

Let us return, now, to the motivation for stating Prop. 3. The question at issue was whether all

non-Hausdorff manifolds can be associated with some Hausdorff manifold by first passing to the

associated algebra of smooth functions and then identifying the (unique) Hausdorff manifold on

which that algebra could be represented. That idea failed. But it is nonetheless true that some

non-diffeomorphic non-Hausdorff manifolds can be associated with Hausdorff manifolds in this

way.

This suggests that once we allow for non-Hausdorff manifolds, something like Earman’s original

idea (Earman, 1977, 1989) about the relationship between geometric and algebraic approaches gets

traction after all: it would seem that not-necessarily-Hausdorff manifolds have more structure than

algebras of smooth functions, since there are non-diffeomorphic not-necessarily-Hausdorffmanifolds

15The assertion stated here is the corollary to Prop. 3. But inspection of the conditions shows that it is the smoothness
condition that fails, where smoothness is the requirement that there exists a finite or countable open covering {Uk} of the
dual space of an algebraA such that all of the restrictions ofA to the elements of the covering are isomorphic toC∞(Rn)
for some fixed n. This condition will fail for open sets containing witness points in some non-Hausdorff manifolds.
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Figure 1

with the same algebras associated with them. The sense of “excess structure” here would be that of

Weatherall (2016b): there would be two formulations of a theory with the same empirical content,

but where there exist distinct, non-equivalent models of one corresponding to a single model of the

other. Moving to the algebraic approach would be a way to eliminate that “excess structure,” in the

following sense: isomorphic algebras would correspond to equivalence classes of (non-diffeomorphic)

manifolds, where those equivalence classes would include non-diffeomorphic manifolds (Figure 1).

These ideas can be made precise using the criteria of structural comparison developed by Baez

et al. (2006) and exported to structural comparisons of physical theories by Weatherall (2016b,a).16

To do so, we first introduce two categories and then consider a functor between them.17 Our

structural analysis will concern the formal properties of this functor.18 According to the standard of

comparison under consideration, the objects of some category A of mathematical gadgets has more

structure than those of another, B, relative to a choice of functor F :A→B, if F is not full, i.e., its

induced action on hom sets is not surjective; more stuff if F is not faithful, i.e., its induced action on

hom sets is not injective; and more properties if F is not essentially surjective, i.e., surjective up to

isomorphism in B. Conversely, if F is full, faithful, and essentially surjective, then A and B are

equivalent (or dual) categories, reflecting that their objects have the same structure.

16See Barrett (2022) for a detailed justification of these criteria in the case of first order theories.
17For readers interested in further background reading on category theory, see Leinster (2004).
18Strictly speaking, the functor we consider will be contravariant, which means it “reverses” arrows. Thus, we will be

using an extended version of the criterion for structural comparison that has previously been considered in the philosophy
of physics literature. However, just as Rosenstock et al. (2015) argued that a categorical duality has much the same
significance for questions of theoretical equivalence as a categorical equivalence does, we suggest that the upshot of the
analysis does not change for the fact that the functor is contravariant.
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Weatherall (2016b) proposes extending this idea to physical theories by considering functors F

between categories of models of physical theories, where F is required to preserve the empirical

consequences of the models. One formulation of a theory has more structure than another if there is

a functor from the models of the first to the models of the second that preserves empirical

consequences, but fails to be full. Intuitively speaking, this means that there are models that are

equivalent in the second category, but their corresponding models are not equivalent in the first.

The key example Weatherall considers is formulations of electromagnetism on Minkowski

spacetime using vector potentials and formulations using Faraday tensors, where the former is

shown to have more structure than the latter.

Wewill followRosenstock et al. (2015) closely here—except that wewill not worry aboutmetrics

or other structure defined on manifolds, or their analogs on algebras. We will consider just categories

of not-necessarily-Hausdorff manifolds and algebras of smooth functions on such manifolds, defined

as follows.

