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Abstract. Various conceptual approaches to the notion of implementation can currently be traced 
in the foundations of computing. This paper articulates a unified theory of implementation based on 
agential and use-based notions of physical computation. Two hitherto largely independently treated 
notions of implementation are juxtaposed: type-(A), dealing with the notion of correctness through 
the ascription of teleological functions to ‘computational artifacts’; and type-(B), concerned with 
bridging the abstract/concrete dichotomy for providing an account of concrete computation. While 
little research has been conducted on their relationship, my analysis shows that their scope overlaps 
at the abstract-physical interface. Considering recent developments in the respective discourses, I 
show that both accounts may mutually enrich each other considerably through unification. 
Specifically, I submit that (A) and (B) can be unified by appealing to the conceptual machinery of 
use-based accounts of computation informed by the literature on material models and scientific 
representation. On this view, agents use putative computational systems as epistemic tools by 
imputing mathematical functions and ascribing teleological functions.  
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1. Introduction 

It sounds like a cliché, but the implementation of computation is ubiquitous. Not only are we 

surrounded by everyday devices such as laptops and smartphones that run our software, but 

computation is also at the core of foundational questions in computer science, robotics, AI, and 

cognitive science. Despite its ubiquity in computer science and adjacent fields, the notion of 

implementation is typically left informal. It is often associated with the realization, instantiation, or 

concretization of a plan or idea, relating two objects or domains with one another.1 Considering the 

rapid developments in theory, technology, and areas of application of computing, various 

philosophical studies conceptually reconstructed what constitutes the implementation of 

computation in their respective fields. Confronted with a plurality of approaches and theories of 

implementation, one may wonder – are there common assumptions and systematic overlaps? 

Accordingly, this paper concerns the relationship between the arguably two most prominent 

clusters of implementations that have emerged over the last few decades. For tractability, I refer to 

these views as type-(A) implementation (with ‘(A)’ for ascription/artifact) and type-(B) implementation 

(with ‘(B)’ for bridging). 

Type-(A) implementation emerged from the concerns about the verification and correctness of 

so-called computational artifacts like computer programs.2 Much of the corresponding discourse 

 
1 Overall, there are various (pre-theoretic) understandings of ‘implementation’, even occurring in the domains of art, 
language or other affairs (Rappaport 2005). 
2 After the fiercely held verification debate in the late 1980s and 1990s in the communications of the ACM, it was apparent 
that the field would benefit from a philosophical underpinning of the notion of verification and correctness. For a 
collection of some of the key contributions to verification see Colburn et al. (1993). For a critical assessment of the 
debate see McKenzie (2004, 197-218). 
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is couched in terms of function ascription (in the teleological sense) and pertains to the relation 

between different abstract levels or structures. Type-(B) implementation, on the other hand, 

concerns the nature of computation qua physical process in material systems (including both natural 

and artificial ones). This notion is paramount to determine if systems like brains or even the whole 

universe compute. Virtually all (B)-accounts share the idea that sequences of formal/abstract 

computational states map to the evolution of a physical real-world system. One of the main 

differences between type-(A) and (B) are their fundamentally different underlying equivalence 

relations. According to the former, implementation is a relation that links abstract objects to other 

abstract objects or structures; the latter connects abstract objects with physical systems and thus 

has similarities to notorious problems of applied mathematics and scientific representation. In 

other words, neither type-(A), nor type-(B) discourse has fully embraced each other’s domains of 

application. Yet to address fundamental questions such as  

How do (human) agents use and manipulate physical systems for computation? Is there a principled 
difference between mere computation and program execution? To what extent does type-(A) 
implementation apply to non-designed systems? How can we judge correct physical execution and 
usage of programs from incorrect ones? What kinds of things are programs – are they abstract or 
concrete? 

one requires the combined insights of both type-(A) and type(B) implementation. That’s why future 

research in computing would benefit from a theory of implementation incorporating the main 

insights of the two notions of implementation. I take this as a motivation to engage in such a 

project. 

Subsequently, the paper unfolds like so: The main goal of this paper is to shed light on these 

questions by juxtaposing type-(A) and (B) implementation. For so doing, I first take a closer look 

at type-(A) implementation in section two. Section three then introduces type-(B) implementation 

by scrutinizing candidate solutions to the so-called Problem of Implementation and their relation to the 

philosophy of applied mathematics. Thereafter, in section four, I juxtapose both types of 

implementations by focusing on their respective most salient features. Whilst at first sight applying 

to different domains of computing and having different purposes, I claim that they are in fact 

conceptually compatible.  In section five, I suggest that the unification of the previously introduced 

notions of implementation is possible by relying on the conceptual machinery of material models 

and scientific representation. Based on these insights, the resulting synthesis suggests a view 

according to which putative computational systems are epistemic tools, i.e., material artifacts used by 

agents for computation. When using material artifacts (akin to material scientific models) for 

computation, agents impute mathematical functions and ascribe teleological functions to engage in 

a form of object-based reasoning. I shall refer to this view as, a unified theory of agential implementation 

(UTAI). Lastly, I conclude. 
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2 Type-(A) Implementation 

2.1 A brief introduction to Implementation in Computer Science 

The Oxford Dictionary of Computer Science provides a useful characterization of implementation to 

start with  

Implementation: “[t]he activity of proceeding from a given design of a system to a working 

version (known also as an implementation) of that system, or the specific way in which some part 

of a system is made to fulfil its function.”. 

The relation between design and its working version may be applied to various so-called Levels of 

Abstraction (LoA) Floridi (2008), Primiero (2019). As such, application in computation is wide-

ranging and comprises examples such as ‘the implementation of an algorithm in a high-level 

programming language’, or ‘the implementation of machine code instructions in a real-world 

computer’. Such ‘level-talk’ is frequent in computer science – a concrete textbook example of 

various implementation stages of a program is pictured in Fig. 1. Instances like these may be 

generalized and accordingly culminate in a view as depicted under label (b) in Fig. 1: a (stored-

program digital) computing system is typically composed of various LoA forming a computational 

hierarchy.3  

Fig. 1: Different depictions of the computational hierarchy. (a) A concrete instance of the different 
LoA and stages of implementation of a program written in C (example adapted from Patterson and 
Hennessy (2014, 15)). (b) Generalized image of typical LoA of a computer program. 

At the bottom, one finds the physical computing system. The computing system is constituted 

of various material components and their specific arrangement. If set up and configured correctly, 

the system may execute a predetermined series of concrete computations. At the top of the 

hierarchy, one may find the most abstract level, often thought to be the (formal) specification of a 

program. ‘Abstract’, in this context, refers to the degree to which language features are divorced 

from any specific hardware details (Scott 2009, 111). In this sense, higher LoA entail fewer details 

about the underlying computational system. In the same vein, the process of abstraction can, 

 
3 See Hennessy and Patterson (2014, Ch. 2) for a fully worked-out textbook example. See also Scott (2009).  
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roughly put, thus be understood as the inverse of the operation of implementation. At the same 

time, the computational objects corresponding to the different LoA may be abstract in a second 

sense though. Viz., they may be referred to as abstract – as opposed to being concrete, material, or 

physical – since as strings of symbols they have no causal relations acting upon them. This second 

sense of abstraction becomes relevant at the abstract-physical interface. 

Importantly, what follows from this brief discussion is this: Whereas higher LoA are related by 

what might be called symbolic implementation, the last implementation stage is qualitatively 

different. For instance, the program written in C in Fig. 1 is a particular symbol structure that is 

translated (i.e., compiled) into assembly language.4 When descending the computational hierarchy 

down to machine code, implementation is the relation that obtains between different abstract 

strings of symbols.   Ultimately, at the abstract-physical interface, a different kind of relation is 

required – one that relates abstracta with concrete states of the putative computational system.  In 

what follows, I take a closer look at the philosophical characterizations of these implementation 

relations.  

