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Pain Judgments and T-Tests1 
Justin Sytsma 

 

Abstract: What is pain? Perhaps surprisingly the standard answer to this question among 

philosophers does not derive from research in biology or other sciences, but from claims about 

common sense and thought experiments intended to draw out our intuitions about the nature of 

pain. This raises a number of issues, among them the question of whether philosophers’ claims 

about the commonsense conception of pain are accurate. In this chapter, I’ll explore some of the 

empirical research that has been done on this question in recent years, focusing on the claim that 

common sense tells us that there can be no unfelt pains. In doing so, I’ll walk through several 

sets of studies, introducing the empirical research process and illustrating the use of one type of 

statistical tool—t-tests. 

 

1. Introduction 

The present chapter has two main goals. The first is to introduce you to a powerful family of 

statistical tests—t-tests. To do this, I’ll walk you through three main case studies exploring the 

question of whether lay people tend to believe that there can be unfelt pains. Each of these will 

introduce one main type of t-test—one sample t-tests, independent samples t-tests, and paired 

samples t-tests. Coupled with further studies bearing on the ordinary conception of pain, I hope 

that these studies will make it plausible to you that the ordinary view is rather different than 

many philosophers have supposed. This is the second goal of this chapter. 

 
1 Penultimate draft of Chapter 2 in Experimental Philosophy for Beginners: A Gentle Introduction to Methods and 
Tools by Stephan Kornmesser, Alexander Max Bauer, Mark Alfano, Aurélien Allard, Lucien Baumgartner, Florian 
Cova, Paul Engelhardt, Eugen Fischer, Henrike Meyer, Kevin Reuter, Justin Sytsma, Kyle Thompson, and Marc 
Wyszynski. 
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 Here is how I will proceed. In the next section I lay out the standard philosophical view 

about pains, the assumptions that have been made about the ordinary conception of pain, and the 

challenge that has been raised by some experimental philosophers. I begin to explore this 

challenge in more depth in Section 3, laying out the primary case study for this chapter—Study 3 

in Sytsma (2010a)—and illustrating the use of one sample t-tests. To do this I detail the 

empirical research process I follow (§3.1), present the background motivation for the study 

(§3.2), and then detail the research question driving it (§3.3), the research design (§3.4), how I 

constructed the instrument (§3.5) and conducted the study (§3.6), and finally how I analysed 

(§3.7) and interpreted (§3.8) the results. In Section 4, I then consider some potential worries 

about this study, detailing a selection of further studies that address them, including the second 

and third main case studies, which illustrate independent samples t-tests (§4.1) and paired 

samples t-tests (§4.4) respectively. Finally, in Section 5, I consider a worry that often arises in 

using t-tests: when we run multiple tests we might need to apply a correction. 

 

2. Philosophical Background: The Standard View of Pain in Philosophy 

The standard view among philosophers is that pains belong to the mind, not the body. When you 

cut your finger, for example, this view contends that the sharp pain you feel in your finger is in 

fact a property of your mind, not your finger. Put another way, the standard view holds that there 

is no distinction to be drawn between pain and feeling pain. More carefully, the standard view is 

that pains are properties of conscious mental states. Consciousness is a notoriously tricky notion, 

with the term being used to pick out a number of different phenomena (Block 1995). 

Philosophers are most often interested in a specific sense of consciousness, however—what is 

typically termed ‘phenomenal consciousness’. Researchers are not in complete agreement about 
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how to understand this notion, but the standard idea is that phenomenally conscious mental states 

are those states for which there is ‘something it is like’ (Nagel 1974) to be in them, where this is 

meant to pick out a diverse range of states that are thought to have a distinctive ‘feel’. These 

feels are associated with the mental states, typically being taken to be properties of them, and 

understood in this way they are known as phenomenal qualities (or qualia for short). 

Phenomenally conscious mental states and their associated qualia are typically drawn out 

by listing examples, detailing ordinary perceptual, bodily, or emotional experiences and 

assuming that the distinctive qualities we’re aware of in these episodes are phenomenal qualities. 

For instance, Michael Tye (2021) opens his Stanford Encyclopedia of Philosophy entry on 

‘Qualia’ in just this way: 

I run my fingers over sandpaper, smell a skunk, feel a sharp pain in my finger, seem to 
see bright purple, become extremely angry. In each of these cases, I am the subject of a 
mental state with a very distinctive subjective character. There is something it is like for 
me to undergo each state, some phenomenology that it has. 
 

Focusing on pains, the idea is that pains are properties of mental states and that what makes the 

mental states states of that type is just those felt properties—the way that they feel to the person 

who has them. As such, according to the standard view in philosophy there is no appearance–

reality distinction to be drawn for pains. In other words, to have the appearance of pain—for 

someone to experience pain—is for that person to have a pain. And, likewise, for someone to 

have a pain is for them to experience pain. Thus, the standard view endorses the following two 

conditionals: 

 If a person has a pain, then she feels that pain. 
 If a person feels a pain, then she has that pain. 
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These conditionals have a number of implications. Most important for present purposes is that 

the first conditional excludes the possibility of there being unfelt pains: Since having a pain 

implies feeling pain, there could be no pain that is not felt. 

The idea that there can be no unfelt pains has a long and venerable history in philosophy. 

More than two-hundred years ago, Thomas Reid (1785, 1.1.12) asserted that ‘pain, when it is not 

felt, has no existence’. In the previous century, Saul Kripke (1980, 152) expressed the underlying 

view succinctly when he wrote that pain ‘is picked out by the property of pain itself, by its 

immediate phenomenological quality’. And many contemporary philosophers of pain have 

continued this tradition, often clearly noting that they take the standard view to follow from our 

commonsense conception of pain. For instance, Murat Aydede (2005a, x) asserts that ‘it is part 

of the commonsense conception’ that pains ‘can’t exist without someone’s feeling them’. Indeed, 

he holds that ‘there is an air of paradox when someone talks about unfelt pains’, noting that ‘one 

is naturally tempted to say that if a pain is not being felt by its owner then it does not exist’ 

(2005b, 4). Similarly, Christopher Hill (2009, 169–170) expresses the standard view for a range 

of bodily sensations, holding that the way we talk about them ‘presupposes that the appearance 

of a bodily sensation is linked indissolubly to the sensation itself’, and asserting that ‘this is true, 

in particular, of our thought and talk about pain’. 

 But should we accept the standard view of pain, including that there can be no unfelt 

pains? As we’ve just seen, this view is typically defended not by explicit philosophical 

arguments or empirical data, but by appeal to how we are said to commonly think and talk about 

pain. While this is often left implicit, the idea seems to be that the commonsense view should 

have default status—that we should assume the commonsense view in our philosophical 

discussions until or unless we have good reason to abandon it. Relatedly, the standard view is 
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sometimes supported by appeals to intuition, laying out a hypothetical scenario involving pain 

and claiming that what we want to say about it coincides with the standard view. For example, in 

his Stanford Encyclopedia of Philosophy entry on ‘Pain’, Aydede (2009) offers the following 

thought experiment in support of the claim that there can be no unfelt pains, contrasting the 

standard view with an alternative that treats pains as properties of body parts: 

Suppose that we do in fact attribute a physical condition, call it PC, when we attribute 
pain to a body part, and that PC is the perceptual object of such experiences. So, for 
instance, John’s current excruciating experience (call this E) is caused by and represents a 
physical condition in his thigh. From this it would follow that 

 
(a) John would not have any pain if he had E, but no PC in his thigh (as in the 
case of, for instance, phantom limb pains and centrally generated chronic pains 
such as sciatica), 

 
and, conversely, 

 
(b) John would have pain if he had PC but no E (as would be the case, for 
instance, if he had taken absolutely effective painkillers or his thigh had been 
anesthetized). 
 

But these statements are intuitively incorrect. They appear to clash with our ordinary or 
dominant concept of pain, which seems to track the experience rather than the physical 
condition. 
 

Similarly, Hill (2009, 171) appeals to intuitions about a thought experiment to support the 

standard view over the alternative picture: 

If we were fully committed to the picture, we would be prepared to consider it 
epistemically possible that an injured soldier actually has a severe pain, despite his 
professions to the contrary, but that there is something wrong with the mechanisms in his 
brain that support attention, and that this is preventing the pain from penetrating the 
threshold of consciousness. When I have asked informants to assess the likelihood of this 
scenario, however, they have all been inclined to dismiss it as absurd. 
 

In such passages, Aydede and Hill do not merely make claims about their own intuitions about 

the scenarios they lay out, but instead treat their intuitions as being general and, therefore, take 

them to tell us about the commonsense conception of pain. 
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But are such claims about pain intuitions and the commonsense conception of pain 

accurate? Is it true, for instance, that common sense rules out the possibility of unfelt pain? 

Across an extended series of papers, Kevin Reuter and I have argued that it is not, supporting 

this contention with a diverse array of empirical studies that suggest that lay people (i.e., non-

philosophers) do not tend to have the intuitions that advocates of the standard view claim. 

Indeed, we find evidence that people often treat pains as properties of body parts and, doing so, 

happily countenance the possibility of having unfelt pains.2 This includes background work in 

experimental philosophy of mind3 arguing that lay people do not tend to share the philosophical 

concept of phenomenal consciousness in the first place (and so don’t treat pains as phenomenal 

qualities),4 work using tools from corpus linguistics that indicates that the way people ordinarily 

talk about pains involves an appearance-reality distinction,5 and work using the types of 

questionnaire methods that I’ll focus on in this chapter. The latter includes three papers using 

questionnaire methods to test whether people believe that unfelt pains are possible—Sytsma 

(2010a), Sytsma and Reuter (2017), as well as Reuter and Sytsma (2020)—which I’ll focus on in 

the present chapter. 

 
2 Earlier work in this area focused on the shortcomings of the standard view, drawing out that a prominent thread in 
ordinary thinking about pains treated them as properties of body parts (e.g., Reuter et al. 2014, Reuter et al. 2019, 
Kim et al. 2016, Reuter 2017). More recent work in this area has focused more on simply understanding ordinary 
thinking about pain, often emphasizing that this is complicated and showing that people sometimes also treating 
pains as mental states. Disagreement remains on the extent of bodily versus mental aspects in people’s thinking 
about pain and how they relate (e.g., Borg et al. 2020, Liu 2020, Liu 2023, Salomons et al. 2021, Coninx et al. 2023, 
Goldberg et al. forthcoming). 
3 See Sytsma (2014), Sytsma and Buckwalter (2016, Part II.C), and Phelan (forthcoming) for introductions to this 
area of experimental philosophy. 
4 For a short overview, see Machery and Sytsma (2011), for more extended review see Sytsma (2010b, 2016), 
Gonnerman (2018). For a few recent studies dealing with experimental philosophy of consciousness, see Díaz 
(2021), Fischer and Sytsma (2021), and Gregory et al. (2022). 
5 Corpus linguistics collects and analyses pre-existing ‘real world’ data on the use of words (McEnery and Wilson 
2002, McCarthy and O’Keefe 2010). Philosophers have increasingly called on such methods, ranging from simple 
web searches, to more balanced corpora, to sophisticated computational approaches. See Chapter 5 of this volume 
for an extended illustration, and Bluhm (2016), Sytsma et al. (2019), Caton (2020), Ulatowski et al. (2020), as well 
as Fischer and Sytsma (forthcoming) for further examples and discussion. These tools are employed in assessing the 
standard view of pain in Reuter (2011) as well as Sytsma and Reuter (2017). See Sytsma and Fischer (forthcoming) 
for a recent study applying corpus methods to related an issue in experimental philosophy of consciousness. 
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This focus represents a divergence from the typical chapter in this volume, which 

illustrates a type of method or analysis in experimental philosophy by walking readers through a 

single-case study. While there is much to be said for this approach, it is not feasible for the 

present chapter. The reason is that t-tests are not a single type of test, but a family of tests, with 

the different members of this family being applied in different circumstances. Thus, to give a 

reasonable introduction to t-tests and when each type applies, I’ll need to walk you through 

multiple studies. There are three main types of t-tests that you are likely to encounter in the 

literature or want to apply in your own reasearch—one sample t-tests, independent samples t-

tests, and paired samples t-tests. Illustrating these three types of t-tests forms the heart of the 

present chapter and I’ll present a primary case study concerning the possibility of unfelt pains for 

each. I begin in the next section by detailing Study 3 from Sytsma (2010a), using this to illustrate 

the basic research process and introducing a first use of t-tests in statistical analysis—one sample 

t-tests.  