First, we consider the category nnHMan, which has as objects not-necessarily-Hausdorff

manifolds (of any finite dimension); and has as arrows diffeomorphisms.19 Now consider the

category nnHAlg, whose objects are the algebras of smooth functions on the objects of nnHMan

and whose arrows are algebra isomorphisms.20 Finally, observe that this construction gives rise to a

natural contravariant functor, F :nnHMan→nnHAlg, directly analogous to the one considered by

Rosenstock et al. (2015), that takes each object M of nnHMan to C∞(M) and takes each arrow

α : M → N to the algebra isomorphism α̃ : N → M as defined in the proof of Prop. 2 in the

Appendix. One can easily confirm that F is a functor, since it preserve identity maps and

composition. Again, by analogy to arguments in Rosenstock et al. (2015), this functor would induce

a functor that preserves the empirical consequences of the theories were we to extend our analysis to

consider spacetimes and Einstein algebras. So its properties are probative for present purposes.

We now have the following proposition.

Proposition 4. The functor F :nnHMan→nnHAlg as defined above is neither full nor faithful.

19One could of course consider a richer category, with more than just isomorphisms, but since Rosenstock et al. (2015)
consider only isometries andwe are inheriting our choice of functor from them, we will stick with their choice. See Barrett
(2018) for a discussion of this choice.

20Note that as discussed we do not have an independent characterization of the objects of nnHAlg, but that will not
matter for the present discussion.
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This proposition shows that the functor F forgets structure, because it is not full. Since we

expect F to determine a functor from not-necessarily-Hausdorff spacetimes to their associated

Einstein algebras that preserves empirical content (assumed to be exhausted by the algebraic

structure), it would follow that non-Hausdorff spacetimes have not just more structure, but also

excess structure. There is another formalization that captures the same empirical content with less

structure.

But the proposition shows more than this. F also forgets stuff because it is not faithful.21 The

intuition is that a non-trivial diffeomorphism that permutes a pair of witness points but leaves

everything else fixed would map to the identity arrow by the functor. So witness points contribute

extra “stuff ” to non-Hausdorff manifolds, leading to additional symmetries. Thus, we can think of

non-Hausdorff manifolds as exhibiting both excess structure and excess ontological commitments.

Moving to algebras excises both.

5 AQuestion and a Conjecture about Bifurcating Curves

In this section, we turn to a question that arises in light of Prop. 3, and whose significance is informed

by Prop 4. To motivate this question, first observe that one consequence of Prop. 3 is that there seem

to be two classes of non-Hausdorff manifolds: ones, likeM with an “additional” p, whose algebra of

smooth functions is isomorphic to that of a Hausdorff manifold; and ones, like the example in the

proof of Prop. 3, whose algebra is not.

There is another property shared by some, but not all, non-Hausdorff manifolds that has

sometimes been used to classify them. This is the property of admitting bifurcating curves, as first

introduced by Hajicek (1971).

Definition 5 (Bifurcating Curves, Hajicek (1971)). AmanifoldM has a bifurcating curve iff there exist

(smooth) curves γi : [0, 1] →M for i = 1, 2 and some t ∈ (0, 1] such that γ1(s) = γ2(s) for all s < t

and yet γi(s) 6= γ(s) for all s ≥ t.

A manifold has a bifurcating curve iff there exists two curves that agree up to a point, and

disagree for all subsequent points including this point. Whether a non-Hausdorff manifold contains

21See Nguyen et al. (2020) and Bradley and Weatherall (2022) for a recent discussion about the significance of
forgetting stuff.
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bifurcating curves or not can be seen as a test for its physical reasonableness. This is because

bifurcating (timelike) curves reflect a kind of indeterminism: a particle traversing such a curve, upon

reaching the bifurcation point, could equally well continue in either of two (or more) directions,

with nothing in the structure of spacetime distinguishing those possible continuations from one

another. The thought, then, is that insofar as it is this sort of branching that makes (some)

non-Hausdorff manifolds seem “unphysical”, then those non-Hausdorff spaces that are free of

bifurcating curves may be physically reasonable after all (c.f. Manchak, 2020).

All of the examples of non-Hausdorffmanifolds considered thus far in the present paper do admit

bifurcating curves.22 Since we have seen examples of both detectably non-Hausdorff manifolds and

non-detectably-non-Hausdorff manifolds, it follows that admitting bifurcating curves can be neither

necessary nor sufficient for detectability. Butwhat is not clear is howdetectability relates to the absence

of bifurcating curves. That is: are there non-Hausdorff manifolds with no bifurcating curves that are

detectably non-Hausdorff? Are all such manifolds detectably non-Hausdorff?