 

2.2 Philosophical Characterizations 

Perhaps symptomatic for a more general tendency of computer science, type-(A) implementation 

mostly focuses on the relation of upper LoA. Here, one central aim is to determine the correctness 

of the various implementation stages.  To meet the normative notion of correctness, two conditions 

are generally called for. On the one hand, a formal specification for the program and on the other hand 

a formal definition of the semantics of the programming language. A program is then demonstrated 

to be correct if there is a formal proof that the semantics of a program is consistent with the 

program’s specification. Arguably, the first philosophical account in this respect is due to 

Rappaport (1999). He describes implementation as semantic interpretation (1999, 2005),  

Implementation as semantic interpretation: An object is an implementation of some 

syntactic domain A in medium M iff it is a semantic interpretation of a model of A, 

i.e., a relation between semantics and syntax of different LoA. Rappaport claims that any 

correspondence between two domains where one is used to grasp the other is ‘semantic 

correspondence’.  

Rappaport’s approach is supposed to allow for both mere ‘translations’ of one programming 

language into another (symbolic implementation) and even for the qualitatively different case at the 

abstract-physical interface (i.e., the relation between the bottom layers of the computational 

hierarchy). A program written in a high-level programming language may not be immediately 

implemented in a physical system then, but the so-called ‘correspondence continuum’ is supposed 

to ensure their connection. The program must go through a series of translation processes, where 

each time a level that previously acted as a semantic domain then turns into a syntactic for another 

level below. At last, the ‘implementation cascade’ bottoms out at the physical level, which then 

provides the semantic domain for all the previous levels. 

 
4 Alternatively, programs can also be translated through an interpreter, such that the source code is directly executed 
(line by line), without previously having been compiled into machine code.   

javascript:void(0)
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However, concerns were voiced about the way Rappaport employs his notion of semantics as 

a given, raising questions about whether an independent semantic account is required.5 While the 

notion of semantic interpretation adequately describes that implementation requires semantics, it 

lacks the rigor to describe how these semantic features come about. The semantic approach does 

not explain how the physical level obtains its semantic capacities to act as the bedrock for the entire 

computational hierarchy. Therefore, two improved accounts were suggested.  

First, to account for an independent and external account of semantics, Turner turned to the 

technical-artifact-literature and adopted the notion of function ascription (2012, 2014, 2018). 

Originally, the conception of technical artifacts and their functions is supposed to cover 

intentionally produced everyday objects like screwdrivers, coffee-makers, and trains (see, for 

instance, Kroes 2012). They are said to have a ‘dual nature’: Next to their respective 

causal/structural properties, this class of artifacts bears normative or teleological features. The 

function of a coffee maker is to brew coffee; a broken or malfunctioning coffee maker does not 

work correctly. Only when ‘the how’ (the structural properties) realizes ‘the what’ (functional 

properties) in the right way, can one claim to have a properly working coffee machine. By thus 

transposing the core insights of the technical-artifacts framework to computational entities, the 

conception of computational artifacts was born (Turner 2018). Accordingly, computational artifacts 

like programs exhibit a function-structure duality, with 

Implementation as function-structure relation: The relation between specification 

(function) and the structure of the (computational-)artifact.  

Importantly, artifact function here is an intentional notion, derived from the use plan formulated 

by designers. The functions are bestowed to artifacts based on the intentions and desires of human 

agents or an epistemic community.6 In the computing context specifically, it is the intentional 

notion of specifications of programmers that provide criteria for correctness and malfunction.  

Second, following these developments, Primiero (2020) addressed issues with both the 

implementation as semantic interpretation and implementation as function-structure relation. The 

problem with both is that they merely provide an account of implementation for any two 

neighboring levels and not the entire computational hierarchy. For instance, to eventually reach the 

bottom of the hierarchy (the physical computing system), Turner’s version of the computational 

artifact approach relies on repeatedly flipping the function-structure pair; the process must be 

repeated for every level in the computational hierarchy. While the structure-function relation may 

ensure correctness between any two LoA, Primiero argues that the view fails to establish the desired 

transitivity of correctness throughout the entire computational hierarchy (i.e., between more than 

just two LoA). The result is an impoverished characterization of miscomputation.  

For this reason, Primiero advanced a notion of implementation that considers multiple LoA of 

the computational hierarchy, where each LoA is constituted by an epistemological construct and 

ontological domain,  

 
5For a more detailed summary of these arguments see Primiero (2019, 207f) and (Turner&Angius 2020). 
6 The role and nature of functions are a vexing issue. Many theories of function emerged in the context of biological 
traits, but have subsequently inspired accounts of artifact functions. Unlike organisms though, artifacts are 
purposefully created and hence need to account for human intentions. The question is how to balance intentional 
and causal (non-intentional) features. For a short survey of the debate see e.g., (Preston 2018, §2.3); for arguably the 
most detailed account, consult Houke’s and Vermaas’ (2010) ICE-theory (incorporating elements from intentional, 
causal-role, and evolutionist function theories).  
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Implementation as the relation of LoA: An implementation I is a relation of instantiation 

between pairs composed by an epistemological construct E and an ontological domain O 

of a computational artefact. 

The idea of the EO-pairs here is congruent to the function-structure relation, as the epistemological 

levels provide “the structure to understand the behaviour of the ontology” (Primiero 2020, 194). 

Yet, this view of implementation enables a more fine-grained notion of correctness because it 

differentiates between different layers/EO-pairs of the computational hierarchy. Accordingly, one 

may e.g., define notions such as functional correctness or procedural correctness, and a corresponding 

detailed taxonomy of miscomputation (cf. Fresco&Primiero (2013), Primiero et al. (2015), Primiero 

(2019, 211-12)).  

 

3. Type-(B) implementation 

3.1 The Bridging Problem 

The second notion of implementation is, fundamentally different from the previous one. The 

crucial difference of the type-(B) discourse is that we are no longer exclusively in the logico-

mathematical realm. Instead, we are dealing with the relation between mathematical objects (of 

computability theory) and the physical world – a relation raising notorious questions in the 

philosophy of science and applied mathematics (Wigner 1960, Steiner 1998). The characterization 

of physical computation is a special instance of such a relation. I first introduce the general 

problems associated with the relation of mathematical- and physical objects, before shedding light 

on the particular issues of computation (in the next subsection). 

Following Contessa, I refer to the general issue as the bridging problem, “the problem of how to 

bridge the gap between [abstract] models and the world” (2010, 516). Put differently, we need to 

explain the nature and origin of the relation between two ontologically different categories – viz., 

how mathematical objects relate to the physical.   

Typically, such a relation is construed as a mapping relating mathematical and physical 

structures. However, one of the main issues with this ‘mapping view’7 is that ordinary functions 

only obtain between the domains of set-theoretic structures – yet physical objects are not set-

theoretic structures. Thus, without further qualifications, maintaining that morphisms obtain 

between (abstract) mathematical structures and physical objects is not a well-informed option (van 

Fraassen 2008, 237f).  A solution to the bridging problem hence requires overcoming a second 

obstacle. In what follows, I refer to the issue as 

Structure Generation Problem: Explaining how material systems may offer set-

theoretical structures.  

The seemingly intuitive idea that physical systems somehow just bear or instantiate a unique 

structure S is highly contentious because of Newman’s Objection. According to the latter, the mapping 

between a set-theoretic structure and a physical object might be trivialized, since the latter fails to 

display a unique or privileged structure. Defining a set-theoretic structure as an ordered tuple: 

𝑆 =〈D, 𝑅1, 𝑅2, …〉, where D is the domain of the objects xi and Ri are the relations on D, the claim 

 
7 Sometimes when thinking of models and representations in terms of such a formal relation between structures (e.g., 
a mapping), the issue is also referred to as mapping view. (Pincock 2004, Batterman 2010, Bueno & Colyvan 2011). 
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goes that one can always gerrymander D and Ri in such a way that they match an arbitrary structure 

S. For given there are enough n basic objects x1,…, xn in the system (such that the cardinality of 

the corresponding domain is sufficiently large), then “[…] a system of relations between its 

members can be found having any assigned structure compatible with the cardinal number of [S]”, 

(Newman 1928, 140), where S is an arbitrary structure.  