 

3. Illustrating One Sample T-tests 

This section will provide the most detailed case study in the chapter. The goal will be to use the 

third study from Sytsma (2010a) to illustrate the first, and simplest, type of t-test that we’ll 

discuss. To do this, I’ll first introduce the general research process in §3.1. In §3.2, I’ll discuss 

the philosophical background for our target study, including the first two studies from Sytsma 

(2010a), and connect this to the general background provided in the previous section. The 

remaining sections will then walk us through the study: §3.3 lays out the research question 

motivating our target study, §3.4 details the research design, §3.5 the instrument used, §3.6 

conducting the study, §3.7 the analysis of the results, and §3.8 the interpretation of the findings. 
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3.1 The Empirical Research Process 

In a previous text with Jonathan Livengood (Sytsma and Livengood 2015) we detailed a four-

stage process for conducting empirical research in experimental philosophy: 

1. Formulate a research QUESTION 
2. Develop a PLAN to address your research question 
3. CONDUCT the study laid out in your plan 
4. ANALYZE the results of the study you conducted 
 

There are multiple components to each of these stages, including that the PLAN stage involves 

determining the design for your study and constructing an instrument corresponding to this 

design. The resulting process corresponds closely with the plan for the present text, with the 

individual chapters aiming to illustrate how to develope of a research question (Stage 1), 

construct a corresponding study design and instrument (Stage 2), conduct a study (Stage 3), and 

analyze and interpret the results of that study (Stage 4).  

This process is quite general and can be used for most empirical research, not just work in 

philosophy. The philosophical focus of the research, however, will shape how the process is 

applied. This is most clear with regard to the first stage. While discussions of developing a 

research question in the typical text on experimental methodology will start with formulating a 

hypothesis, experimental philosophers should start a step earlier: philosophy generally begins 

with formulating arguments, and x-phi is no exception to this rule. In my opinion, the first step in 

developing a solid research question in experimental philosophy is to formulate a philosophical 

argument with an empirical premise, a premise that—with suitable clarification and 

specification—can be tested in your study (or studies). This clarification and specification 

converts your premise into a testable hypothesis. With this in hand, it is important to think 

through the general strategy you will employ in testing your hypothesis and analyzing the results. 
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This involves thinking about the goals of your study and the type of claim your hypothesis 

makes. 

There are three basic types of claims you might make in your hypothesis—an estimation 

claim, a comparison claim, or a relation claim. Estimation claims are about putting a number on 

a feature of a population that you’re interested in. For instance, we might want to estimate the 

percentage of people who agree with the claim that there can be no unfelt pains. Very often, for 

philosophical purposes we’re not so much interested in the exact number, though, but instead 

more concerned with how it sits relative to another number. The claim that common sense rules 

out the occurrence of unfelt pains, for example, plausibly entails that such a belief should be 

common—that it should be the majority belief—but not that exactly 72% (or 86%, or 92%, or 

whatever) of people will hold this belief. The claim that a majority of people hold a given belief 

is a comparison claim. In this case, it compares one number that we’ll try to assess in our 

research to a fixed point (50%). In other cases, however, we’ll want to compare two numbers 

that we’ll try to assess. For instance, we might predict that the proportion of philosophers who 

believe that there cannot be unfelt pains is greater than the proportion of lay people who believe 

this. Finally, relation claims are about how multiple features are associated or how one changes 

relative to the other. For example, rather than simply comparing the proportion of philosophers 

who deny unfelt pains to the proportion of lay people, we might want to assess level of training 

in philosophy and belief in the possibility of unfelt pains. We might predict, for instance, that 

there will be an inverse relationship—that belief in unfelt pains will go down as training in 

philosophy goes up. 

I will focus on comparison claims in this chapter, as the statistical tools it introduces 

concern certain types of comparison claims: t-tests are applicable when we’re comparing a 
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number we’ve assessed using a continuous measure, or a suitable approximation of it, either to a 

fixed point (one sample t-tests) or to another such number (independent samples t-tests, paired 

samples t-tests, partially paired samples t-tests), and if some other assumptions hold. I’ll return 

to this below. For now, the key thing is that the type of claim your hypothesis makes will matter 

not just for the plan you develop for testing your hypothesis, but how you analyze your results 

after conducting the study. 

The next step in the research process concerns developing a plan to test your hypothesis, 

starting with formulating a design for your study. Deciding on a design involves a number of 

factors, including the specifics of the hypothesis you’re looking to test and the type of claim it 

makes (estimation, comparison, or relation), among others. In turn, the design you arrive at will 

specify a number of important details about your study, including the type of study it is (i.e., a 

true experiment versus a quasi-experiment or a descriptive study) and the variables you will be 

manipulating and measuring in your study. The type of study you conduct and the types of 

variables in it are connected. There are two basic types of variables—the things that are varied in 

your study (known as independent variables or predictor variables) and the things that are 

measured (dependent variables or response variables). Every study will have at least one 

response variable. In the studies we’ll be looking at, these correspond with the test questions that 

we ask participants. Not every study will have predictor variables, however: in some studies 

there is just one condition—nothing is varied and every participant gets participant gets treated 

the same. These are descriptive studies. The case study we’ll focus on in this section is an 

example of such a study. In other studies something is varied, either by nature (quasi-

experiments) or by the researcher (true experiments). Studies looking at demographic differences 

in philosophical intuitions, such as Machery et al. (2004), are a classic example of the former. 
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The study from Sytsma and Snater (2023a) discussed in Section 5 is a good example of the latter. 

While a general theoretical exploration of these differences and how they inform study design is 

beyond the scope of the present text—this requires quite lengthy texts on their own to cover—the 

process will be illustrated through the array of case studies presented, including those given in 

this chapter.6 

For studies involving the types of questionnaire methods we’ll be focusing on here—i.e., 

studies where you’re asking participants to answer one or more questions—the next step will be 

to construct the instrument you will use. Again, questionnaire design is a large topic and one that 

we will largely illustrate via examples.7 A few preparatory remarks will help with understanding 

the process, however. Most often in experimental philosophy questionnaires center on presenting 

participants with a short framing text, or vignette, followed by one or more questions about that 

text, often employing a fixed scale as we’ll illustrate below. But these instruments are almost 

always comprised of more than this, generally also including a consent form that introduces the 

researchers and project, instructions that guide participants in completing the questionnaire, and 

various demographic questions (e.g., asking for the participant’s age, gender, and so on). You 

might also want to include check questions to test that participants are putting in sufficient effort 

(attention checks) and/or understand what is going on in the questionnaire (comprehension 

checks), as is illustrated in Section 4.  

To construct an effective questionnaire, I recommend thinking of it as a conversation 

between the researchers and the participants—a conversation that is shaped, in part, by each of 

 
6 For a more extended if still quite brief general introduction study design directed at experimental philosophers, see 
Chapters 7 and 8 of Sytsma and Livengood (2015). For an excellent introduction to research methods and design in 
psychology, see Goodwin and Goodwin (2016). For a more advanced treatment, see Shadish et al. (2001). 
7 See Chapter 11 of Sytsma and Livengood (2015) for a more extended discussion. See Sudman et al. (1996) and 
Schuman and Presser (1996) for excellent book-length treatments.  
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the components of the questionnaire and how you phrase them. The key point here is to be on the 

lookout for how your questionnaire might lead the conversation astray, potentially generating 

responses from participants that don’t actually reflect the judgments you wanted to measure. This 

is not an easy task, however, and several potential pittfalls will be illustrated in the case studies 

presented below.   

Once you’ve designed your study and constructed the instrument, the next step is to carry 

it out. This involves getting ethics approval, piloting and refining the instrument, and 

determining how you’ll recruit participants. Piloting is basically to take your study out on a test 

run, conducting a preliminary version on a small number of participants. Often this might 

involve using a modified version of your instrument, typically including additional open-ended 

questions that ask participants to explain their answers to the central questions you’re interested 

in. The goal here is to identify problems with your study design and conversational pitfalls in 

your instrument before committing full resources to this study. Pilot testing is an important part 

of good research practice, but is often overlooked by new practitioners. If your pilot study 

reveals issues with your design or instrument, you’ll want to make modifictions and then pilot 

again before finally running your full study.  

Once you’ve run the study, you’ll need to analyze and interpret the results. I’ll illustrate 

this in the examples below, but first it is important to say a little bit about why we perform a 

statistical analysis in the first place. It might seem that all that is needed at this stage is to 

describe the basic details of your results, perhaps simply noting how participants responded to 

the questions you asked. But statistical analysis goes beyond giving such basic details: it 

involves drawing inferences on the basis of your data and offering a justification for those 

inferences. In conducting empirical research, our goal is to use observation to answer questions 
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about the world. But many of the questions we want to answer cannot be adequately addressed 

just through simple observation either because we cannot exhaustively observe what we’re 

interested in or because we’re interested in something that cannot be straightforwardly observed 

(or both). For instance, suppose we want to know something relatively straightforward, such as 

whether a majority of people believe that unfelt pains are impossible. People’s beliefs are not 

something that we can directly observe (as of yet) and figuring out how to assess belief with 

regard to an abstract question like the possibility of unfelt pains is no easy task. Setting this 

aside, however, we’re still left with the issue that we aren’t in a position to survey all people. 

Heck, we generally won’t be in a position to interact with more than an extremely small fraction 

of the population we’re interested in! So how do we answer our original question, moving from 

the relatively small number of participants we received responses from to conclusions about the 

wider population they’re part of? We employ statistical inference. 

The goal of statistical inference is to make an educated guess about things that we have 

not yet observed on the basis of things that we have observed. More technically, we infer 

something about features of a population (what we call ‘parameters’) from observations of 

corresponding features of a sample drawn from that population (what we call ‘statistics’). In 

doing so, we reason that since most samples drawn from a population will have features that are 

similar to the features of the population they’re drawn from, and since similarity is symmetric, 

we should expect the population to have similar features to the sample. Of course, the population 

of interest is unlikely to have exactly the same features as any given sample. As such, we 

wouldn’t be justified in simply asserting that the population has the same features as the sample. 

What we could reasonably say, however, is that the features of the population (the parameters) 

are probably and approximately the same as the features of the sample (the statistics). In other 
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words, we infer parameters from statistics, while recognizing the hedge that this is only probably 

and approximately the case. A key part of our statistical analysis—including using tools like t-

tests—is then to flesh out this ‘probably and approximately’. Let’s see how this all works by 

considering a preliminary example drawn from Sytsma (2010a), which provides important 

background for the case study that we’ll walk through in the remainder of this section. 