We propose the following conjecture.

Conjecture 2. There exist detectably non-Hausdorff manifolds with no bifurcating curves.

We suggest that the classic example ofMisner spacetimewith two extensions (Hawking and Ellis,

1973, pp. 173-4) is a likely candidate for a non-Hausdorff manifold that is free of bifurcating curves,

but whose algebra of smooth functions has no Hausdorff representation. However, we have not been

able to show this. We also think it is more likely than not that all non-Hausdorff manifolds without

bifurcating curves are detectably non-Hausdorff.

Suppose this conjecture holds. We would then have a (at least) tripartite division of

non-Hausdorff manifolds. On one extreme, there would be non-detectable non-Hausdorff

manifolds. These would exhibit the most mild non-Hausdorff flavors. (This is so even though some

of them have bifurcating curves!) One might reasonably argue either that considering such

manifolds is harmless; or one might argue that they are otiose because they introduce additional

structure that makes no difference to the empirical structure of the theory. But in both cases, the

non-Hausdorff character is highly localized, and arguably eliminable. Indeed, the algebraic

22For the manifold with an “additional” p, consider any curve whose endpoint is p and observe that there is another
curve agreeing with it everywhere except that its endpoint is p′. That the example in the proof of Prop. 3 exhibits such
curves, meanwhile, is essential to the proof.
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relationalist might even argue that expanding the space of models of GR to include non-detectable

non-Hausdorff manifolds would not truly change the space of physical possibilities contemplated by

the theory at all, insofar as the physical significance of a manifold is exhausted by the field

configurations it supports.

On the other extreme, we would have detectably non-Hausdorff manifolds with bifurcating

curves. Admitting these manifolds to the space of physical possibility would carry significant costs,

such as failures of determinism for particles following the curves that bifurcate. Moreover, these

pathological possibilities would be manifest in the algebra of smooth fields on the manifold.

But we would also have another class of non-Hausdorff spacetimes, ones that do not admit such

bifurcating curves, but which nonetheless have genuinely novel non-Hausdorff behavior, as reflected

in their associated algebras of smooth functions. We do not have a view regarding whether these

should count as “physically reasonable”; indeed, we are not even confident if they exist. But it would

certainly be of interest to settle this issue and explore the properties of such manifolds, if they do exist.

On the other hand, if the conjecture above is false, and it turns out that admitting bifurcating

curves is necessary (but not sufficient) for detectability, then non-Hausdorff manifolds would have

considerably less interest: either they have the same physical significance as some (unique) Hausdorff

manifold; or else they admit unphysical features that should only be accepted under strong empirical

pressure.

Table 1 summarizes the situation.

R Misner Spacetime
withTwoExtensions

R ∪ {p} Branching R

Hausdorff? Yes No No No
Free of Bifurcating
Curves?

Yes Yes No No

Shares Algebra of
Smooth Functions with
a Hausdorff Manifold?

Yes ? Yes No

Table 1: A tripartite hierarchy of not-necessarily-Hausdorff manifolds.
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6 Conclusion

This paper has considered whether the duality between smooth manifolds and algebras of smooth

functions thereon – and, by extension, the duality between relativistic spacetimes and Einstein

algebras – generalizes to the not-necessarily-Hausdorff case. We found that for

not-necessarily-Hausdorff manifolds, it is not the case that if two manifolds have isomorphic

algebras of smooth functions, then the manifolds must be diffeomorphic. However, diffeomorphic

not-necessarily-Hausdorff manifolds always have isomorphic algebras of smooth functions.

We then showed that there exist non-Hausdorff manifolds whose algebras of smooth functions

are not isomorphic to that of anyHausdorffmanifold. It follows that the algebras associatedwith non-

Hausdorff manifolds are not necessarily complete, geometric, and smooth in the sense of Nestruev

(2002); thus, expanding the collection of relativistic spacetimes to include ones on not-necessarily-

Hausdorff manifolds would lead to a corresponding expansion of the collection of Einstein algebras.

Some non-Hausdorff manifolds exhibit genuinely novel behavior, as viewed from their algebras of

smooth functions.