So, in order to generate a suited structure, one needs to engage in two tasks. First, one must 

specify the domain D of objects xi; second one must specify what the relations Ri between these 

objects are. It is wide consensus that both tasks are all but straightforward though. The following 

quote exemplifies the issues. Bueno and Colyvan, for instance, remind us about the challenges 

when trying to determine the elements in a domain D:8  

“Put simply, the world does not come equipped with a set of objects (or nodes or positions) and 
sets of relations on those. These are either constructs of our theories of the world or identified by 
our theories of the world. Even if there is some privileged way of carving up the world into objects 
and relations […], such a carving, it would seem, is delivered by our theories, not by the world itself. 
What we require for the mapping account to get started is something like a pre-theoretic structure 

of the world (or at least a pre-modeling structure of the world).” (Bueno & Colyvan 2011, 347). 

 

3.2 The Problem of Implementation 

When it comes to physical computation, we are confronted with a special instance of the bridging 

problem, the so-called Problem of Implementation. In virtually all cases, physical computation is 

characterized in terms of the mathematical theory of computation and a “mathematics first” 

attitude (Curtis-Trudel 2022), according to which some computational formalism of computability 

theory is the starting point for the definition of physical computation. Simply put, the problem of 

implementation needs to describe how a computational formalism hooks on to the world.  

Let me first have a brief look at computational formalisms. Computational formalisms may be 

defined in a large variety of ways. The computer science literature features at least two main kinds 

of computational formalisms (Turner 2018, 190):9  

1. Programming languages, like C, Python, etc.  

2. Machine Models, like Turing Machines (TM), Finite State Machines (FSM), etc. 

In the following, I use the term ‘model of computation’ Mc for both. Models of computation are 

logico-mathematical formalisms that enable us to encode an abstract sequence of computations 

through a programming language, a machine table, a transition function, and so on. For instance, 

formally, the concept of a Turing Machine can be characterized as a quadruple TM = (Q, ∑, m, δ), 

where Q is a finite set of states q; ∑ is a finite set of symbols; m is the initial state m ∈ Q; δ is a 

transition function that determines the next move δ: (Q × ∑)→( ∑ × {𝐿, 𝑅} × Q ). TM’s transition 

function δ maps from computational states to computational states (De Mol 2021). Put differently, 

 
8 And even if one had successfully determined what constitutes a domain’s objects, there remains the pressing 
problem of the right set of relations Ri among them. As Psillos aptly puts it, “[…] the structure of a domain is a 
relative notion. It depends on, and varies with, the properties and relations that characterize the domain. A domain 
has no inherent structure unless some properties and relations are imposed on it. Or, two classes A and B may be 
structured by relations R and R’ respectively in such a way that they are isomorphic, but they R may be structured by 
relations Q and Q’ in such a way that they are not isomorphic.” (Psillos 2006, 562) 
9 The description of computational formalisms is inspired by a similar presentation in Rescorla (2013).  
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transition functions like δ, or corresponding notions in theoretically equivalent models of 

computation, allow for the encoding of a sequence of computations.  

Now, the basic problem underlying virtually every characterization of physical computation is 

then providing a characterization of how Mc and the computational state transitions described by 

the corresponding transition function δ latch onto physical systems. Accordingly, formal abstract 

computational state transitions need to ‘mirror’ the evolution of the physical states of a material 

system. Often the situation is depicted in a diagram as seen in Fig. 210:   

 

Fig. 2: A typical depiction of the core idea underlying physical computation.  

 

 Subsequently, many scholars working on physical computation agree that there are at least two 

main issues, albeit related, concerning implementation: Not only do they want to demarcate those 

systems which seemingly compute (e.g., laptops and brains) from those which don’t (rocks), they’d 

also like to determine which computation is executed rather than another. Closely following suit 

with (Sprevak 2018 and Ritchie&Piccinini 2018), the problem of implementation concerns:  

COMP The conditions under which a physical system is computing. 
 
IDENT The conditions that specify that a computational system implements one 

computation rather than another. 

On this view, the implementation of a specific computation is constituted by two features. While 

COMP determines that a given physical system is computing, IDENT concerns the question of 

what is computed. Both COMP and IDENT are intertwined in a way that makes it difficult to 

understand the latter without at least some preliminaries of the former. 

 Virtually all potential answers attempt to solve the problem of implementation by adhering to 

an equivalence relation between mathematical structure and physical system in terms of a mapping 

relation. This thought is reflected in the so-called simple mapping account (SMA)11 and was, among 

others, articulated by Putnam (1987). The main idea is based on a simple mapping between abstract 

formalism MC and a somehow given physical structure SC. Accordingly, the SMA postulates that a 

physical computing system SC implements a computation iff:  

 

 

 
10 To the best of my knowledge, one of the first instances in the philosophical literature of this diagram can be found 
in Cummins (1989). 
11 The term was introduced by Godfrey-Smith (2009) and made prominent by Piccinini (2015); note the similarity to 
the ‘mapping view’ in applied mathematics and scientific representation introduced in the previous section.  
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Simple Mapping Account (SMA) 

1. There is a function f mapping the states sj of SC to states of MC, such that 

2. Under f, the physical evolution/state transitions sj→  sj+1 are morphic to the formal state 

transitions mi→  mi+1 of MC (specified by δ), where f(sj)= mi. 

The approach is elegant and appears to straightforwardly capture what’s pictured in Fig. 2; the SMA 

has basically become the key ingredient of all approaches to solving the problem of implementation 

that were to follow.  

 

3.3 Accounts Beyond the Simple Mapping Account 

However, it is widely agreed that the SMA bears two major problems.  First, the SMA is charged 

with trivializing the notion of concrete computation. As pointed out by Copeland (1996), the SMA 

essentially suffers from Newman’s Objection. Given any kind of physical system SC, one may carve 

out the physical states of SC in whichever arbitrary way such that they are morphic to MC. In other 

words, structure is too cheap to come by – any arbitrary computational description (like a hello world 

program written in C) with a sequence of computational states m1→  m2 → …→ mi can be mapped 

on an arbitrary evolution of physical state transitions (of, say, a rock). So, according to the SMA 

every macroscopic object realizes all kinds of computations, a position known as unlimited 

pancomputationalism – an unsatisfying answer to COMP and IDENT. 

Moreover, there is the issue of computational identity IDENT – the question of which of the 

multitude of computational profiles that simultaneously apply to a system is implemented.12 The 

claim goes: Even if there was somehow a unique computational structure to begin with, structure 

alone would fail to deliver an account of basic computational individuation, as one needs extra 

ingredients to discern which computation is carried out.  Frequently, the case is exemplified with a 

system SC implementing logical duals, like a logic gate with the following behavior: 

InputA InputB Output 

5V 5V 5V 

5V 0V 0V 

0V 5V 0V 

0V 0V 0V 

 

Table 1: Logic gate  

 

Under the assignment 0V → F, 5V → T, the truth table (Table 1) of the logic gate corresponds to 

an AND-gate. However, by flipping the labels (0V → T, 5V → F) the same device implements an 

OR-gate. Now, the issue is that the same system appears to simultaneously implement multiple 

computations (conjunction and disjunction) at once. The phenomenon generalizes to many other 

gates and computational systems. Fresco et al (2021) recently called such physical systems multiply 

specificable if they possess at least two logically non-equivalent labeling schemes when using the same 

labels (e.g., “F” and “T”). Consequently, the question arises, which of the two labeling schemes is 

the preferred one? 