 

3.2 Background 

My work on the commonsense conception of pain grew out of more general work in 

experimental philosophy of mind investigating whether non-philosophers tend to have a concept 

that is suitably similar to the philosophical concept of phenomenal consciousness introduced 

above. In Sytsma (2010a), I note that it is common for philosophers of mind to make 

assumptions about folk psychology—assumptions about our ordinary, pre-theoretical thinking 

about the mind—in discussions of phenomenal consciousness. This includes that both realists 

(e.g., Chalmers 1995) and skeptics (e.g., Dennett 1991) about phenomenal consciousness take 

the concept to be a part of folk psychology, assuming that the existence of qualia is 

pretheoretically obvious. Claims about folk psychology are empirical claims, however, and it is 

quite possible for scholarly training to skew our perspective on ordinary, pre-theoretical thinking. 

Focusing on whether lay people tend to have a concept of phenomenal consciousness, I noted 

that empirical work was beginning to be done on the question and I surveyed conflicting findings 

from Knobe and Prinz (2008), who argue in favor of the claim, and Sytsma and Machery (2010), 

who argue against.8 

 
8 A number of criticisms have been raised against each of these works. For responses to Knobe and Prinz (2008), see 
Sytsma and Machery (2009), Huebner (2010), Arico (2010), Strickland and Suben (2012), Phelan et al. (2013). The 
most prominent criticism of Sytsma and Machery (2010) has been the ambiguity objection (Sytsma 2016), which has 
been raised by Huebner (2010), Peressini (2013), Fiala et al. (2013), and Chalmers (2018). For recent responses, see 
Sytsma and Ozdemir (2019), Ozdemir (2022), Sytsma (n. d.). Objections to our explanation of our results have been 
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Sytsma and Machery (2010) present evidence that lay people, in contrast with 

philosophers, treat two prototypical examples of supposed phenomenally conscious mental 

states—seeing red and feeling pain—quite differently. In our main study we gave participants 

either a description of a normal human or a simple non-humanoid robot performing behaviorally 

analogous tasks expected to elicit attributions of one or the other of these mental states for the 

human, then asked the participants whether the entity (human or robot) had the mental state at 

issue (saw red, felt pain). We found that while philosophers tended to treat both states similarly, 

denying that the robot either saw red or felt pain, lay people tended to treat them differently, 

denying that the robot felt pain but affirming that it saw red.9 Based on these results we argued 

that if lay people were employing the concept of phenomenal consciousness in responding to 

these questions, then they should have treated the two states similarly, just as the philosophers 

did. But they did not. We took this to suggest that the lay participants were not generally 

employing the concept of phenomenal consciousness. 

Building off of the arguments given in Sytsma (2009, 2010c), in my (2010a) I further 

explored one explanation for the pattern of findings for lay people found in Sytsma and Machery 

(2010). I hypothesized that this pattern reflects that lay people tend to hold a naïve view of both 

colors and pains: rather than treat colors or pains as qualities of mental states, they conceive of 

them as qualities of objects outside of the mind/brain. Focusing on pain, the idea is that people 

tend to deny that the simple robot in our study feels pain because they conceive of pains as being 

 
raised by Talbot (2012), Buckwalter and Phelan (2013), as well as the studies discussed below suggesting that 
participants’ responses reflect that they tend to hold a naïve view of colors and pains. 
9 In general, we shouldn’t accept a conclusion based on just one set of results. Rather, our credence in the results 
should be tempered and should rise as they are replicated—as similar results are found in subsequent studies, 
especially studies by other researchers. This includes both exact or approximate replications, which attempt to repeat 
a study as closely as possible, and conceptual replications that test the same hypothesis in another way (see Cova et 
al. 2021). The key result from Sytsma and Machery (2010) has been replicated a number of times, including in 
Sytsma and Machery (2012), Sytsma (2012), Sytsma (2013), Sytsma and Ozdemir (2019), Cova et al. (2021), and 
Ozdemir (2022). 
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instantiated in injured body parts, but doubt that the robot has the right sort of body parts to 

support pains. On this view, while soft and fleshy body parts can instantiate pains, hard and 

metallic body parts cannot. This hypothesis not only explains the pattern of results in Sytsma and 

Machery (2010), however, but also suggests against the claim that common sense supports the 

standard view of pain among philosophers. 

In my first study in Sytsma (2010a), I asked participants a set of questions about how 

they understand colors. The results were consistent with lay people tending to hold a naïve view, 

with a majority of participants answering that colors are properties of external objects, denying 

that they are mental or mind-dependent, and denying that spectrum inversion is possible (as we 

would expect if they treated colors as belonging to the objects seen rather than to perceivers). 

Study 2 extended these findings to pains, in addition to colors. Results were comparable, with a 

majority of participants seemingly embracing a naïve view for both colors and pains, treating 

these as properties of things outside the mind/brain and denying that they are mental or mind-

dependent. Further, this study included a question about unfelt pain: ‘Do you think that there is 

still pain in a badly injured leg even when the person is not aware of it?’ I hypothesized that if 

people tend to hold a naïve view, taking pains to be properties of injured body parts, then the 

presence (or absence) of the pain would not depend on whether the person felt that pain. And, 

indeed, a majority of participants answered this question affirmatively, suggesting that they hold 

that unfelt pains are possible. The next two studies explored this finding further. Let’s walk 

through the process of designing, conducting, and analyzing Study 3 from this paper in more 

detail. 
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3.3 Research Question 

Recall the research process laid out above. The first step is to formulate a research question. I 

indicated that for research in experimental philosophy, it is best to first start with formulating an 

argument with an empirical premise. We’ve just surveyed the broader dialectic that Sytsma 

(2010a) fits into. Focusing on just Study 3, however, we can lay out a rather straightforward 

argument. We’ve seen that according to the standard view of pain in philosophy there can be no 

unfelt pains, and this is often supported by appeal to the (supposed) dictates of common sense. If 

common sense allows for unfelt pains, however, then the standard view would not enjoy this 

support. The key empirical premise here is that common sense allows for unfelt pain.  

This premise requires some clarification and specification before we can test it, however. 

Most importantly we need to determine what such claims about common sense amount to. As 

detailed in Section 1, claims that common sense precludes unfelt pains in the literature are often 

laid out in terms of our intuitions about hypothetical cases involving someone being injured but 

not feeling pain, with the suggestion that people will generally have the intuition that in such 

cases there is no pain. This suggests a general strategy for testing: Give participants a vignette 

describing such a case and then ask them whether the injured person had a pain despite their not 

feeling it. Since we’re not varying the vignette or the question, this would be a descriptive study: 

it doesn’t have any predictor variables and has just one response variable (the question we ask 

about whether the case involves an unfelt pain). Our predictions for this study concern the 

response variable: The standard view predicts that the majority of participants will give a 

negative response to this question; in contrast, if people tend to hold a naïve view of pain, then 

we would expect the opposite—that the majority will give an affirmative response. Each of these 

predictiosn make a comparison claim: in making the prediction that the majority will give an 
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affirmative response, for example, we’re predicting that the number of affirmative answers will 

be greater than 50%.  

 

3.4 Research Design 

Having developed a research question, the next step is to put together a research plan, starting 

with deciding on a study design. The hypothesis formed in the first stage will help guide the 

design of your study. In the present case, my hypothesis concerns how people will tend to 

respond to a question about a simple scenario: Will people tend to judge that an injured person 

has a pain even if they don’t feel it? As such, there is no need to compare responses between 

samples drawn from different populations (as in a quasi-experiment) or between participants 

assigned to different conditions (as in a true experiment). As we just noted, a descriptive study is 

sufficient here. This means that there is no need to worry about predictor variables (independent 

variables) for the present study, and given that it involves just one question of interest the study 

can be restricted to a single response variable (dependent variable). In other words, for this study 

I simply want to give participants a description of a scenario about an injured person who doesn’t 

feel pain and ask them a question about whether that person has a pain. As such, I just need to 

develop a single instrument that each participant will receive.  

 

3.5 Constructing the Instrument 

As noted above, a full instrument will typically include an introduction, instructions to 

participants, and demographic questions, in addition to the philosophical probe that we’re most 

concerned with—the vignette and questions that test our hypothesis. The full instrument I 



 

19 
 

developed is available in the supplemental materials [Sytsma_2010a_STUDY_3.pdf].10 Here 

I’ll focus on the philoshiphical probe. For this study, I chose to describe a common scenario—an 

injured person being distracted and not noticing a pain. My aim was to describe this rather 

directly, keeping the text to a minimum. This has the potential benefit of maintaining 

participants’ attention (which can wain with longer probes or questionnaires) and avoiding extra 

verbiage that might bias their responses one way or another. After the scenario, I then wanted to 

ask participants whether the subject of the story still had the pain or whether there was no pain 

during this period. At a first pass, the response options here would appear to be binary: either 

there is a pain or there isn’t. But I wanted to allow for participants to register that they weren’t 

sure about the answer, as well as degree of certainty in a response. As such, I asked participants 

to answer using the partially anchored 7-point scale shown below (Figure 1). Here the end points 

are anchored with text descriptions, as is the midpoint of the scale. Of course, a number of 

alternative decisions could have been made in designing this study, including the vignette used, 

the framing of the question, and the response options. I will return to some of these choices 

below in detailing subsequent studies. 

 
10 Standardly, this should include questions about the participants age and gender. (If I were to run this study now, I 
would include an option for “non-binary” in the gender question, and I encourage you to do the same in your 
studies.) Given the concern with common sense, I also wanted to check whether participants had training in 
philosophy or areas where they might have been taught scientific accounts of nociception. Finally, given concerns 
about the relevant population for the claims about the commonsense conception of pain, discussed below, I asked 
about participants’ native language. 
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Figure 1: Vignette and scale for Study 3 in Sytsma (2010a, 124). 

 

3.6 Conducting the Study 

The next step in the research process is to conduct the study. As noted above, this involves 

getting ethics approval and, especially for more involved studies, piloting them. Given the simple 

nature of the present study, I didn’t formally pilot it, but rather asked friends and colleagues for 

their input. In conducting a study, a key decision point is figuring out how you’ll recruit 

participants. This involves determining what the relevant population is and figuring out how to 

obtain a sample from that population. Often the relevant population will be somewhat unclear. 

When philosophers claim that common sense tells us that there can be no unfelt pains, it is 

plausible that this is thought to be something common to all people with a concept of pain. But 

we might also suspect that at least some aspects of common sense will be culturally variable. 

Further, we’ve seen that claims about the common sense understanding of pain are often coupled 

with claims about how we talk about pain. And, of course, pain language will vary between 

groups of language users. As such, in all but the last of the studies I’ll detail in this chapter, the 

target population is narrower, being comprised of English speakers in North America. A question 
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therefore remains about how widely these results generalize, although some cross-cultural work 

on ordinary conceptions of pain has been done (e.g., Kim et al. 2016, Sytsma and Reuter 2017). 

Even for a narrower population like English speakers in North America, however, it is 

impossible to exhaustively survey members of the population and we’ll need to content ourselves 

with testing just a small sample of the larger population. Ideally, we would sample randomly 

from the population, such that each individual was equally likely to be chosen for our sample. In 

practice, however, researchers are seldom, if ever, in a position to solicit a truly random sample: 

we simply don’t have equal access to each member of a population. Instead, we do what we can, 

aiming to use a recruitment method that we hope will produce a reasonably unbiased sample 

with regard to our research question. Typically, this will involve convenience sampling: we 

sample from the people we have access to—those people who are convenient for the researcher. 

While this is non-ideal, concerns can be at least partially alleviated by using different recruitment 

methods, as I will illustrate below. 