But not all of them do. Once we consider not-necessarily-Hausdorff manifolds, each smooth

algebra of functions on such manifolds is associated with a collection of non-diffeomorphic

manifolds. Thus, one can see the passage from not-necessarily-Hausdorff manifolds to algebras of

smooth functions as taking equivalence classes of non-diffeomorphic manifolds. This idea is

reflected in the fact that the natural functor, analogous to the one analyzed by Rosenstock et al.

(2015), from a certain category of not-necessarily-Hausdorff manifolds to a corresponding category

of smooth algebras fails to be full (and faithful). Thus, there is a sense in which the algebraic

approach posits less structure than the geometric approach in the not-necessarily-Hausdorff

context. If the empirical content of not-necessarily-Hausdorff GR is exhausted by the algebras of

smooth functions on spacetimes, as apparently is the case for standard GR, then

not-necessarily-Hausdorff relativistic spacetimes have excess structure.

Finally, we posed a question about the relationship between our results and the existence of

bifurcating curves; and we posed a conjecture that, if true, would establish a hierarchy of degrees of

non-Hausdorff behavior.

We will conclude with some brief reflections on the philosophical significance of the arguments
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here. Once again, perhaps the most important takeaway is that once we move to not-necessarily-

Hausdorff manifolds, something like Earman’s original picture of the relationship between manifold-

based “substantivalist” models and algebra-based “relationalist” models of GR is realized after all, in

two ways. First, the manifold approach now seems to require an interpretation on which spacetime

points are ontologically prior to, and independent of, configurations of matter, in the strong sense

that there can be points that differ from one another, i.e., are distinct individuals, but be such that

those differences cannot be reflected in any difference in field valuations. Matter configurations cannot

detect the fact that these points are distinct. It is hard tomake sense of spacetime points in this context

other than by adopting a version of substantivalism. Second, conversely, algebras in this context have

less structure than manifolds, and so one can excise structure by moving from a geometric formulation

to an algebraic one. Thus, we recover a sense in which the “relationalist” algebraic approach is more

structurally parsimonious than the “substantivalist” geometric approach.

It is worth reflecting on how different the substantivalism-relationalism debate looks when

viewed from the present perspective, as compared to how that debate has unfolded in the context of

GR since the work of Friedman (1983), Field (1984), Earman (1986), Earman and Norton (1987),

and other giants of the last quarter of the 20th century. To see the point most starkly, consider that

it is tempting to call the version of substantivalism currently under consideration “manifold

substantivalism”. But that expression would not be appropriate given the literature, since “manifold

substantivalism” as understood by Earman and Norton (1987) denies what is called “Leibniz

equivalence,” which claims that isometric spacetimes represent the same physical possibilities. The

form of substantivalism under consideration here, by contrast, can fully embrace “Leibniz

equivalence”. Since Earman and Norton (1987, 522) famously argue that one must either deny

Leibniz equivalence or deny substantivalism, the form of substantivalism under consideration here

would not count for them as a substantivalist theory at all! This is so despite the fact that it endorses

the claim that spacetime points are individuals whose existence is independent of possible matter

configurations.

These considerations suggest a different focus for the debate between the substantivalist and

relationalist, concerning whether it makes sense to posit additional “places” in space and time, even

if those places cannot be registered, even in principle, in the space of possible matter configurations.
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The substantivalist, here, would say “yes”; the relationalist “no”.

Another takeaway is that we now have yet another example of how, by expanding the possibility

space of GR, we can no longer take for granted previous results we relied on (c.f. Manchak (2021)).

The duality between relativistic spacetimes and Einstein’s algebra is only one of the many results

that can fail in not-necessarily-Hausdorff spaces. Perhaps most interestingly, the present case seems

to be an example in (non-quantum) physics where the results that fail matter for plausible

interpretations of the theory. Indeed, expanding the space of possible models changes the options

for interpreting structures of our actual world. Suppose we adopt the prima facie plausible principle

that mathematical structures should be interpreted uniformly across the models of a theory. This

principle of uniform interpretation would suggest that if non-Hausdorff spacetimes are possible,

then insofar as they do not support deflationism, we have to change our strategies for interpreting

spacetime points in all models of the theory—including ones representing our actual world. Such

action-at-a-distance in modal space is common in quantum theories, where there is a close

relationship between the determinable properties and the space of (all) possible states. But it is more

difficult to think of similar examples in classical physics.