 
12 To the best of my knowledge, the problem was first mentioned in Shagrir (2001).  
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In response to the triviality arguments and multiple specifiability most physical 

computation/type-(B) implementation accounts have been trying to impose constraints in the form 

of extra conditions onto the SMA:  

  Extended Mapping Account (EMA) 

1. There is a function f mapping the states sj of SC to states of MC, such that 

2. Under f, the physical evolution/state transitions sj→  sj+1 are morphic to the formal state 

transitions mi→  mi+1 of MC (specified by δ), where f(sj)= mi. 

3. f is constrained by extra conditions.  

Since the formulation of the SMA, a plethora of potential candidate constraints/conditions and 

corresponding accounts have emerged from the discourse of physical computation. A variety of 

different EMAs recognized that the material implication of physical state transitions (SMA’s second 

condition) is too permissive, allowing for too many computational structures. Subsequently, many 

proponents tried to spell out the conditions that allow one to delimit or single out a privileged 

structure. Accordingly, some argued that putative computing systems need to meet the 

condition/constraint of having counterfactual state transitions (Copeland (1996)), i.e., roughly put if 

the system SC had been in a physical state that maps onto mi, it would have evolved into a state that 

maps onto mi+1. Others formulated similar requirements in terms of a suited causal structure 

(Chalmers (1996), Scheutz (1999)) or dispositional theories (Klein 2008). Counterfactual constraints 

ensure that the mapping f applies to all of MC’s potential execution traces and not just, as previously 

the SMA, a single particular one δ(m1,, x) (where x is some input). As such, counterfactual 

constraints are an important feature of type-(B) implementation and I will discuss their relation to 

type-(A) implementation further down below.13  

 

4 Juxtaposing (A) and (B)  

Let me step back here for a moment and assess what we have learned so far.  The previous two 

sections familiarized us with type-(A) and type-(B) implementation. The takeaway is that two largely 

separated discourses aim to characterize implementation:  

Type-(A) implementation: Enriched with semantics, computer scientists may use type-

(A) implementation to evaluate the correctness of computational artifacts by normative 

requirements (i.e., the specification) of the stakeholders (programmers, users) involved.   In 

this context, normative judgments pivot on the notion of teleological function ascription. 

However, since this implementation relation is formulated in terms of the formal and 

deductive methods of symbolic implementation it falls short of adequately responding to 

the bridging problem/problem of implementation and may only apply to upper LoA. 

 
13 One further prominent refinement of the SMA is the mechanistic account of computation (e.g., Milkowski (2013), 
Fresco (2014), Piccinini (2007, 2015)), according to which computation must be implemented in specific 
computational mechanisms. In so far as mechanisms have a causal structure or are said to have counterfactual state 
transitions, the mechanistic account can be interpreted as a refined version of the previous EMAs. Yet other 
approaches focused on answering the problems associated with IDENT (cf. Lee (2020) for an overview). According 
to so-called semantic theories of computation, content is essential to computational states; in other words, 
computation is always about something. Shagrir (2001, 2022), for instance, maintains that such semantic elements 
determine a privileged labeling scheme of whichever computational system at hand. 
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Type-(B) implementation: Directed at the formal characterization of physical 

computation, type-(B) implementation concerns one implementational stage only – the 

abstract-physical interface. The theoretical framework underpinning virtually all 

characterizations of concrete computation is the idea that there is a mapping 𝑓: 𝑆𝐶 → 𝑀𝐶  

that bridges the gap between abstract computational formalism (e.g., symbolic machine 

code) and the dynamic evolution of the physical states of the putative physical computing 

system.  

Now, at first glance, type-(A) and (B) seemingly just address different issues. However, such 

segregation potentially becomes problematic for computational phenomena that entail multiple 

implementation stages and hence may require both theories of implementation. Arguably the most 

prominent examples in this respect are computational artifacts like computer programs whose 

implementation stages spread over the entire computational hierarchy (cf. Fig. 1).  

What’s at stake is this – if we want to advance beyond piecemeal approaches toward a coherent 

scheme, we require a less fragmented understanding of the implementation of various 

computational phenomena than today. So, in virtue of having a singular systematic framework, I 

lay the groundwork for presenting a novel theory of implementation by first juxtaposing the most 

salient features of (A) and (B). For so doing, I limit my focus on the nature and origin of the 

different mapping relations; the Problem of Structure Generation; and teleological function-

ascription. The following three subsections elucidate these salient features in more detail before 

presenting a unified approach in sect. §5.  

 

4.1 The Origin and Nature of f 

The first salient feature concerns the role, nature and origin of the different equivalence relations 

underlying both theories of implementation. Let me briefly begin with type-(A) first. My previous 

analysis has shown that type-(A)’s main assumption is that a symbol structure of a higher LoA 

needs to be correctly translated into a symbol structure corresponding to a lower LoA. What then 

counts as viable implementation between abstract structures is determined by the agreed-upon 

semantics. Since we are concerned with the relation between abstract symbol structures, we do not 

run into the pressing problems associated with the bridging problem. To establish a relation 

between different structures (LoA), the type-(A)-implementationist ‘merely’ requires some form of 

semantic interpretation, else it remains unclear how the different structures are supposed to be 

mapped into one another. While a lot more can be said about the precise characterization of the 

semantics, what suffices for the present juxtaposition is that the provenience of the mapping f 

essentially hinges on the stipulations and conventions regarding the semantics made by the 

designers and programmers.  

Regarding type-(B), matters are less straightforward – here one deals with a cross-categorical 

relation. Even though, the EMAs of type-(B) literature have brought forward various kinds of 

constraints on the implementation relation f the metaphysical nature of the mapping relation does 

typically not take center stage in the discourse of physical computation. Exemplary is a statement 

by Chalmers, stating that   

“[t]he definition of implementation does not appeal to any specific mapping relation: rather, it 
quantifies over mapping relations, which can be any function from physical states to formal states. 
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I also do not know what it is for a relation to have metaphysical commitments.” (Chalmers 2012, 
231) 

Similarly, Sprevak stresses that it is a “strategic error” to focus on the metaphysical nature of f 

(Sprevak 2018, 176). Remaining silent about the metaphysical nature of the mapping may, at least 

for the current project, come with the cost of an impoverished or partially incomplete picture of 

implementation. So, what are the options? 

In principle, there are several ways in which the nature of the relation can be couched.  One 

strategy is to utilize solution attempts to the bridging problem from other domains (e.g., the 

philosophy of applied mathematics). For instance, in the context of computing, Colburn (1999) 

attempted to map out some of the solution space. He suggested that forms of monism, dualism, 

or a pre-established harmony from other philosophical areas are seemingly all viable options. 

However, at a closer look, most of these attempts have been deemed notoriously troublesome for 

the original formulation of the bridging problem. When examining some of these options in more 

detail, Curtis-Trudel (2022) ruled out many of the options Colburn had originally thought of. 

Instead, it was shown that the problem of implementation necessarily requires a mapping that bridges 

the gap between a material system and an abstract computational structure. Following that analysis, 

only two main options remain: On the one hand, a naturalized (here, mind-independent) version 

of f, and on the other hand, a mind-dependent version.14  

Note that, in principle, both options are compatible with the assumptions of type-(A) 

implementation. However, as I will argue, the philosophical plausibility of a naturalized relation 

can be ruled out on the ground of the insights of the literature on scientific modeling and 

representation. The crucial commonality between scientific representation and implementation of 

computation is that both essentially require a mapping that relates mathematical structures to a 

physical substrate. Accordingly, one may apply the results with respect to the bridging problem 

from one domain (modeling) to the other (computing). What counts for scientific models, mutatis 

mutandis applies to computing devices. For the sake of successfully appropriating these insights, I 

provide some of the here necessary background below. 