For the present study, I used a participant pool that was convenient to me—students in 

introductory classes at the university I was attending. To do this I talked with the instructors for 

two courses I had not previously surveyed and got permission to administer the questionnaire at 

the start of one of their classes. The instrument was printed out on paper and handed out to 

students.11 Using classroom samples like this means that there will be some variability in how 

many participants complete your questionnaire, based on how many students attend class that 

day and choose to complete the survey. In the present case, this generated 54 responses 

(excluding one person who took the survey in both classes). Ideally, however, we would first 

 
11 It is more common today to use online samples, as will be illustrated in studies described in subsequent sections. 
To do this you’ll need to create a web-based version of the instrument. Most often this is done using survey software 
such as Qualtrics or Lime Survey, as described in Chapter 1. 
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estimate the sample size that we need. We’ll return to this process in §4.2 after we’ve finished 

with this first case study.  

One disadvantage of in-class studies, as opposed to studies conducted online, is that after 

collecting the completed questionnaires you’ll need to enter the responses into a digital form. I 

did this by hand, looking through each questionnaire and entering the responses for each in a row 

of a spreadsheet. (A reduced version of this spreadsheet is available in 

[Sytsma_2010a_STUDY_3.csv], which removes unnecessary demographic details to further 

protect anonymity.) Entering data by hand can be a slow process, especially for large studies, and 

potentially creates an extra source of human error. This is one reason that many now prefer to 

use online samples. 

Classroom samples will also tend to be less varied than the larger population in a number 

of ways, including that they will tend to be younger (the average age of my sample was 19.6 

years) and more likely to have education in relevant areas. Indeed, I found that five participants 

had more than minimal training in philosophy or psychology.12 The responses of these 

participants were removed based on criteria specified prior to running the study. Ideally, such 

criteria, as well as other important details of your studies (e.g., predictions and plans for 

statistical analysis) will be registered before conducting your study. Such pre-registration is now 

considered best practice and is becoming increasingly common. This can be done using websites 

like https://osf.io/, which also provides a repository for materials and data. 

 

 

 
12 Participants were counted as having more than minimal training in philosophy or psychology if they indicated that 
they had completed some graduate work in philosophy or psychology, had completed an undergraduate degree with 
a major in philosophy or psychology, or were completing an undergraduate degree with a major in philosophy or 
psychology. 
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3.7 Analysis 

Basic data for Study 3 from Sytsma (2010a) is available in the supplemental materials as a 

comma delineated spreadsheet—[Sytsma_2010a_STUDY_3.csv]—with responses to the main 

test question shown in the column labeled ‘RESPONSE’. To explore this data, I’ll use the free 

statistical software package R, which you can download from http://cran.r-project.org. We’ll 

walk through the very basics of what you need to start using R to run t-tests here in this chapter. 

That said, it is important to note that R is a full-featured programming environment, such that it 

would be impossible to give a detailed overview of how to use it here. Fortunately, there are 

many excellent resources for using R. For a brief introduction, you might start with Chapter 10 in my 

text—Sytsma and Livengood (2015)—which also includes pointers to other references for learning to use 

R. To help with learning R, the code used for each analysis in this chapter is available in the 

supplemental materials. For the present study, this is provided in 

[Sytsma_2010a_STUDY_3.txt]. This file can be read using any standard text editor and I’ll 

reproduce it piece-by-piece below as we walk through the analysis. Once you’ve installed R 

using the link above, simply open the txt file and you can follow along with the analysis by 

either copying-and-pasting the relevant lines from the file or by typing the text in at the 

command prompt in the R console window (the red “>”), as shown in Figure 2.  
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Figure 2: R console window with a standard first program when learning a new 
programming language (printing “Hello World!”). 
 
 

3.7.1 Getting Started and Loading the Data 
 
Looking at the file, the first thing you’ll notice is that it starts with the following two lines of 

text: 

#install.packages("lsr") 
library(lsr) 
 

Together these lines of text will be used to install the lsr package and then load it from the 

corresponding library. A package is basically a collection of functions (and usually other stuff 

such as data sets) that someone has built and documented for use in R. Generally, you can find 

information about a given package on the CRAN website noted above.13 A library is simply 

where the package is stored once it is installed. We’ll return to the lsr package below when we 

 
13 For the lsr package this is available at https://cran.r-project.org/web/packages/lsr/ 
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use the cohensD() function from it.14 Functions will be distinguished by name followed by a 

pair of parentheses and are used to tell R to do some specific thing, such as to install a package 

(i.e., the install.packages() function) or load an installed package from a library (i.e., the 

library() function). Most of the time, however, we need to give R more guidance about what 

we want it to do. For example, we’ll need to tell it which package we want it to install or load. 

We do this with arguments, which are specific bits of text that go inside the parentheses, such as 

"lsr" in install.packages("lsr") and lsr in library(lsr). In each of these 

cases just a single argument is supplied to the functions, but as we’ll see below we often want to 

tell a function multiple things. In such cases we’ll do this by supplying multiple arguments, 

which will be separated by commas within the parentheses (such as 

cohensD(D3$RESPONSE, mu=4) which we’ll discuss below). 

 So, each of the two lines of text at the start of our file calls a function, supplying R with a 

single argument for that function. If you simply paste these two lines into R, however, you’ll 

probably get the following error: 

Error in library(lsr) : there is no package called ‘lsr’ 

This is because you need to install the package before you can load it into R… and the line of 

code that does this is commented out. Basically, the # mark tells R that the text following it is 

just a comment, not something it needs to pay attention to. So when you enter the first line of 

text from the file—#install.packages("lsr")—R will just ignore the function call and 

won’t install the lsr package. I’ve added the # mark here because you’ll only need to install the 

package once, so after the first time you run the code you’ll want R to ignore this line.  

 
14 Details about many functions in R can be found through the RDocumentation website, including for the 
cohensD() function: https://www.rdocumentation.org/packages/lsr/versions/0.5.2/topics/cohensD 
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 Try entering the first two lines of text again, but this time exclude the # mark from the 

first line: 

install.packages("lsr") 
library(lsr) 
 

The first line will pop up a window asking you to select a ‘mirror’; that is, a place to download 

the package from. You can simply leave it on the default location and select ‘OK’ or else choose 

a location that is close to you. R should now install the lsr package for you. Once that is done, 

you should be able to enter the library(lsr) command without error. This will load the 

package so we can use it later. 

 The next thing you’ll see in the script are three lines starting with the # mark: 

######################################### 
# Load Data for Sytsma (2010a), Study 3 # 
######################################### 
 

This is another comment for the user—it tells the person reading the code what is going on… 

and tells R to ignore it. Here it tells us that the next line in the code will load data from the study 

we’ll be looking at. Specifically, it uses the read.table() function to load the comma 

delineated spreadsheet noted above—[Sytsma_2010a_STUDY_3.csv]—from my desktop: 

D3 = read.table("C:/USERS/jmsyt/Desktop/Sytsma_2010a_STUDY_3.csv",  
header=TRUE, sep=",") 
 

To use this yourself, you’ll need to edit the path to point to where the file is on your own 

computer (i.e., change the bit that reads C:/USERS/jmsyt/Desktop/ to indicate where the 

file is on your computer, which can found by right-clicking the file and selecting ‘Properties’ on 

a typical Windows PC or ‘Get Info’ on a typical Apple computer). Once you run this line, R will 

read the table from the spreadsheet and copy it into the variable D3. After loading the data, if you 

simply enter the variable name into R—if you type D3 and hit enter—it should display the data 

from the table, as shown in Figure 3.  
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Figure 3: Displaying data from Sytsma (2010a), Study 3, in R. 
 

 

3.7.2 Basic Visualization and Statistics 

Having read in this data and stored it in D3, we can now do any number of things with it in R. 

We’ll begin by using it to provide some basic details about the data, starting with looking at how 

many participants selected each response option (1 to 7) for the probe question. I began by 

generating a histogram using the hist() function in R. This gives a visual display of the 

number of participants selecting each answer choice. To do this I supplied two arguments to the 

function: 

hist(D3$RESPONSE, breaks=BreakValues) 

The first argument tells R that we want to use the values for RESPONSE from D3 (the $ symbol 

telling R to use that column from the table), while the second provides a list of values for how to 

divide up the lines on the histogram, which was provided using the c() function (the 
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concatenate function) in the previous line. This tells R to generate a histogram for the responses 

that centers the bars on the whole numbers from 1 to 7. To make this still more informative, I 

then added a dotted line to the histogram centered on the mean—the average response to the 

question—using the following command, which uses the lines() function, with calls to the 

c() and mean() functions in the arguments: 

 lines(x=c(mean(D3$RESPONSE),mean(D3$RESPONSE)), y=c(0,18),  
type="l", col="red", lty="dashed") 

 
Finally, I used the nrow() function, which counts the number of rows in our table that meet a 

certain criteria, to give an exact count for each response option: 

nrow( D3[ D3$RESPONSE == 1, ] ) 
nrow( D3[ D3$RESPONSE == 2, ] ) 
nrow( D3[ D3$RESPONSE == 3, ] ) 
nrow( D3[ D3$RESPONSE == 4, ] ) 
nrow( D3[ D3$RESPONSE == 5, ] ) 
nrow( D3[ D3$RESPONSE == 6, ] ) 
nrow( D3[ D3$RESPONSE == 7, ] )  
 

Specifically, I had R count the number of rows in the table stored in D3 where RESPONSE was 

equal to 1, the number of rows where RESPONSE was equal to 2, and so on. The results have 

been added to the txt file after the command using the comment mark (#), as seen in Figure 4, 

which shows the console output and the histogram for this block of code. 
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 Figure 4: R output for initial script for analysis of Study 3 from Sytsma (2010a). 

 

My next step was to calculate a few basic statistics for the responses to the probe 

question, including the mean and the standard deviation, which tells us about how the responses 

tend to spread out around that average, as well as the basic demographic questions I included in 

the sample data file: 

mean(D3$RESPONSE) # 2.57  
sd(D3$RESPONSE)   # 1.67 
nrow(D3)          # N=49 
mean(D3$AGE)      # 19.6 
min(D3$AGE)       # 18 
max(D3$AGE)       # 43 
mean(D3$GENDER)   # 61.2% women 
 

From the histogram we can readily see that a large majority of the responses to the test question 

were below the midpoint of 4, with 41 of 49 participants (83.7%) giving a response of 1, 2, or 3 
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on the 7-point scale. In other words, most of the participants leaned toward answering that the 

injured person in the vignette was ‘clearly in pain, but not feeling it’. Not surprisingly, the mean 

response (M = 2.57) is also below the midpoint. This is in line with the prediction I made. As 

noted above, however, my concern is not specifically with this set of 49 people. Rather, the goal 

is to say something about the population of interest and I’m simply using the responses of these 

participants as an imperfect guide to what the larger population is like in this regard. As such, I 

need to do some statistical inference. 

 

3.7.3 Null Hypothesis Significance Testing and the Basics of T-tests 

There are different ways of doing statistical inference. The most common is Null Hypothesis 

Significance Testing (NHST).15 In NHST we specify a null hypothesis that corresponds with 

finding no effect, then test how likely it is that we would have gotten data at least as extreme as 

the responses observed if the null hypothesis were true (and if other test assumptions hold). If 

this is suitably unlikely, then we reject the null hypothesis and take the results to be in line with 

our hypothesis. 