These considerations, taken together, suggest a novel argument for relationalism—or, at least,

for algebraicism. In the not-necessarily-Hausdorff case, by adopting the principle of uniform

interpretation, the geometric approach suggests a non-deflationary, substantivalist interpretation of

spacetime points, with excess structure as compared to the algebraic approach. Thus parsimony

considerations would advise adopting an alebgraic-relationalist view. While one is not forced to that

position by the same considerations in standard (Hausdorff ) GR, one might argue that parsimony

considerations should take into account not just the specific theory under considerations, but also

other “closeby” theories. For instance: one might argue that to properly understand Newtonian

gravitation, one should consider not only the theory as classically conceived, but also in relation to

other theories, such as GR or teleparallel gravity. The fact that for “small” variations on standard

GR, the duality between GR and Einstein algebras breaks down, then, might be taken as evidence

that in general algebraic-relationalist theories are more parsimonious than substantivalist-geometric

ones, and thus one should in general prefer the algebraic variants, even in the special cases, such as

Hausdorff GR, where they coincide.
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Of course, onemight reject the arguments justmade, perhaps by rejecting the principle of uniform

interpretation that we have advanced. For instance, Ruetsche (2011) argues against the viability of

what she calls “pristine interpretations” for some physical theories, where a pristine interpretation is

one that applies uniformly across all possible applications. But from that perspective, the results above

are no less interesting, since they offer a novel example of a case where onemight prefer an “adulterated

interpertation” of a (non-quantum) theory.
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Appendix: Proofs of Propositions
In what follows, we adopt conventions and defintions from (Malament, 2012, §1.1).

Lemma 1 (N, C ′) as just defined [in Section 3] is a smooth, non-Hausdorff manifold. Moreover, it
is second countable if (M, C) is.

Proof. Recall that we defined C ′ as the collection of all n−charts on N compatible with both C and
all mirror charts onN . We first show that this set is non-empty, by showing that the elements of the
collections consisting of C and the collection of mirror charts are all pairwise compatible. Since C is an
atlas, its elements are pairwise compatible by construction. So we have two other cases to establish:
(1) that each mirror chart is compatible with each chart in C; and (2) that mirror charts are pairwise
compatible. We consider these in turn.

1. Let (U1, φ1) be amirror chart and let (U2, φ2) be in C. Then p 6∈ U1 and there exists an-chart,
(U,φ) in C, for which (U1, φ1) mirrors. We know that (U,φ) and (U2, φ2) are compatible
because (M, C) is a n-manifold. Suppose first that p ∈ U2. Thenφ1[U1∩U2] = φ(U ∩U2)\
{φ(p)} andφ2[U1∩U2] = φ2(U ∩U2)\{φ2(p)} are both open; φ1 ◦φ−1

2 : φ2[U1∩U2] →
R2 is the same map as φ ◦ φ−1

2 : φ2[(U ∩ U2) \ {p}] → R2, which is smooth, and for
similar reasons φ2 ◦ φ−1

1 : φ1[U1 ∩ U2] → R2 is smooth. So (U1, φ1) and (U2, φ2) are
compatible. No suppose p 6∈ U2. Then U1 ∩ U2 = U ∩ U2, φ1(U1 ∩ U2) = φ(U ∩ U2),
and φ2(U1 ∩ U2) = φ2(U ∩ U2). Because (U,φ) and (U2, φ2) are compatible, (U1, φ1) and
(U2, φ2) are compatible.

2. Now suppose (U1, φ1) and (U2, φ2) are both mirror charts. In this case, p′ ∈ U1 ∩ U2; and
there exist n-charts (Ũ1, φ̃1), (Ũ2, φ̃2) ∈ C that mirror (U1, φ1) and (U2, φ2), respectively.
Now φ1[U1 ∩U2] = φ̃1[Ũ1 ∩ Ũ2] and φ2[U1 ∩U2] = φ̃2[Ũ1 ∩ Ũ2] are open, and φ1 ◦φ−1

2 =
φ̃1 ◦ φ̃2

−1 and φ2 ◦ φ−1
1 = φ̃2 ◦ φ̃1

−1 are smooth. So (U1, φ1) and (U2, φ2) are compatible.