According to what Giere (1999) calls the representational conception, scientific models are used by 

scientists for the purpose of representing some (real-world) system, where the latter is commonly 

referred to as target systems T. Scientists use models and their representational capacities for 

drawing various sort of conclusions about the target system (e.g., explanation, prediction, 

confirmation); a practice known as surrogate reasoning (Swoyer1991). Accordingly, scientific 

representation is characterized as the relation f between a model M and its dedicated target system 

T, such that 𝑓: 𝑇 → 𝑀. Importantly, both models and targets then come in various ‘ontological 

flavors’. On the one hand, one typically distinguishes between (i) material and (ii) theoretical 

models.15 On the other hand, target systems are either (a) real-world systems or (b) hypothetical 

scenarios.16 Consequently, various modeling scenarios result from the possible combinations of (i)-

 
14 If one assumes that the relation 𝑓: 𝑆𝐶 → 𝑀𝐶  is naturalizable, (i.e., the mapping is simply reduced to facts about the 

world) then we may regard computation as a mind-independent physical process. 
15 The term model denotes a heterogenous collection of things – models come in the form of descriptions, as 
material objects, or as abstract (mathematical) objects. For an extended list of 120 types of models see (Frigg 2022, 
Ch. 16). 
16 Weisberg, for instance, investigates the case of hypothetical modeling (2013, 121-134), where models may 
represent nonexistent targets, possibilities, or impossible targets (e.g., models where the targets are perpetual motion 
machines or multiple sexes populations). 
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(ii) and (a)-(b). As such, the modeling relation is – like the problem of implementation – a special 

instance of the bridging problem.17  

Subsequently, Philosophers like Suárez (2003) and van Fraassen (2008) criticize the naturalized 

attempts of representation, namely that the mapping f between model and target reduces to a 

factual, mind-independent relation since it flies into the face of the bridging problem. Without 

answering the Structure Generation Problem it is highly contentious to defend a somehow naturally 

occurring mapping relation. Given that naturalized accounts about mappings fail to elucidate how 

and when such a relation comes about without explaining the assumption of some privileged 

preconceived structure, they are moot.  

Faced with the inadequacy of naturalized accounts of representation, philosophers of science 

nowadays commonly agree that scientific representation is contingent on human agents establishing a 

mapping to the intended target.  The upshot of such a use-based approach is that the relation 

between model M and target T does not simply obtain ‘naturally’, i.e., without the decisions, 

conventions, and stipulations of some scientists. In consequence, van Fraassen for instance, 

formulated his Hauptsatz of scientific representation, stating that “[t]here is no representation except in 

the sense that some things are used, made, or taken to represent some things as thus or so.” (van Fraassen 2008, 

23). However, to fully appreciate such imputed mappings, we still need a story of what structure 

they are supposed to map onto. I will deal with this issue in the next section.  

 

4.2 The Structure Generation Problem  

The second salient feature concerns the necessary structures for the mappings. As already briefly 

discussed in the previous subsection, the corresponding privileged computational structures on 

higher LoA are the result of the chosen computational formalism and the corresponding transition 

function δ devised by the programmers (Turner 2021). Again, the much more philosophically 

troubling case awaits us at the abstract-physical interface. For remember, to avoid the bridging 

problem occurring at the bottom of the computational hierarchy, we need a philosophically 

plausible mechanism of how to generate a structure 𝑆 =〈D, 𝑅1, 𝑅2, …〉 for a material computing 

system to establish the relation 𝑓: 𝑀𝐶 → 𝑆𝐶 . As we have seen, structure generation should entail 

two steps (see §3.1): (a) determining the elements (i.e., putative computational vehicles) in a domain 

D, and (b) determining the relations Ri  (of those vehicles) in the domain D.  

In what follows I claim that the already familiar process of information hiding (essentially a specific 

approach to abstraction) from computer science may be equally well employed at the abstract-

physical interface. As Colburn and Shute aptly remind us  

“Any science, including computer science, succeeds by constructing formal mathematical models 
of their subject matter that eliminate inessential details. Inasmuch as such details constitute 
information, albeit irrelevant information, we might call such elimination information neglect. It is our 
contention, however, that computer science is distinguished from mathematics in the use of a kind 
of abstraction that computer scientists call information hiding. The complexity of behaviour of modern 
computing devices makes the task of programming them impossible without abstraction tools that 
hide, but do not neglect, details that are essential in a lower-level processing context but inessential 

in a software design and programming context.” (Colburn & Shute 2007, 176; my italics) 

 
17 For instance, assuming that M is a theoretical model relying on mathematical structure as a representational 
vehicle, one needs to specify how the parts of the structure are mapped to the physical make-up of the target system. 
Put differently, the representational relation f needs to bridge the abstract-concrete dichotomy. 
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‘Information hiding’ as abstraction allows us to omit inessential details (e.g., to improve 

programming practice) when creating a computational structure but enables us to later retrieve the 

hidden information and fill in the required details at the stage of implementation again. Abstraction 

as information-hiding is an already familiar tool and largely applied to higher LoA in the 

computational hierarchy. However, what is paramount about the omission-of-details strategy is 

that it may also be applied to the structure generation of physical objects. As such, I claim, it provides 

a solution to the structure generation problem (and hence the bridging problem) in the context of 

computation.  

In fact, we already briefly encountered an instance of structure generation and information 

hiding that is well suited for discussion: the standard case of the logic gate (Table 1). For remember, 

first, a simple, albeit physical description of the components of the logic gate was provided (in the 

form of a table). Build into this simple and already highly idealized description was the choice to 

consider only specific physical magnitudes (in this case, voltages) of specific components (InputA 

and InputB); these choices constitute both the elements in our domain D. In a second step, further 

physical details need to be omitted and be replaced with a chosen assignment like 0V → F, 5V → 

T (i.e., a specific labeling scheme to fix (IDENT)) to determine the relations Ri.  

The idea of omitting or subtracting (the physical) details from an agreed-upon description of a 

system to allow the scientists to carve out a unique structure 𝑆 =〈D, 𝑅1, 𝑅2, …〉 can be generalized. 

In their so-called extensional abstraction account, Nguyen and Frigg (2017) formalized the procedure 

just discussed with the logic gate. In a nutshell, they argue for some form of omission of 

information when tackling the bridging problem using abstraction. Formally, a mathematical 

structure SM only links to a physical target system T if, previously a particular description of the 

given (material) system is, through abstraction, transformed into an extensional description. An 

extensional description does not explicitly refer to physical magnitudes (in the context of 

computing, e.g., a truth table). Extensional descriptions can be created by hiding information. In 

order to generate a structure S of a physical object, agents need to decide on a domain D and their 

respective elements. Thereafter, they need to determine the relations Ri among those elements. 

Once certain choices about the elements in the domain D and their relations Ri are agreed upon and 

held fixed, the thus generated extensional description gives rise to a purely set-theoretic structure ST.  