In the present study, my hypothesis was that a majority of the population holds that unfelt 

pains are possible and so would respond that the subject of the vignette had a pain. One way of 

specifying this hypothesis (but not the only way), is to predict that the mean response would be 

below the midpoint on the scale. The relevant null hypothesis for this prediction is, then, that the 

mean response is at or above the midpoint on the scale. Clearly, the mean response for my 

sample was below the midpoint. But this might happen just by dumb luck even if a majority of 

 
15 One increasingly popular alternative is the use of Bayesian statistics, although this remains rare in experimental 
philosophy. A discussion of Bayesian statistics is well beyond the scope of the present chapter, but see Section 13.3 
in Sytsma and Livengood (2015) for a Bayesian alternative to using t-tests and see Albert (2009) for a more general 
introduction to Bayesian statistics in R. 
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the people in the population believe that unfelt pains are impossible. We use a statistical test to 

put bounds on how likely this is. More carefully, we calculate a conditional probability for 

getting data at least as extreme (relative to the null hypothesis) as the data we actually got if the 

null hypothesis is true (and if various test assumptions hold). This conditional probability is 

called a p-value and if it is sufficiently small, we reject the null hypothesis. What counts as 

sufficiently small depends on the significance level specified, with 0.05 being conventional.16 

The statistical tests I’ll be focusing on here are t-tests. They are among the simplest and 

most commonly used statistical tests. Despite the way they are sometimes discussed, t-tests are 

actually a family of related procedures, including one sample t-tests, independent samples t-tests, 

and paired samples t-tests. What unites all of these tests is that the reference distribution for the 

comparison is a t-distribution. We needn’t worry too much about what this means, here, but the 

t-distribution is closely related to the normal distribution (a standard bell curve). Indeed, the 

difference between the distributions becomes negligible as the degrees of freedom increases, 

where this is related to the sample size.17 What is most important, for present purposes, is that 

this generates a key assumption that is at play when we use t-tests—that the feature we’re 

interested in is normally distributed in the population. This means that if we plotted the 

histogram for the entire population, as we did above for our sample, the resulting histogram 

would approximate a bell curve. Of course, this isn’t something that we’ll typically know about 

 
16 Sometimes a significance level of 0.01 is used instead. See Benjamin et al. (2018) for an argument that we should 
lower this still further to 0.005. 
17 You can demonstrate this for yourself in R using the dnorm() and dt() functions to plot a normal curve and t-
distributions, respectively. For example, the following code will compare the normal distribution to the t-distribution 
with degrees of freedom of 1, 5, 10, and 20: 

curve(dt(x, df=20), from=-5, to=5, col="green", 
      main="Distribution Comparison", 
   ylab="Density") 
curve(dt(x, df=10), from=-5, to=5, col="orange", add=TRUE) 
curve(dt(x, df=5),  from=-5, to=5, col="red", add=TRUE) 
curve(dt(x, df=1),  from=-5, to=5, col="purple", add=TRUE) 
curve(dnorm(x), from=-5, to=5, col="black", add=TRUE) 
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our population. Nonetheless, the date from our sample can give us an indication of whether the 

assumption is warranted following the same logic as above (i.e., that features of the population 

are probably and approximately the same as features of the sample). The histogram for the 

present study, however, should give us some pause with regard to this assumption, since it 

doesn’t obviously approximate a bell curve.  

A second reason for pause is that t-tests assume that our data have interval scale such that 

they can be taken to approximate a continuous distribution. Interval scale means that the distance 

between a response of 2 and 3 on our scale, for example, is the same as between a response of 3 

and 4, as opposed to these responses simply being rank-ordered as in finishing places in a race. 

The assumption of interval data is controversial for scales like those most commonly used in 

experimental philosophy, including the scale used in the present study. Nonetheless, while there 

are often reasons to doubt each of these two key assumptions (normal distribution and interval 

data), in practice t-tests are rather robust. As we proceed, though, I’ll briefly detail alternative 

tests that do not make these assumptions. As we’ll see, they lead to comparable conclusions in 

these case studies, and in my experience this is very often the case (hence the robustness). 

 

3.7.5 Directionality and Conducting a One-sample T-test 

Running t-tests is very easy in R. In fact, we can use the same function—the t.test() 

function18—for each of the three types of tests that we’ll be focusing on in this chapter. (For the 

fourth type of t-test I noted above—partially paired samples t-tests discussed in Box 1—we’ll 

need to use a different function, but such tests are quite rare and aren’t likely to be something 

you’ll need to worry about.) Recall from above that we said that t-tests are applicable when 

 
18 Once again, details for functions in R can be found through the RDocumentation website, including for the t.test() 
function: https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/t.test 
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we’re comparing a number we’ve assessed using a (suitable approximation of a) continuous 

measure to either a fixed point or to another such number, and if other assumptions hold like 

those we just discussed. As such, we’ll need to tell the t.test() function the two things we’re 

comparing—within the parentheses we’ll need to supply one argument pointing R to the data for 

the first number and a second argument for what that number is being compared to. If we’re 

comparing to a fixed point, then the appropriate t-test will be a one sample t-test and we’ll 

simply provide the number for that point as the second argument in the t.test() function. If 

we’re comparing to another number we’ve assessed, however, then we’ll want to run one of the 

remaining tests, which apply to comparisons between samples and vary based on the relationship 

between those samples—whether they are two different samples (independent samples), the 

same samples (paired samples), or a mixture of the two (partially paired samples).  

 What type of comparison are we interested in for the present study? Recall from our 

previous discussion that the null hypothesis for Study 3 in Sytsma (2010a) is that the mean 

response to the test question will be at or above the midpoint on the 7-point scale (i.e., comparing 

to 4). Of course, the midpoint on the scale is a fixed point, not a second number that we’ve 

assessed by collecting additional data. As such, we will want to use a one sample t-test. This is 

done in the first line of code in the next section of our txt document: 

##################### 
# Statistical Tests # 
##################### 
   
t.test(D3$RESPONSE, mu=4, alternative="less") 
# t(48)=-5.99, p<.001 
 

Here the mu=4 argument is telling R that the relevant comparison for our response data 

(D3$RESPONSE) is to the fixed point of 4.19 

 
19 The Greek letter μ (or mu) is standardly used in statistics to represent the population mean.  
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 What about the third argument in our function call (alternative="less")? This 

specifies the direction of the test. Specifically, we could have been predicting any of three types 

of relationship here—either that the mean response would be less than 4, that it would be greater 

than 4, or that it would simply be different from 4, such that it is concerned with both sides 

(either less than or greater than 4). These are indicated by supplying the argument 

alternative="less", alternative="greater", or 

alternative="two.sided" respectively (note that if you leave out this argument, it will 

default to a two-sided test). I chose to do a one-sided test in this case because I had a directional 

hypothesis—I predicted that the mean would be less than 4—and a corresponding null 

hypothesis: the null hypothesis does not simply state that the population mean is the midpoint, 

such that we could reject the null hypothesis if the sample mean was suitably above or below 4, 

but that the mean is at or above the midpoint. This means that we can only reject the null 

hypothesis if the sample mean is suitably below the midpoint. As such, we can specify that the 

alternative hypothesis is that the mean is less than mu=4 by adding the argument 

alternative="less" to the function call. In my experience, when you use a one sample t-

test, it is quite likely that you’ll have a directional hypothesis. But it might be that you simply 

predict that the mean is different from a specified value to make the test more conservative (it is 

easier to get a significant result using a one-tailed test than a two-tailed test). Indeed, it is 

common for researchers to report two-tailed tests even when they had a directional hypothesis. If 

this is desired, however, my preference would instead be to use a one-tailed test with a more 

stringent choice of significance level. 

When we run our t-test, as specified above, R will provide an output that gives us a good 

bit of information about our statistical test: 
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    One Sample t-test 
 
data:  D3$RESPONSE 
t = -5.9851, df = 48, p-value = 1.321e-07 
alternative hypothesis: true mean is less than 4 
95 percent confidence interval: 
     -Inf 2.971765 
sample estimates: 
mean of x  
 2.571429 
 

Perhaps most importantly, this output gives us the p-value, which is quite small indeed— 

1.321e-07 or 0.000000132—and is obviously well below the conventional cut-off of 0.05. This 

means that we can say that the mean is significantly below the midpoint at the specified 

significance level (see also Chapter 1), although the latter specification of significance level is 

often left implicit. Other key information for reporting the test appears on the same line—the  

t-value (t = -5.9851) and the degrees of freedom (df = 48). Here is how I reported this in 

Sytsma (2010a, 124):  

t(48) = -5.985, p < 0.001 (one-tailed) 

As illustrated here, for p-values below 0.001 (like 0.000000132) we typically just specify 

p < .001. In addition, it is important to specify whether you performed a one-tailed or two-tailed 

test, and in addition I would include the type of test in the text—e.g., that we performed a one-

sample t-test comparing the mean response to the neutral point of 4. 

Other useful information in the output is the 95% confidence interval. Testing a null 

hypothesis is intimately related to determining confidence intervals. Specifically, a null 

hypothesis is rejected at a specified significance level—standardly denoted —when the value 

or range that the null hypothesis specifies is outside of the (1 – ) * 100% confidence interval 

calculated for the sample. Using the 0.05 significance level, this is the 95% confidence interval 
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given in the output.20 Since we used a one-tailed test, the lower bound is given as negative 

infinity in this output, indicating that no value we found would fall below the lower bound. As 

such, it is the upper bound of 2.971765 that matters for us here. Since 4 falls above this upper 

bound (2.971765 < 4), the null hypothesis can be rejected (at the 0.05 significance level). Often 

95% confidence intervals will be included in bar graphs showing study results, as is shown in 

Figure 5 below. For this we would typically show the confidence interval for each side of the 

mean, however, which can be generated using a two-tailed test. This is easily done by modifying 

the above function call: 

t.test(D3$RESPONSE, mu=4) 

As expected, this produces a slightly different output, since we’ve removed the directionality of 

the test, including giving a smaller p-value and a confidence interval that is positive on boths 

ends: 

One Sample t-test 

data:  D3$RESPONSE 
t = -5.9851, df = 48, p-value = 2.643e-07 
alternative hypothesis: true mean is not equal to 4 
95 percent confidence interval: 
 2.091511 3.051346 
sample estimates: 
mean of x  
 2.571429 
 

This new information can be reported by noting that the test showed a 95% confidence interval 

of [2.09, 3.05]. 

 

 

 

 
20 (1 – 0.05) * 100% = 95% 
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3.7.6 Statistical Significance versus Effect Size 

As noted above, the result of our test is significant, with the p-value (1.321e-07) being less than 

the standard cut-off of 0.05. Simply referring to a result as ‘significant’, however, while 

common, is also potentially misleading. In ordinary language, describing something as 

significant often means that it is important, sometimes with a connotation that it is large (e.g., a 

sales manager for a company reporting that they expect significant additional sales in the next 

year). But this is not what we mean when we say that the result of a statistical test is significant. 

Here we need to distinguish between statistical significance and effect size. When we report a t-

test and conclude that the result is significant, it is statistical significance we are reporting, and 

this simply means that we can reject the null hypothesis at the specified level. A result could be 

statistically significant, however, while the difference between the numbers we’re comparing is 

very small (say, for example, a sample mean of 3.9 compared to the midpoint of 4). This is 

because statistical significance depends on sample size, such that if we had a large enough 

sample size in our study, even a very slight divergence of the sample mean from the comparison 

point (or between means as we’ll see below) could be statistically significant. What we really 

want in addition to the p-value is a standardized indication of the size of the difference in our 

comparison. This is what effect size does. For a study like the present one, simply reporting the 

sample mean will give some indication of the effect size. Here, the mean response was 2.59 on a 

7-point scale, placing it roughly 1.41 points below the midpoint. While this is likely adequate in 

the present situation, better practice is to also report a measure of the effect size that makes it 

easier for comparison. 