By construction, C ′ is also maximal. Thus, (N, C ′) is a smooth, not-necessarily-Hausdorff manifold.
It remains to show that (N, C ′) is in fact non-Hausdorff. To do so, we first show that C ′ consists

only ofn-charts in C and their mirrorn-charts; there are no additionaln−charts compatible with this
set.

Suppose, to the contrary, that there is some n-chart (O,ψ) that is compatible with every n-chart
in C and every mirror n-chart, but is not itself in C or a mirror n−chart to one in C. It follows that
O 6⊆M , since (M, C) is a manifold, and by the maximality of C, ifO ⊆M and (O,ψ) is compatible
with every chart in C, it would be in C already. Thus p′ ∈ O. Moreover, p /∈ O. To see this, suppose
to the contrary that p ∈ O. Then, since ψ is injective, ψ(p) 6= ψ(p′). It would follow that there
exists δ > 0 such that p 6∈ Bδ(ψ(p

′)). Now choose any n-chart (U,φ) ∈ C with p ∈ U and its
mirror n-chart (U ′, φ′). By assumption, (O,ψ) must be compatible with both (U,φ) and (U ′, φ′);
but this is impossible, sinceφ◦ψ−1 is discontinuous at p ifφ′◦ψ−1 is smooth. So p ∈ O, as claimed.
Finally, observe that since (O,ψ) is compatible with all n-charts in C and their mirror charts, (Õ, ψ̃),
defined by Õ = (O \ {p′}) ∪ {p}, ψ̃(q) = ψ(q) for q 6= p and ψ̃(p) = ψ(p′), is also compatible
with all such n−charts, by the arguments presented above. In particular, (Õ, ψ̃) is compatible with
all n-charts in C, so (O,ψ) would be already contained in C. Thus (O,ψ) is a mirror n−chart to a
chart in C.

Now observe that, since C ′ consists only of elements of C and their mirror n-charts, no pair of
n-charts in C ′ can separate p from p′. This is because by construction, every chart containing p′ in its
domain has non-vanishing intersection with every open set containing p. It follows that there could
be no open sets in the manifold topology that separate p from p′. So (N, C ′) is non-Hausdorff.
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Finally, we show that (N, C ′) is second-countable if (M, C) is. To see this, suppose that
{(On}n∈N is a countable base for (M, C). Now let I ⊆ N be the collection of indices such that
p ∈ Oi for each i ∈ I . We then define a new collection of open sets, {Õi}i∈I , where for each i,
Õi = (Oi \ {p}) ∪ {p′}. Then {(On}n∈N ∪ {Õi}i∈I is a countable base for (N, C ′).

Lemma 2 If p1 and p2 are witness points of some smooth, non-Hausdorff manifoldM , then for any
smooth scalar field f :M → R, f(p1) = f(p2).

Proof. Suppose, on the contrary, that for two witness points p1, p2 ∈M , there exists a smooth scalar
field f :M → R, f(p1) 6= f(p2). Then, there exists ϵ > 0 such that |f(p1)− f(p2)| > 2ϵ.

Let (U1, φ1) and (U2, φ2) be two n-charts ofM with p1 ∈ U1 and p2 ∈ U2. Since f is smooth,
f ◦ φ−1

1 and f ◦ φ−1
2 are both smooth. It follows that there exists open sets O1 ∈ φ1[U1] and

O2 ∈ φ2[U2] with φ1(p1) ∈ O1 and φ2(p2) ∈ O2 such that for all q1 ∈ O1 and q2 ∈ O2,
|f ◦ φ−1

1 (q1) − f(p1)| < ϵ and |f ◦ φ−1
2 (q2) − f(p2)| < ϵ. Now, since O1 and O2 are open,

(φ−1
1 [O1], φ1) and (φ−1

2 [O2], φ2) are both n-charts. It follows that φ−1
1 [O1] and φ−1

2 [O2] are both
open, with p1 ∈ φ−1

1 [O1] and p2 ∈ φ−1
2 [O2]. Now since p1, p2 are witness points, φ−1

1 [O1] ∩
φ−1
2 [O2] is non-empty. Let q ∈ φ−1

1 [O1] ∩ φ−1
2 [O2]. We have both |f(q) − f(p1)| < ϵ and

|f(q)− f(p2)| < ϵ. But |f(p1)− f(p2)| > 2ϵ, which is a contradiction.