As such, information hiding (e.g., in the form of the extensional abstraction account) enables 

us to generate a suitable computational structure that subsequently suffices to be related to a 

theoretical computational structure that 𝑓: 𝑆𝐶 → 𝑀𝐶 . Importantly, we can, in principle, apply the 

strategy of coming up with a physical description and omit inessential physical details to all kinds 

of material systems, simple or complex, digital or analog. Scheutz’s (1999) work, for instance, sheds 

light on more complex cases such as resistors, analog circuits, and full-blown electrical circuits.18 

 
18 Whilst Scheutz does not explicitly frame his discussion in terms of the here sketched agential structure generation 
approach, he engages in the activity of omitting physical details from a previously chosen domain. As such, there is 
no feature in the information-hiding approach that would limit its scope to what is commonly referred to as 
‘designed’ or ‘artificial systems’ only. While in the case of the garden-variety digital component it is deemed obvious 
which physical magnitude is supposed to count as a computational vehicle (typically the flow of electrical charge), we 
may also bestow previously considered ‘natural objects’ with the intended proper function to compute. The 
difference when dealing with such ‘natural objects’ is that prima facie, there might be no common knowledge or no 
obvious choice as to which physical features may act as computational vehicles, whether they offer a high degree of 
reliability and so on. Yet, as shown by the research of the unconventional computing community (see Adamatsky 
(2021) for an overview), one may use chemical reactions, slime molds, or quantum effects as vehicles for computing. 
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The upshot is that without the agents’ description, dependent on specific decisions and 

conventions, there would be no privileged computational structure; no agents, no unique structure, 

no mapping! 

 

4.3 Teleology  

The last salient feature concerns teleology. Accordingly, a unified theory of implementation needs 

to contain ingredients that allow one to check whether a program (or any given sequence of 

computations) is implemented and executed correctly at every LoA. Section §2.2 already described 

how type-(A) accounts addressed concerns about correctness via teleological function ascription.   

However, in contrast, remarkably few studies in the type-(B) camp have been designed to consider 

the normativity of physical computation. Without such normative features one cannot address the 

verificationist-debate and account for the intricate correctness criteria concerning computer 

programs and software systems that are required for their implementation. Piccinini’s (2015; 2020) 

teleological version of the mechanistic account (cf. also Coelho Mollo 2018) is one of the few 

exceptions that allows for miscomputation in the first place.19  

In keeping with the functional-mechanistic account, physical computation is said to be the 

transformation of some (medium-independent) computational vehicle in accordance with a rule.20 

Rules determine what should be computed. Since they can be violated, miscomputation occurs, if 

the computational mechanism malfunctions (i.e., violates the rule). Which rule a computational 

mechanism should follow is determined by the so-called goal-contribution account of teleological 

functions. Accordingly, “[a] teleological function (generalized) is a stable contribution to a goal 

(either objective or subjective) or organisms by either a trait or an artifact of the organism.”, 

(Piccinini 2015, 116).  

In principle, this is a welcome feature, for it stabs in the right direction for accommodating the 

concerns about correctness in computing at the abstract-physical interface. Unfortunately, most 

recent work on the mechanistic account appears to have focused on an overly strict notion of 

‘objectivity’ that stands at odds with human practice and use. The reason is that the notion of 

objectivity can be interpreted more or less strongly (Reiss&Sprenger 2020). In the context of 

computation, Duwell (2021, 18-21) recently suggested a distinction between strong objectivity and 

weak objectivity.21 Following his suggestion, an account of computation adheres to strong objectivity 

if determining whether a system is computational (cf. COMP-condition) is entirely mind-

independent. In contrast, accounts of computation complying with weak objectivity state that whether 

a system is computing is dependent on some specific intersubjective agreement (i.e., mind-

dependent features shared by an epistemic community).  

Hence, a strongly objective version of the functional mechanistic account of computation needs 

to provide an adequate explanation of goal-contribution in mind-independent terms.  

Subsequently, living organisms are taken as a starting point, claiming that they share a set of capacities, 

 
Here, the scientists play a fundamental role in the creation (in the sense of information hiding) of a suitable 
computational structure. 
19 Mechanistic accounts come in two main flavors and do not necessarily need to be framed in teleological terms. 
Here the focus only lies on the teleological notion though. 
20 In line with Eagen (2019), I take it that ‘rule-talk’ is just a different, (normatively connotated) way to refer to act in 
accordance with a model of computation.  
21 See Fletcher (2018) for a similar discussion in the context of the Abstraction/Representation-Theory of 
computing. 
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namely survival, development, reproduction, and helping (Piccinini 2020, 68). The special 

functional organization of the organism allows them to pursue these capacities. And “[b]ecause 

these special invariants must be pursued; I call them biological goals.” (Piccinini 2020, 69).  

Notwithstanding, even when setting aside the pressing worries about whether material systems 

alone can ground goals, rules, purposes, etc., I take it as palpable that applying this naturalistic 

conception of living organisms does not translate to computational practice. As such, attempts to 

cash out physical computation in terms of natural teleology seem to be a poor fit with the widely 

employed notion of correctness in computer science. Not only are programs non-living things (we 

would commit a category mistake), there is simply no obvious way how the goal-contributions 

biological features of survival, development, reproduction, and helping are connected to the 

correctness of programs.  

Having arguably anticipated some of these objections, Piccinini’s goal contribution account 

entails the clause that teleological functions can be stable contributions to subjective goals too. Whilst 

proponents of the function-mechanistic account readily admit that such a position is rather 

uncontentious (Piccinini 2015, 148-9; Coelho-Mollo 2018, 446; see also Dewhurst 2018), its 

ramifications for use and practice are rarely fully explored. At least for the current undertaking, the 

upshot is this: In accordance with the insights of type-(A) implementation, we hence may also 

determine the correctness criteria of computational artifacts in intentional, intersubjective terms. 

Recently, both Schweizer (2019) and Anderson (2019) explored these options. If human agents 

indeed bestow artifactual functions to a material computing system according to their desires, 

beliefs, and intentions, computing practice can no longer be characterized by virtue of strong 

objectivity, since it is no longer mind-independent. But instead of having to give up on objectivity 

altogether and open the floodgates to complete arbitrariness, we can still rely on the notion of weak 

objectivity.  

 

4.4 Taking stock 

The result of the juxtaposition of type-(A) and type-(B) implementation is a common convergence 

among their most salient features: The commonality between all cases is the crucial involvement 

of (human) agents. Without the agents’ decisions, one cannot plausibly account for the origins of 

(i) the mappings between (ii) the generated structures on different LoA (including the difficult case 

of the abstract-physical interface), and (iii) the occurrence of normative features determining 

correctness. Accordingly, a unified theory of implementation ought to entail that mappings are 

imputed, structures are generated, and teleological functions are ascribed. 
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5 A Unified Theory of Agential Implementation 

Equipped with a detailed analysis of type-(A) and (B) implementation, the remainder of the paper 

presents a unified theory of implementation. Since the common denominator among these findings 

is the stipulations and conventions of (human) agents, the novel framework traces different agential 

involvements in terms of dependency relations. Accordingly, the result is called a unified theory of 

agential implementation (UTAI).  

Fortunately, the formulation of UTAI does not need to start completely from scratch. I.e., the 

introduction of UTAI relies on a particular branch of the previously often dismissed 

interpretational or agential accounts of computation. I will show that a recently emerged subset of 

interpretational accounts relying on the well-established concepts of scientific representation and 

modeling facilitates the unification of (A) and (B) considerably. I first briefly illuminate the core 

assumptions of these specific interpretational accounts of computation (sect. §5.1). Finally, yet 

importantly, I present a run-through of UTAI (sect. §5.2). 

 

5.1 Further blurred lines between material models and computers 

A cluster of literature on scientific representation and modeling-based accounts of computation 

(type-(B)) emerged in recent scholarship. Like previous accounts of computation (SMA and EMA), 

these approaches distinguish between physical systems and abstract objects that are connected by 

an equivalence relation (cf. Fig. 2). The key difference is that the mapping between them is 

understood in terms of scientific representation – as opposed to some mind-independently 

occurring morphism. The motivations for this approach are the parallels between the practices of 

modeling and computing. 

 On the one hand, scientific representation and modeling also address the bridging problem. 