For t-tests, the most common measure of effect size is Cohen’s d. Cohen (1988) provides 

helpful rules of thumb for interpretation: d = 0.2 is a small effect, d = 0.5 a medium effect, and 
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d = 0.8 a large effect. Here you can think of a small effect as one that will be difficult to discern 

with the naked eye, a medium effect as one that can probably be discerned, and a large effect as 

one that can definitely be discerned. A handy example provided by Cohen is that the difference 

in height between 15-year-old and 16-year-old girls in the United States is a small effect, while 

the difference in height between 13-year-old and 18-year-old girls is a large effect. Cohen’s d for 

the present study is readily calculated in R, here using a function from the lsr package that we 

installed and loaded at the beginning of the exercise: 

cohensD(D3$RESPONSE, mu=4) 

This outputs a value of 0.86, which indicates that the comparison between our sample mean and 

the midpoint of the scale shows a large effect size according to Cohen’s rule of thumb. 

 

3.7.7 A Non-parametric Alternative to a One Sample T-test 

As discussed above, t-tests involve a number of assumptions—importantly including that the 

feature we’re interested in is normally distributed in the population and that responses have 

interval scale—and often these assumptions are somewhat dubious for studies in experimental 

philosophy. This does not mean that you should avoid t-tests in your work, however. As noted, t-

tests are generally quite robust to violations of these assumptions. Nonetheless, is is important to 

be mindful of such issues. One easy way to do this is to also run a comparable statistical test that 

doesn’t make the same assumptions, such as a non-parametric test. Non-parametric tests do not 

make assumptions about the underlying distribution of the feature in the population or that your 

data has interval scale. There is never a free lunch, however, and these advantages of non-

parametric tests have a cost: they come at the expense of some statistical power, meaning that 

you’re less likely to get a significant result. One common non-parametric alternative to t-tests is 
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to use the Wilcoxon procedure, which is also easily run in R. For our present study this can be 

done with the following function call: 

wilcox.test(D3$RESPONSE, mu=4, alternative="less") 

This gives the following output (along with warnings that the p-value is an estimate, which we 

need not worry about here): 

    Wilcoxon signed rank test with continuity correction 
 
data:  D3$RESPONSE 
V = 178, p-value = 9.672e-06 
alternative hypothesis: true location is less than 4 
 

As expected, the p-value is slightly lower than what we saw above for the corresponding t-test, 

but is overall fairly comparable: the result is highly significant on either measure. For 

thoroughness, you could report the Wilcoxon test alongside the t-test and Cohen’s d, if desired, 

such as: t(48) = –5.99, p < .001 (one-tailed), d = .86; V = 178, p < .001 (one-tailed). 

 

3.8 Interpretation 

It is a commonly noted point that data is one thing, conclusions another, and that to draw a 

conclusion from a set of data involves interpretation. This is sometimes taken to suggest a divide 

between the objective, scientic study and the subjective, opiniated interpretation of it. But, as the 

above walkthrough hopefully draws out, there is no sharp divide like this in the research process. 

Indeed, the interests of the researcher are invariably present in forming a research question, in 

formulating and implementing a plan to address that question, and in analysing the results. This 

is not a bad thing. For instance, just focusing on the statistical analysis in the last section, given 

the data we collected there are any number of tests we might have run. For instance, we could 

have checked if there was a correlation between the responses of our participants to the test 

question and their age. This is certainly easy enough to do in R: 
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cor.test(D3$RESPONSE, D3$AGE) 
# r=.063, p=.67 
 

It is important to note, however, that our research question didn’t specifically concern age and 

we made no predictions about the relation between responses and age. And absent such a 

prediction, there is no null hypothesis, such that the NHST framework makes no sense. This does 

not mean that there is anything wrong with running the correlation test, but it does bear on how 

we should think about the result: we should treat this as merely exploratory, such that if we had 

found a potentially interesting relation we’d want to confirm it with a new study directed at 

testing the relation and making the relevant prediction in advance of looking at the data. The 

basic reason is that if we look at enough comparisons for a given dataset, some of them are likely 

to be statistically significant just by chance. We’ll elaborate on this point in Section 5 when we 

consider the question of correcting for multiple comparisons. 

 Nonetheless, while an element of interpretation is found throughout the research process, 

including the statistical analysis performed, once you’ve completed an analysis you’ll want to 

describe what it means—you’ll want to interpret those findings—typically focusing on drawing 

out the philosophically relevant conclusions. For the present study, recall that this project grew 

out of a wider set of work testing the common assertion in philosophy of mind that the concept 

of phenomenal consciousness is part of folk psychology, including the finding from Sytsma and 

Machery (2010) indicating that in contrast to philosophers, lay people treat two prototypical 

examples of supposed phenomenally consciousness mental states quite differently, happily 

ascribing seeing red to a simple robot while denying that the robot feels pain. Sytsma (2010a) 

explored one explanation for this finding, hypothesizing that lay people tend to hold a naïve view 

of both colors and pains. If people tend to hold such a view of pains, however, we would expect 

them to allow that there could be unfelt pains, in direct contradiction to the common justification 
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offered for the standard view in philosophy. The results of my second study gave an initial 

indication that people are open to the possibility of unfelt pains. My third study, then, attempted 

to test this more directly, generating my research question. This same research question guided 

the design and analysis of the study, and it in turn guides the interpretation of the results. 

 What we find is that the results from Study 3 in Sytsma (2010a) are in line with the 

prediction that lay Americans tend to allow for the possibility of unfelt pains. This in turn 

suggests against the standard view about the ordinary concept of pain in philosophy, while 

offering some support for the alternative hypothesis that the ordinary concept corresponds with a 

naïve view of pain. The evidence here is most direct for the explicit prediction, while the 

conclusion with regard to the opposed philosophical views are more tentative. Thus, as noted 

above, we shouldn’t put too much weight on just a single study, or even a pair of studies, 

especially when it comes to rejecting or endorsing broad philosophical accounts. One reason is 

that this study involved a number of decisions points, including the vignette used, the question 

posed, and how participants were recruited. To make a truly compelling case for the claim that 

‘common sense’ allows for unfelt pains, further studies are needed.  

 

4. Further Studies, Further Tests 

In this section, I’ll detail a few of the many subsequent studies that have been conducted on the 

question of unfelt pain. I’ll focus on two things in this discussion. First, we’ll consider how 

follow-up studies can address potential concerns with previous studies. This will include varying 

the vignettes, answer choices, and recruitment strategy. Second, we’ll illustrate two further types 

of t-tests—independent samples t-tests and paired samples t-tests—although we’ll run through 

these in somewhat less detail, now that we’re more familiar with the basics of statistical analysis 
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in R. We begin in §4.1 with the fourth study in Sytsma (2010a), which will be used to introduce 

independent samples t-tests. In §4.2, we’ll use this study to discuss the relationship between 

sample size, effect size, and power, which is crucial for designing and interpreting effective 

empirical studies. In §4.3, we then turn to the first study in Sytsma and Reuter (2017), which 

uses a different type of vignette to assess judgments about unfelt pains and shifts from scale 

responses to binary answer choices; we’ll use this as an opportunity to see how we can compare 

between these types of responses. Finally, in §4.4, we look at a study from Reuter and Sytsma 

(2020), which will be used to introduce paired samples t-tests. 

 

4.1 Independent Samples T-tests 

One issue that was raised in presenting the results of the study detailed in the previous section is 

that the vignette describes the situation in terms of an injured person being distracted from a 

pain. It is plausible, though, that you can only be distracted from something that exists, such that 

participants might have inferred from this wording that the pain was ongoing despite being 

unfelt. To address this criticism, in Study 4 of Sytsma (2010a), I revised the vignette to adjust the 

description, as shown in Figure 5, while keeping other details the same (including the question 

asked and recruitment method). 
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Figure 5: Vignette and scale for Study 4 in Sytsma (2010a, 125). 
 

 

Data for this study is available in [Sytsma_2010a_STUDY_4.csv]. Let’s begin by 

graphing the means for these two studies side-by-side, along with the histogram for Study 4, as 

shown in Figure 6. Code for producing these graphs and subsequent analyses can be found in 

[Sytsma_2010a_STUDY_4.txt]. After loading the data for each study (into D3 and D4 

respectively), the code first produces a bar graph showing the means with 95% confidence 

intervals (as described in §3.7.5): 

################ 
# Plot Studies # 
################ 
 
# Run t-tests for confidence intervals 
TD3 <- t.test(D3$RESPONSE, mu=4) 
TD4 <- t.test(D4$RESPONSE, mu=4) 
 
# Barplot with study means 
barplot(height=c( mean(D3$RESPONSE), mean(D4$RESPONSE) ), 
     width=0.5, ylim=c(1,7), xpd=FALSE, 
     main="Unfelt Pain", 
     names.arg=c("Study 3","Study 4"),ylab="Mean Response") 
 
box(bty="l") 
 
# Plot confidence intervals for Study 3 
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lines(x=c(0.35,0.35),y=c(TD3$conf.int[1],TD3$conf.int[2]),type="l") 
lines(x=c(0.3,0.4),y=c(TD3$conf.int[1],TD3$conf.int[1]),type="l") 
lines(x=c(0.3,0.4),y=c(TD3$conf.int[2],TD3$conf.int[2]),type="l") 
 
# Plot confidence intervals for Study 4 
lines(x=c(0.95,0.95),y=c(TD4$conf.int[1],TD4$conf.int[2]),type="l") 
lines(x=c(0.9,1),y=c(TD4$conf.int[1],TD4$conf.int[1]),type="l") 
lines(x=c(0.9,1),y=c(TD4$conf.int[2],TD4$conf.int[2]),type="l") 
 

Based on the confidence intervals, we can tell that as in Study 3, the mean for Study 4 is 

significantly below the midpoint: the upper bar for the 95% confidence interval for each study in 

Figure 6 is well below the midpoint. This is telling us that our null hypothesis (that the mean is 

greater than or equal to 4) is outside of the range we expect the true value of the mean to fall 

with 95% probability (again given our test assumptions), indicating a probability of less than 5% 

that the null hypothesis is true (and where 5% can alternatively be expressed as 0.05). This 

inference can easily be confirmed by applying the same analysis we used before—starting with a 

one sample t-test, then checking the effect size, and finally confirming that the finding still holds 

when using a non-parametric test: 

################################# 
# Statistical Tests for Study 4 # 
################################# 
 
t.test(D4$RESPONSE, mu=4, alternative="less") 
cohensD(D4$RESPONSE, mu=4 ) 
wilcox.test(D4$RESPONSE, mu=4, alternative="less") 
 

These tests for Study 4 produce a comparable result to what we saw above for Study 3:  

t(40) = –3.33, p < .001 (one-tailed), d = .52; V = 204, p = .0039 (one-tailed). And, again, the 

results are in line with the hypothesis that a majority of the population holds that unfelt pains are 

possible. 
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Figure 6: Bar graph for Studies 3 and 4 from Sytsma (2010a) on the left with 95% 
confidence intervals; histogram for Study 4 on the right. 