Lemma3Let (M, C) be a smooth, Hausdorffn−manifold, let p ∈M be some point, and let (N, C ′)
beM with an “additional” p. Then (M, C) and (N, C ′) are not diffeomorphic.

Proof. Suppose, for contradiction, that there exists a diffeomorphism α : N →M . Then because α
is injective, α(p) 6= α(p′). SinceM is Hausdorff, there exist n−charts (U1, φ1) and (U2, φ2) in C
such that α(p) ∈ U1 and α(p′) ∈ U2 and U1 ∩ U2 = ∅. Now, define the following neighborhood of
φ1(α(p)) contained in φ1[U1]: Bϵ(φ1(α(p))) : {x : ‖x − φ1(α(p))‖ < ϵ} for some appropriate
ϵ > 0. Then select a smooth “bump function” g : Rn → R (where n is the dimension of N )
centered at φ1(α(p)) such that g(φ1(α(p)) = 1 and g = 0 outside of Bϵ(φ1(α(p1))). Now define
f :M → R such that f = g ◦ φ1 for all points in U1 and f = 0 outside of U1. f is smooth because
g is smooth and the n-charts are compatible. But then f ◦ α : N → R cannot be smooth. This is
because according to Lemma 2 all smooth functions from N → R assign the same value to a pair
of witness points, but 1 = f ◦ α(p) 6= f ◦ α(p′) = 0. So α is not smooth, and a fortiori, not a
diffeomorphism.

Lemma 4 Let (M, C) be a smooth, not-necessarily-Hausdorff manifold and let (N, C ′) be M with
some “additional” point p. Then C∞(M) ∼= C∞(N).

Proof. We establish the isomorphism explicitly. For every smooth map f in C∞(M), define a map
f ′ : N → R by setting f ′(q) = f(q) for q ∈ M and f ′(p′) = f(p). We first show that S, the
collection of such f ′ for all f ∈ C∞(M), is an algebra. Because all operations are defined pointwise,
the only point to check is p′; but that the algebraic properties hold at p′ is immediately inherited from
the fact that they hold at p. Furthermore, elements of S are smooth maps fromN to R. To see this,
pick an arbitrary n-chart (U,φ) in C ′. If p′ 6∈ U , then f ′ ◦ φ−1 = f ◦ φ−1 is smooth. If p′ ∈ U ,
then f ′ ◦ φ−1 = f ◦ φ̃−1 is smooth, where (Ũ , φ̃) is the n-chart in C of which (U,φ) is its mirror
n-chart. Finally, we show that S = C∞(N). To see this, suppose, on the contrary, that there exists
a smooth map h : N → R such that h 6∈ S. This means either that h(p′) 6= h(p) or else hN\{p′} is
not a smooth map on (M, C). But the first cannot hold due to Lemma 2; and the second cannot hold
because any smooth map on a manifold, when restricted to an open subset, determines a smooth map
on that subset with its inherited manifold structure. Therefore, S = C∞(N).

Finally, it is easy to verify that the map g : f 7→ f ′ for all f ∈ C∞(M) is an isomorphism
between C∞(M) and C∞(N).
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Proposition 2 If not-necessarily-Hausdorff manifoldsM andN are diffeomorphic, thenC∞(M) ∼=
C∞(N).

Proof. Suppose thatM andN are diffeomorphic. Then there exists a diffeomorphism α :M → N .
From this we know that α and its inverse α−1 are both smooth.

Nowdefine α̃ : C∞(N) → C∞(M) as follows. For any smoothmapπ : N → R, α̃(π) = π◦α.
The map α̃ is well defined because, first, for all π inC∞(N), π ◦α is an element ofC∞(M) because
α is also smooth. Second, if π1 = π2, then π1 ◦ α = π2 ◦ α. This is because α is a function.

Furthermore, α̃ admits an inverse α̃−1 : C∞(M) → C∞(N) defined as follows. For any smooth
map χ : M → R, α̃−1(χ) = χ ◦ α−1. α̃g−1 is well-defined for analogous reasons. α̃ and α̃−1 are
inverses because for any smooth map π ∈ C∞(N), α̃−1(α̃(π)) = π ◦ α ◦ α−1 = π.