As I have already argued in sect. §4.1, explanations that work for modeling thus may be 

appropriated to computing. On the other hand, material models and concrete computing systems 

share that agents employ them as a surrogate to reason about something else. Overall, many 

different physical properties can be used as representational- or computational vehicles, 

respectively. For instance, when surveying the material variety of such vehicles, Sterret notes that  

“[…] electronic circuits were used as analogues of anything that could be formalized as a solution 
of certain classes of differential equations, and ever more sophisticated machines were developed 
to deal with ever larger classes of differential equations and problems. Other examples of analogues 
used for computation are mechanical analogues such as the geared devices built in the seventeenth 
century, the soap bubble analogue computers invoking minimization principles that were used to 
efficiently solve difficult mathematical problems in the twentieth century and biological analogue 
computers of the twenty-first century such as amoeba-based computing (ABC) analogue models.” 
(Sterret 2017, 858) 

Qua models, various physical systems may be employed as representational vehicles for an 

explanation or prediction of a target system. Qua computer, one may use physical systems as 

surrogates to read off the results of a sequence of computation specified under a model of 

computation MC. The difference is that instead of a real-world target system, one then simply 

reasons about a particular ‘hypothetical scenario’, where the latter is characterizable by a transition 

function δ that’s compatible with a model of computation MC.   

Accordingly, in some cases the distinction between what counts as a scientific model and what 

counts as a computer overlaps considerably. Take, for instance, Frigg & Nguyen’s (2018) example 
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of the Philips-Newlyn machine. The machine uses the flow of water through a specifically designed 

pipe system for modeling the distribution of commodities in a national Keynesian economy. 

However, also known as ‘MONIAC’ (Monetary National Income Analogue Computer) the device 

can equally well be regarded as a special-purpose liquid-based analog computer. Instead of 

representing a selected economic scenario, the MONIAC can in principle be used to compute (a 

small set of) differential equations.   

Several scholars turned considerations like these into an approach to physical computation. For 

instance, in his advancement of L-machines (a specific computational formalism), Ladymen (2009) 

concludes that concrete computation appears to be contingent on (scientific) representation.22 Care 

(2010), on the other hand, provides a narrative of a use-centric history of analog computing as 

modeling. Similarly, but from a philosophical perspective, Papayannopoulos (2020) examined the 

conceptual commonalities between analog computers and analog models (when developing a 

notion of analog computation). Arguably the technically most worked out account to date is the 

Abstraction/Representation (AR) Theory introduced by Horsman, Stepney, Wagner, and Kendon 

(2014) and subsequently developed further by Horsman (2015, 2017), Horsman Kendon, Stepney, 

(2017, 2018) and Horsman et al. (2017). In a nutshell, (AR) Theory fully formalizes the relationship 

of concrete systems and abstract objects as a representational triple 〈𝑚𝑖, 𝑓, 𝑠𝑗〉, where f is perceived as 

scientific representation, offering elaborate ‘commuting diagrams’ in similar fashion to Fig. 2. 

Consequently, computers are characterized as ‘predicting devices’ for computational entities.  

Following these developments, Fletcher (2018) (and subsequently Duwell (2021)) critically 

assessed the (AR)-framework under philosophical considerations and, importantly, suggested a 

modified, specifically agential version.23 Simply put, (AR) Theory should be couched in agential 

terms because most contemporary approaches of scientific representation are too.  In sum, this 

accumulation of research suggests that material models and computers are (fine-tuned) physical 

objects employed by human agents as epistemic tools for their specific context-dependent purposes.  

 

5.2 UTAI and its features 

At last, let me introduce the theory that enables the unification of type-(A) and (B) implementation: 

UTAI.  Figure 3 provides a schematic depiction of UTAI and its most important features – the 

implementation of a model of computation MC at the abstract-physical interface through the 

execution of (one of the traces) its corresponding transition function δ.  In what follows, the 

various elements of Fig. 3 are discussed in detail.  

 
22 Ladymen’s view should not be conflated with the semantic view of computation (see e.g., Shagrir 2001, Shagrir 
2022). While both accounts appeal to the notion of ‘representation’, they differ concerning which notion of 
representation is used. Put simply, the here-discussed notions advocate a view according to which physical states 
need to represent computational states (of an abstract model of computation). The semantic idea defends the claim 
that computational states require aboutness (e.g., about some affairs in the environment) to determine the 
computational identity (IDENT).    
23 In a similar vein, Szangolies proposed an account of (AR) Theory in terms of physical models (2020, 272-276). 
Paralleling Fletcher’s analysis, Maroney and Timpson (2018) claim that information processing is contingent on the 
involvement of conscious agents or an epistemic community. Whilst the authors originally applied their reasoning to 
‘information processing’, they state that it equally well applies to physical computation/implementation (cf. Fletcher 
(2018) for the same reasoning).  
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First, the abstract-physical interface is illustrated by the dotted line horizontally running through 

the diagram. In comparison to Fig. 1 (b), higher LoA and the full computational hierarchy are 

implied to be represented in the ‘abstract realm’ (upper half above the dotted line), where one deals 

with symbolic implementation (type-(A) implementation). In line with the SMA, the equivalence 

between the state transitions of MC (specified by a transition function δ) and the evolution of 

physical states of a putative computing system SC is pictured through a diagram as, e.g., found in 

Cummins (1989) or Ladymen (2009) (cf. Fig. 2). The labels (1) – (3) correspond to the assumptions 

of representation/modeling-based theories of computation discussed in the previous section (sect. 

§5.1):24 

 

Fig. 3: Schematic depiction of a unified theory of agential implementation (UTAI) 

Assumption (1) Implementation is based on a representation relation f between the designated I/O-

states of the putative computing system and the abstract states transitions defined by δ of a 

computational formalism MC (cf. Ladymen 2009, Horseman et al. 2014, Fletcher 2018, 

Papayannopoulos 2020), such that 𝑓: 𝑀𝐶 → 𝑆𝐶 holds. Analogous to the case of material scientific 

models, where certain features of the model act as a representational vehicle to represent (features 

of) a target system, implementation comes about when certain (selected) features of a putative 

computing system act as a computational vehicle to compute a function. Note that this 

development is a departure from the EMA, for two reasons: On the one hand, scientific 

representation is (nowadays) typically deemed to be directional – as such, the relation can no longer 

be characterized as a bidirectional morphism. Scientific models represent targets, but targets do not 

represent their models. On the other hand, scientific representation/ implementation can no longer 

be deemed a binary relation, but a ternary one, because it is only due to the use/stipulations of 

some agent that the linkage between model and target arises in the first place.  

Assumption (2) The starting state mi (i.e., the input state) of MC must be encoded in the initial state 

of the material system sj. Likewise, the output state mi+1 requires decoding it from sj+1 by reading it 

 
24 In as much as features (1)-(3) can already be found in the previous literature, UTAI is indebted to their respective 
insights. 
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off or performing some type of measurement. The rightwards-pointing black arrows in the 

diagram, labeled by δ and SC respectively, stand for the transition of the computational states mi 

and mi+1   and the temporal evolution of the computational vehicle/label bearers sj (both represented 

by the grey circles).   

Whilst maintaining that the act of encoding input-states and decoding output-states after a 

computation has been argued for before (e.g., Churchland & Sejnowski(1992, 63)), the here 

advocated view is different because the acts of encoding and decoding are formulated in terms of 

scientific representation. Importantly then, encoding and decoding are – in line with the notion of 

scientific representation – directional (no longer isomorphisms) and require to be carried out by 

some agent or epistemic community.  