 

The significant result for Study 4 suggests against the criticism of Study 3: it does not 

appear that use of the phrase ‘distracted from’ was a primary driver of the low mean for that 

study. Nonetheless, it is possible that this phrase does make some difference, even if participants 

still tend to judge that this is a case of unfelt pain even when the phrase is replaced. One way to 

test this is to directly compare the mean responses between the two studies. If ‘distracted from’ 

played a role in lowering mean responses, then we would predict that the mean for Study 4 

(M = 3.02) would be higher than for Study 3 (M = 2.57). Just by looking at the means we can tell 

that Study 4 is higher, of course (3.02 > 2.57). The real question, though, is whether this 

difference is unlikely to simply be due to chance variation between the samples. To check this 

we need to run a statistical test.21 Here what we want to do is to compare results from two 

different samples. Since we want to compare means between samples, and since these are 

 
21 Although, note that looking at Figure 6 and using the same logic as above, we can infer from the fact that the 
confidence interval for Study 4 includes the mean from Study 3 that this difference won’t be significant at the 0.05 
level. 
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different samples—the samples are independent of one another—what we want to use is an 

independent samples t-test.  

We can conduct an independent samples t-test using the same t.test() function as 

before, but now we’ll need to include an argument for the relevant table for each study (D4 as 

well as D3) and an argument to indicate that the responses are from different participants—that 

the samples are not paired. As before, it is arguably appropriate to use a one-tailed test since the 

criticism makes a directional prediction. Here is the function call: 

t.test(D3$RESPONSE, D4$RESPONSE, paired=FALSE, alternative="less") 

And here is the output it produces: 

        Welch Two Sample t-test 
 
data:  D3$RESPONSE and D4$RESPONSE 
t = -1.1981, df = 80.958, p-value = 0.1172 
alternative hypothesis: true difference in means is less than 0 
95 percent confidence interval: 
      -Inf 0.1760992 
sample estimates: 
mean of x mean of y  
 2.571429  3.024390  
 

As expected, we find that the difference between the means is not significant at the 0.05 level. As 

such, we cannot reject the null hypothesis that the change to the vignette does not increase 

ratings. 

You might have noticed that the test description in the output is different from our 

previous tests: not only did the number of samples noted change, as expected, but it is now 

described as a Welch’s t-test. Recall from above that the label ‘t-test’ describes a family of 

procedures. In fact, this family is even larger than I have indicated so far, including that there are 

multiple types of t-tests that we could run to compare between independent samples. The 

t.test() function in R defaults to a Welch’s t-test for these. By contrast, the one sample t-
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tests we ran above were Student’s t-tests. We could have used a Student’s t-test for the present 

comparison as well; we would simply need to set the var.equal argument in the function call 

to TRUE: 

> t.test(D3$RESPONSE, D4$RESPONSE, paired=FALSE,  
+ alternative="less", var.equal=TRUE) 
 
        Two Sample t-test 
 
data:  D3$RESPONSE and D4$RESPONSE 
t = -1.2107, df = 88, p-value = 0.1146 
alternative hypothesis: true difference in means is less than 0 
95 percent confidence interval: 
      -Inf 0.1689956 
sample estimates: 
mean of x mean of y  
 2.571429  3.024390 

 
As we can see, the p-value is comparable to what we found using Welch’s t-test. Notice that the 

degrees of freedom differ between the two outputs. For the Student’s t-test it is a whole number 

(88, which is the combined sample size for the two studies minus two, also see Chapter 1). For 

the Welch’s t-test, however, it is 80.958. This reflects that the Student’s t-test assumes that the 

values we’re sampling from have equal variance—basically, that the values have the same spread 

with regard to the average—while the Welch’s t-test does not make this assumption and applies 

an adjustment. We could perform a further test to see if our data supports the assumption of 

equal variance.22 But, I wouldn’t bother: there is a good reason that R performs a Welch’s t-test 

by default; basically, whether the assumption of equal variance holds or not, a Welch’s t-test will 

perform at least as well as a Student’s t-test (see Delacre et al. 2017).  

As with the one sample t-tests we performed above, we can also calculate the effect size 

for our comparison between Study 3 and Study 4: 

 
22 This is illustrated in [Sytsma_2010a_STUDY_4.txt] using Levene’s test. Comparing Studies 3 and 4, this test 
gives a p-value of 0.51, meaning that we cannot reject the null hypothesis that the populations have equal variance. 
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cohensD(D3$RESPONSE, D4$RESPONSE) 

This gives a Cohen’s d of 0.26, which is a small effect size.23 And, as before, we can address 

concerns based on the normality of our data and whether it is interval by performing a non-

parametric alternative to the independent samples t-test using the same wilcox.test() 

function as above: 

wilcox.test(D3$RESPONSE, D4$RESPONSE, paired=FALSE,                    
            alternative="less") 
 

With independent samples, the function now performs a Wilcoxon rank sum test, as opposed to 

the signed rank test we saw before. As before, the non-parametric test gives a comparable p-

value to that found for the t-test: t(80.958) = –1.20, p = .12, d = .26; W = 863.5, p = .12. 

 

4.2 Sample Size, Effect Size, and Power 

We’ve just seen that comparing the means between Studies 3 and 4 in Sytsma (2010a), we get a 

p-value above 0.05, which means that we cannot reject the null hypothesis at this significance 

level. Does this mean that we can conclude that the wording of the vignette does not matter? No. 

Being unable to reject the null hypothesis is not the same as accepting the null hypothesis. One 

issue here is that, as we noted above, p-values are tied to sample sizes. To illustrate, let’s assume 

that we expect that the effect size we reported is roughly accurate and that the wording of the 

vignette does make a small difference, with the true effect size corresponding with a Cohen’s d 

of 0.2. With this assumption in place, we can run some further tests to tell us how large our 

sample sizes would need to be for our study to be likely to detect an effect of that size (i.e., to get 

 
23 It might seem strange to calculate an effect size for a comparison that was not significant. Recall, however, that 
these are telling us two different things: roughly, statistical significance gives us a measure of how likely a 
difference is to be due to chance and depends on the sample size and the significance level we select, while effect 
size tells us how big that difference is. Thus, it can sometimes be useful to know what the effect size is if we were to 
accept a result, even if that result is non-significant at a given significance level.  
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a significant result). For instance, we could calculate how many participants we would need to 

sample to have an 80% chance to detect an effect with a Cohen’s d of 0.2 using a t-test with a 

0.05 significance level (and taking the test assumptions to hold). The chance to detect the effect 

is known as the power of the test, and is usually expressed as a probability. For an 80% chance, 

then, we’d want a power of 0.8, and for a 90% chance we’d want a power of 0.9.  

 We can calculate the sample size we would need for our study to have a given power 

using the pwr package in R.24 Using the same sample size for each group, this can be calculated 

with the pwr.t.test() function. To do this we need to supply our expected effect size (d = 

0.2), the significance level (default is 0.05), whether the test we’re interested in is one- or two-

tailed, and the power we want. Typical suggestions are to aim for a power between 0.8 and 0.9. 

The code document shows function calls for each of these options: 

pwr.t.test(d=0.2, power=0.8, alternative="greater")  #n=309.8065 
pwr.t.test(d=0.2, power=0.9, alternative="greater")  #n=428.8705  
 

As we can see, these output a range of 310 to 429 participants. Note that this gives us the 

numbers we would need per condition. This means, for example, that to have a 90% chance of 

getting a significant result at the 0.05 level for an independent samples t-test checking that the 

mean response for the probe used in Study 4 is greater than the mean response for the probe used 

in Study 3, we would need roughly 858 participants (429 per condition)! Obviously, the studies 

in Sytsma (2010a) were a far cry short of this. Basically, the smaller the effect the more difficult 

it will be to detect it. Given this, we should be very cautious of concluding that there is no effect 

here—that whether the vignette uses ‘distracted from’ does not matter—as noted above. Rather, 

 
24 Remember to install (install.packages("pwr")) and load (library(pwr)) this package if you want to 
run the code for yourself! 
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we simply did not detect an effect (we did not get a significant result); but this is hardly 

surprising given the sample sizes and if we expect that the true effect might be rather small. 

In fact, we can use the same pwr package to test the power these studies actually had to 

detect an effect of size d = 0.2. This calculates what is known as the post hoc power of the test: 

pwr.t2n.test(d=0.2, n1=41, n2=49, alternative="greater") 

In contrast to the previous test, here we use the pwr.t2n.test() function since the studies 

had different sample sizes, and we specify those sample sizes instead of the power: if we supply 

two out of three of effect size, sample sizes, and power, these functions will calculate the third. 

The result is that the pair of studies had just a 24% chance of detecting an effect of this size. 

Does this mean that the studies were underpowered? Not necessarily! This would depend on the 

effect size that we expect. To illustrate, let’s suppose that what would be philosophically 

important here—what would vindicate the objection—is if there was a large effect size, say one 

of at least the size that we found above for comparing the mean in Study 3 to the midpoint (d = 

0.86): 

pwr.t2n.test(d=0.86, n1=41, n2=49, alternative="greater") 

For detecting an effect of this size, we find that the two studies have a post hoc power of over 

99%, meaning that we would be very likely to detect such an effect.  

 

4.3 Binary Answer Choices and Dichotomization 

While Study 4 from Sytsma (2010a) helps alleviate one concern with the vignette from Study 3, 

it is still roughly the same vignette. Perhaps there is something else about this story that tends to 

elicit responses from people that don’t truly reflect their views about unfelt pains? Or perhaps the 

way the question was asked does this? Or perhaps the university students surveyed aren’t 

representative of the wider population? Confidence in this finding is bolstered somewhat by the 
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results of the second study from Sytsma (2010a), discussed above, which asked about unfelt 

pains more directly, but it still behooves us to explore the hypothesis from further angles. One 

way to do this is to run additional studies that vary the vignettes used and the questions asked, as 

well as the recruitment method employed. 

In Sytsma and Reuter (2017), we report on three studies concerning unfelt pains that 

adapt the vignette used in Study 5 in Sytsma (2010a). This study concerned the possibility of 

shared pains—that two people might feel one and the same pain if they were to share a body 

part, such as both being attached to the same hand. The standard view holds that the ordinary 

concept of pain precludes the possibility of shared pains in such cases (since pains are mental 

states it doesn’t matter if a body part is shared), while the alternative predicts that people will 

tend to allow for this possibility (if pains are bodily states, then sharing a body part could lead to 

feeling the same pain). In the test condition of this study, participants were given a vignette 

describing two conjoined twins who share the lower part of their body. The twins run through a 

park, forcefully kick a rock hidden in the grass, and give behavioral indications of pain. 

Participants were then asked whether the twins felt one and the same pain or two different pains, 

answering on a 7-point scale. The mean response (M = 3.29) was significantly below the 

midpoint, indicating that participants tended to think that the twins felt one and the same pain.  

In our first study in Sytsma and Reuter (2017), participants were given two different 

probes soliciting pain judgments, with the probes being given on separate pages and with the 

order of the two pages randomized. The first probe replicated Study 5 from Sytsma (2010a) that 

we just discussed: this study used the same vignette about conjoined twins, but adjusted the 

question to use a binary answer choice instead of a scale (participants answered by selecting 

either ‘one and the same pain’ or ‘two different pains’). In addition, we added a comprehension 
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check question and used a different method for recruiting participants—we recruited them online 

using a push strategy rather than soliciting responses from students in class. A ‘push strategy’ 

involves recruiting participants who were not directly looking to participate in research by 

offering an alternative incentive.25 What we found is that 68.5% (217/317) of participants who 

passed the comprehension check answered that the twins felt one and the same pain. Thus, we 

find a comparable result despite changing the question type and recruitment method, further 

suggesting against the standard view and in favor of the alternative naïve view. 