It now suffices to show that α̃ and α̃−1 are homomorphisms. We first show that α̃ preserves
addition. For any p ∈M and π1, π2 ∈ C∞(N), g(π1 + π2)(p) = (π1 + π2) ◦α(p) = π1 ◦α(p)+
π2 ◦ α(p) = α̃(π1)(p) + α̃(π2)(p). The second equality holds because α(p) is a point inN and we
invoke the additive structure inC∞(N). We then show that α̃ preserves scalarmultiplication. For any
p ∈M , a ∈ R, and π ∈ C∞(N), α̃(aπ)(p) = (aπ)◦α(p) = a(π◦α(p)) = aα̃(π)(p). Again, the
second equality holds because α(p) is a point inN and we invoke the scalar multiplication structure
inC∞(N). Finally, we show that α̃ preserves multiplication. For any p ∈M and π1, π2 ∈ C∞(N),
α̃(π1 · π2)(p) = (π1 · π2) ◦ α(p) = (π1 ◦ α(p)) · (π2 ◦ α(p)) = α̃(π1)(p) · α̃(π2)(p). Like before,
the second equality holds because α(p) is a point inN and we invoke the multiplication structure in
C∞(N).

Identical arguments show that α̃−1 is a homomorphism.

Proposition3There exists a non-HausdorffmanifoldM whose algebra of smooth functionsC∞(M)
is not isomorphic to that of any Hausdorff manifold.

Proof. Note that it suffices to identify a (non-Hausdorff, connected) n−manifoldM and a smooth
function φ on M such that no function with the algebraic properties of φ lie in C∞(N) for any
connected Hausdorff n−manifoldN . (We can restrict attention to connected manifolds because no
disconnectedmanifold has an algebra of smooth functions isomorphic to that of a connectedmanifold.
Likewise, manifolds of different dimension have non-isomorphic algebras.) Consider, asM , the one-
dimensional non-Hausdorff “branchingmanifold”, i.e., themanifold constructed by taking two copies
of R and identifying all points x < 0, but not identifying points x ≥ 0. Now consider a smooth
function φ on M with the following two properties: first, daφ is nowhere vanishing; and second,
φ has two zeros not at M ’s witness points. (Such a function exists: choose any function φ′ on R,
with standard coordinates, that is everywhere increasing in the +x direction, and which has a zero
at some point x > 0; and let φ be the corresponding function on M . Then φ will vanish twice,
once on each fork, and it will have nowhere vanishing first derivative relative to any non-vanish vector
field.) Such a function would lie in two distinct maximal ideals ofC∞(M) even though its derivative
is nowhere vanishing and thus it is strictly monotonically increasing in one direction. But clearly no
function with those (algebraic) properties can exist on any connected Hausdorff manifold (i.e., up to
diffeomorphism, the line or circle), by the mean value theorem.

Proposition 4 The functor F :nnHMan→nnHAlg as defined above is neither full nor faithful.

Proof. To show that the functor fails to be full, it is sufficient to consider any arbitrary Hausdorff
manifold M , any point p ∈ M , and the manifold N , which is M with an “additional” p. By
Lemmas 3 and 4, M and N are not diffeomorphic, and so there is no arrow f : M → N . But
F (M) = F (N) and so 1F (M) ∈ hom(F (M), F (N)). Thus the action of F from hom(M,N) to
hom(F (N), F (M)) fails to be surjective. So F is not full.
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To show that the functor is not faithful, meanwhile, consider the manifoldQ, which we defined
as R4 with an “additional” p; and consider the action of F on the diffeomorphism β : Q → Q that
takes p to the additional point p′. That this is a diffeomorphism can be see by considering that it is
bijective, and that both it and its inverse, when composed with any smooth function f : Q → R,
is smooth, since by Lemma 2, f ◦ β = f ◦ β−1 = f . But now observe that, by the same fact,
F (β) = F (1Q) = 1F (Q), since for every f ∈ F (Q), β̃(f) = f . Thus the action of F from
hom(Q,Q) to hom(F (Q), F (Q)) fails to be injective. So F is not faithful.
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