Assumption (3) Following the suggestion by Horsman and collaborators, I argue that the notion 

of scientific representation enables us to address inaccuracy as a form of miscomputation.25 Put 

simply, the idea is that one may introduce an acceptable margin of error ε between the output states 

of MC and output states of the physical system. If the chosen computing system would be 

completely reliable (i.e., run without errors), each computation cycle would yield perfect 

equivalence between the state transitions of MC and the physical evolution of the system; there 

would be no inaccuracy.  However, complete reliability is a pipe dream. Real-world systems typically 

do not perfectly behave in a preconceived idealized manner – as a result, the abstract series of 

computation and the physical outcome only coincide up to ε.26 Depending on the chosen value of 

error interval ε, the very same process could count as a correct computation in one case and as a 

miscomputation in another.   

While I think that (1)-(3) of the previous accounts are largely right, UTAI entails further features 

and more fine-grained factors. Specifically, UTAI needs to elucidate the involvement of and 

dependency on human agents concerning the imputation of mappings, the creation of structure, 

and the ascription of teleological functions. To uncover the intricate interrelations between human 

agents and the different, UTAI explicitly tracks these dependency relations,27 denoted by (a)-(c), 

between human agents (represented by the black mannequin) and various elements in the 

implementation process. In what is left of the paper, I explain the implications of these dependency 

relations in detail: 

Dependency relation (a) emphasizes the crucial involvement of human agents on higher LoA. It 

is paramount for at least two reasons: First, following the desires, intentions, and pragmatic 

concerns of the programmers, a ‘computational problem’ is formulated. In actual programming 

practice, this typically leads to a (formal) specification, determining what is supposed to be 

achieved. The specification acts as the normative yardstick to check correctness. As discussed in 

the type-(A) implementation literature, the specification may be seen as an ascribed teleological 

function. It is necessary to provide judgments about correct execution and faulty behavior 

(miscomputation).   

 
25 Philosophers of science commonly agree that there is at least a second type of misrepresentation, viz., 
mistargeting. Transposed to computation, this view amounts to the case where users (accidentally) implement the 
wrong computational formalism. I leave this discussion out for now.    
26  Once again, one can appropriate the discussion of scientific representation, where the idea that scientific 
representation reduces to isomorphism was criticized because it cannot make room for distortions.  
27  ‘Dependence relation’ here is understood as a relation between different entities, where one entity is dependent on 
another. 
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Furthermore, dependency relation (a) allows for illuminating a second crucial involvement of 

human agents. After agreeing on a specification, practitioners may then devise an algorithm. 

Typically, the algorithm is then formulated in a suitable computational formalism MC (e.g., a 

programming language of your choice). The process described here roughly corresponds to the 

construction of the various LoA in the computational hierarchy (Fig. 1). The bottom line is that 

specifications, the algorithms targeted at the specific problem, the ensuing source code, and so on 

are all dependent on human ingenuity. Put differently, computer programs are not discovered; they 

are created by human agents for diverse practices such as the scientific endeavor, business, 

entertainment, and many more. Ignoring the agential dependence of computational artifacts bears 

the danger of unreasonably rendering the implementation of computational artifacts in naturalistic 

terms.  

Dependency relation (b) concerns the mapping f that bridges the abstract-physical interface. 

Implementation may occur when agents come up with a structure-generating description (e.g., 

through information hiding) and a suitable mapping relating the abstract and concrete realms.  As 

argued at length in sections §4.1 and §4.2, naturalized approaches are ill-suited to properly address 

the bridging problem. Instead, at least two steps necessitate the interpretational capacities of agents: 

structure generation and imputation.  

Structure generation is contingent on agents because it demands that certain 

properties/capacities of the system are selected and interpreted as computational states or vehicles sj. 

Structure generation may rely on a slightly tweaked version of the often-used notion of information 

hiding in computer science. Accordingly, agents may omit physical details that are inessential for 

the implementation of a series of computations (cf. Scheutz 1999, Colburn and Shute 2007, Nguyen 

and Frigg 2017).   

Furthermore, for eventually bridging the gap between an abstract model of computation 𝑀𝐶   

and a concrete computing system 𝑆𝐶 , a mapping relation between the two is needed. Such a relation 

calls for the stipulations of human agents. Users impute their chosen computational formalism 

onto the putative physical computing system. The material system can then be used as an epistemic 

tool, i.e., as a surrogate to carry out the intended series of computations determined by the 

previously created program.  

Lastly, following these considerations, the implementation relation 𝑓: 𝑆𝐶 → 𝑀𝐶  bridging the 

abstract-physical interface (represented by the horizontal dotted line) is no longer conceivable as a 

mere binary relation. Instead, f is a ternary relation – because it necessarily depends on the 

stipulations of agents – characterized by a representational quadruple 〈𝑚𝑖, 𝑓, 𝑠𝑗, Agent〉.  

 

Dependency relation (c), characterizes the physical interactions of the human agent(s) with the 

putative computing system. Ideally, a computing system is not only sufficiently reliable for repeated 

executions but also reconfigurable. Physical reconfiguration is needed for ultimately 

reprogramming the computing system. The mere imputation of a different model of computation 

𝑀𝐶 onto the very same unchanged structure is not sufficient for implementation. The underlying 

physical setup from which the structure was generated has to change too; else it results in a 

mismatch. So, what we require from a programmable system is that a different starting state would 
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have led to a different, but corresponding output state. Put differently, to be re-programmed, thus 

calls for a counterfactual explanation.28  

The notions of modeling and scientific representation that underpin UTAI allow incorporating 

the crucial constraint that counterfactual claims about the computing system hold.29 Like in the case 

of the EMA, the counter-factual condition rules out stipulative fiat, i.e., the completely 

unconstrained usage of arbitrary systems for computation that would collapse into interpretational 

pancomputationalism. In other words, while interpretation is a necessary condition, it is not 

sufficient, because the computational vehicles of the computing system need to behave suitably.  

 

6 Conclusion and Outlook 

It was argued that explaining the implementation of computational artifacts like computer 

programs requires combining hitherto two largely separated theories of implementation. I 

presented the attractive features of an agential theory of implementations:  Chief here is the 

unification of the two required types of implementations. While type-(A) implementation concerns 

correctness criteria of (abstract) computational artifacts, type-(B) implementation addresses 

physical computation. Meeting at the abstract-physical interface their respective insights may 

mutually enrich each through a unifying framework. 

 The main result of the paper is having provided a specific way of thinking about such a unified 

theory of implementation. Specifically, I advanced an agential theory of implementation in terms 

of scientific models and representation: UTAI (unified theory of agential implementation). Put 

simply, recent scholarship maintaining that both material models and computers are epistemic tools 

used by agents to reason about different scenarios was extended. In both modeling and computing, 

agents engage in a form of object-based reasoning, where artifactual functions are externally 

attributed and a mapping relation between concrete system and abstract target/program is imputed 

by agents. My analysis showed that accounts, like UTAI, sketched in agential terms offer the right 

kind of resources to accommodate the main underlying assumptions of both type-(A) and (B) 

implementation: stipulated mappings; generated structures; and ascribed teleological functions. In 

sum, UTAI has the explanatory virtue of facilitating cross-talk between so far rather separated 

discourses and kinds of literature. 

As a final remark, I believe that the scope of agential theories of implementation based on 

scientific representation like UTAI deserves further research in multiple directions. For instance, it 

remains to be established how much this account extends beyond human-made artifacts (i.e., 

biological systems like the brain). Particularly, there remains the open question of how the 

traditionally naturalistic accounts employed in the context of the computational theory of mind 

respond to the analysis that they cannot adequately overcome the problems associated with the 

bridging problem.  

 

 
28 N.b., this insight is virtually similar to the ones of the counterfactual/causal/dispositional EMAs).    
29 In the context of scientific modeling, Bokulich (2011, 39) for instance reminds us that  

“[…] in order for a model M to explain a given phenomenon P, we require that the counterfactual structure 
of M be isomorphic in the relevant respects to the counterfactual structure P. That is, the elements of the 
model can, in a very loose sense, be said to “reproduce” the relevant features of explanandum 
phenomenon.”  
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