More importantly for present purposes, the second probe concerned unfelt pains. Unlike 

Study 3 from Sytsma (2010a), however, this probe uses a vignette describing a pair of conjoined 

twins where just one takes a painkiller: 

Johnny and Tommy are conjoined twins that are joined at the torso. While they are 
distinct people, each with their own beliefs and desires, they share the lower half of their 
body. One day they accidentally dropped a heavy weight on their left foot. Johnny and 
Tommy both grimaced and shouted out ‘Ouch!’ They were then rushed to the hospital for 
treatment. Unfortunately, the nurse who checked them in was unfamiliar with conjoined 
twins. As a result, Johnny was given a pill for the pain while Tommy was left untreated. 
Ten minutes later, the doctor arrived to examine them. When she pushed on the injured 
foot, Tommy grimaced and shouted out ‘Ouch!’ while Johnny merely shrugged his 
shoulders and said it didn’t hurt at all. 
 

After reading the vignette, participants were asked to select which of two claims best reflected 

their view about it, with the choices presented in random order: 

 
25 In this case, participants were recruited through advertising for a free personality test on Google Ads, with the 
personality test being administered after the target questions. One notable benefit of using such a push strategy, in 
comparison to standard online recruitment methods in experimental philosophy (such as paid services like Amazon 
Mechanical Turk or Prolific Academic), is that participants are more likely to be ‘experimentally naïve’—less likely 
to guess what the study is really about—and less likely to be motivated to provide the responses that they think the 
researchers are looking for (Haug 2018). Samples collected using the recruitment strategy employed here have been 
previously compared against samples collected with other methods in replication studies. And the present strategy 
has been consistently found to generate a diverse sample in terms of geography, socio-economic status, religiosity, 
political orientation, age, and education. Studies using this strategy have been previously reported in publications 
including, e.g., Livengood et al. (2010), Feltz and Cokely (2011), Murray et al. (2013), Machery et al. (2015), 
Livengood and Rose (2016), Livengood and Sytsma (2020), Fischer et al. (2021), Sytsma et al. (2012, 2015), and 
Sytsma (2010d, 2021, 2022), among many others. 
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There was a pain in Johnny and Tommy’s injured foot when the doctor pushed on it: 
While Tommy felt the pain in their foot, the painkiller prevented Johnny from feeling that 
pain.  
 
There was not a pain in Johnny and Tommy’s injured foot when the doctor pushed on it: 
While the foot caused Tommy to feel pain, the painkiller prevented Johnny from feeling 
pain. 
 

As with the shared pain probe, participants were also given a comprehension check question.26 

The order of the two probes was randomized, but responses did not vary noticeably based on 

which probe participants saw first. We found that 83.7% (251/300) of participants who passed 

the comprehension check selected the first answer for the present probe, indicating that they 

thought of this as a case of unfelt pain. 

Results were comparable in our second study, which tweaked the answer choices for the 

unfelt pain question to emphasize that we meant the pain claims literally: 

There actually is a pain in the injured foot: while Tommy feels the pain in the foot, the 
painkiller prevents Johnny from feeling that pain. 
 
There is not actually a pain in the injured foot: while the foot causes Tommy to have the 
feeling of there being a pain in the foot, the painkiller prevents the foot from causing 
Johnny to have such a feeling. 
 

This time 84.0% (110/131) selected the first option. Our third study further tweaked the answer 

choices, with the first option now including that ‘the pain is literally in Johnny and Tommy’s 

injured foot’. Again, a significant majority of participants selected the unfelt pain option (65.7%, 

109/166). 

In some ways, the use of binary response choices better matches the main hypotheses at 

issue for our research on unfelt pains: this work aims to test the contention that common sense 

denies that there can be unfelt pains, but this contention doesn’t make any clear claims about 

 
26 Participants were asked, ‘Did Johnny and Tommy drop a heavy weight on their left foot?’ and answered by 
selecting either ‘yes’ or ‘no’. 
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relative strength of belief or the extent to which people will be unsure about the issue. At the 

same time, using binary response choices like those given above forces participants to make a 

choice—indeed, these are sometimes called ‘forced-choice questions’—and we might therefore 

worry that when participants aren’t sure they will just answer randomly (see Sytsma and 

Livengood 2015, Section 9.2, for discussion). Using a scale like the one employed in the studies 

discussed in the previous section resolves this issue by giving participants the ability to register 

level of belief or to indicate uncertainty (by selecting the midpoint on the scale). The flip side of 

this is that the inclusion of such options might cause participants to be more cautious, leading to 

weaker responses than they would otherwise give. 

Fortunately, when in doubt, you can always replicate your studies using different types of 

response choices and compare. One way to compare between binary and scale responses is to 

dichotomize the scale results. For instance, for Studies 3 and 4 from Sytsma (2010a) we can split 

the participants into groups based on whether they gave a response indicating that they judged 

the case to be one of unfelt pain (answering 1, 2, or 3 on the 7-point scale) or not (answering 4 or 

higher). Here is the code to dichotomize the results from Study 3, as shown in the 

[Sytsma_2010a_STUDY_3.txt] document: 

######################### 
# Dichotomize Responses # 
######################### 
 
# Percentage unfelt pain: 83.7% 
nrow(D3[D3$RESPONSE==1|D3$RESPONSE==2|D3$RESPONSE==3, ])/nrow(D3) 
 

Running this line we find that 83.7% (41/49) of participants in Study 3 judged there to be an 

unfelt pain. Calling on the statistical test discussed in Chapter 1 (χ2 test) we can then test whether 

this proportion is significantly greater than 50% using the prop.test() function in R:  

prop.test(x=41, n=49, p=0.5, alternative="greater") 
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Not surprisingly, we find that this proportion is significantly greater than 50%: χ2 = 20.9, 

p < .001 (one-tailed). Doing the same thing for Study 4, we find that 73.2% (30/41) of 

participants judged there to be an unfelt pain, which is again significantly greater than 50%: 

χ2 = 7.90, p = .0025 (one-tailed). Finally, we could compare either of these proportions to 

another, such as a proportion that was assessed directly using binary answer choices. To 

illustrate, let’s compare the proportion of positive responses in Study 3 from Sytsma (2010a) to 

the proportion from Study 1 in Sytsma and Reuter (2017). We can do this using the same 

prop.test() function, although we’ll now use the concatenate function c() to specify both 

the x value (positive count) and the n value (total count) for each proportion and we’ll use a 

two-tailed test since we don’t have reason to predict that either propotion would be greater than 

the other: 

prop.test(x=c(41,251), n=c(49,300))  

Given that these proportions are remarkably similar (0.8367347 vs 0.8366667), it is no 

surprise that the difference is not statistically significant. Indeed, we we get a p-value of 1. 

 

4.4 Paired Samples T-tests 

Finally, in Reuter and Sytsma (2020) we detail a large series of further studies testing whether 

common sense countenances unfelt pains. This includes a study replicating Study 4 from Sytsma 

(2010a) using the online push strategy from the previous study and binary response choices: 

Which of the following descriptions of this type of situation seems most appropriate to 
you? 
 
The injured person still had the pain and was just not feeling it during that period.  

The injured person had no pain during that period. 
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We found that 90.3% (28/31) of participants selected the first option, which is somewhat higher 

than the proportion from Study 4 noted above, although the difference is not significant 

(χ2 = 2.31, p = .12). Our paper also included four studies involving an injured patient taking a 

painkiller, as in the thought experiment from Aydede noted in Section 2. Unlike the painkiller 

studies just discussed from Sytsma and Reuter (2017), this time the vignettes did not involve 

conjoined twins and we used both scales and binary response options. In each case we again 

found that a significant majority of participants judged that the patient had a pain even though 

they didn’t feel it while the painkiller was in effect. Another set of studies instead used vignettes 

describing a severely injured soldier who professes not to feel any pain, as in the thought 

experiment from Hill discussed in Section 1, with similar results. Thus, while Hill (2009, 171) 

states that when he ‘asked informants to assess the likelihood of this scenario […] they have all 

been inclined to dismiss it as absurd’, our results were quite different: In each of nine studies 

varying both the vignettes and the questions we found that a significant majority of participants 

responded that the injured soldier had a pain despite not feeling it. 

Finally, Reuter and I report a series of seven studies that asked participants more direct 

questions about the possibility of unfelt pains. Perhaps most strikingly, in our 15th and 16th 

studies we asked the following four questions, with participants either answering by selecting 

‘yes’ or ‘no’ (Study 15) or using a 7-point scale anchored at 1 with ‘clearly no’, at 4 with ‘not 

sure’, and at 7 with ‘clearly yes’ (Study 16): 

(1) Is it possible for a person to have a pain that they don’t feel for a period of time? 
(2) Have you ever had a pain that you didn’t feel for a period of time? 
 
(3) Is it possible for a person to have a pain that doesn’t hurt for a period of time? 
(4) Have you ever had a pain that didn’t hurt for a period of time? 
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In each case a significant majority of participants gave an affirmative answer to each question, 

giving a further indication that lay people tend to hold that unfelt pains are possible, and further 

that they tend to hold that they are actual. Focusing on Study 16, we can show this by running a 

similar analysis to what we saw before, using one sample t-tests to compare the means to the 

midpoint for each of the four questions. This is illustrated in [RS_2020_STUDY_16.txt] using 

the data provided in [RS_2020_STUDY_16.csv]. (We can also dichotomize and compare the 

proportion to 50% or to the binary responses from Study 15, as we did in §4.3, and as is 

illustrated in the code document.) Analyzing each question separately in this way, however, 

raises the potential issue of correcting for multiple comparisons, which I return to in the next 

section. 

Our purpose in analyzing Study 16 was, once again, to test whether lay people tend to 

deny the possibility of unfelt pains as the standard view contends. And for this purpose the one 

sample t-tests just noted do the trick. But we could have asked other questions, here, motivated 

by different research interests. One possibility is comparing between the two sets of questions. 

I’ll do that here for purposes of introducing a third type of t-test—paired samples t-tests.  

One interesting facet of Study 16 from Reuter and Sytsma (2020) is that we didn’t just 

ask participants about the possibility of unfelt pains, but their actuality. This is done using two 

different wordings, with Questions 1 and 2 forming a pair and Questions 3 and 4 forming a pair 

(the order of these pairs was counterbalanced in the studies). We might wonder whether 

responses differed within these pairs. Indeed, since more things are possible than are actual, we 

would predict that people would be more likely to affirm the possibility questions than the 

actuality questions (although, again, this isn’t a prediction we specifically made in the actual 

paper). Making this prediction for illustrative purposes, we can then test it using a paired 
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samples t-test. A paired samples test is called for in this case because we’re comparing mean 

responses, but these responses were given by the same participants—each participant in Study 16 

answered all four of the questions—such that an independent samples t-test wouldn’t be 

appropriate: these participants are not independent. 

As before, we can run the paired samples comparison using the t.test() function in 

R. For this all we need to do is to change the paired argument from FALSE to TRUE in our 

function call, as illustrated here for the first pair of questions: 

> t.test(D$RESPONSE_1, D$RESPONSE_2, paired=TRUE,           
+ alternative="greater") 
 
        Paired t-test 
 
data:  D$RESPONSE_1 and D$RESPONSE_2 
t = 3.26, df = 61, p-value = 0.0009122 
alternative hypothesis: true difference in means is greater than 
0 
95 percent confidence interval: 
 0.3854137       Inf 
sample estimates: 
mean of the differences  
              0.7903226 
 

The output indicates that we’ve conducted a paired samples t-test and that the difference is 

significant (p-value = 0.0009122). This means that, as expected, people were more likely 

to judge that unfelt pains are possible than that they have actually had an unfelt pain. As before, 

we can also calculate the effect size using cohensD() and run a non-parametric comparison 

using wilcox.test():  

cohensD(D$RESPONSE_1, D$RESPONSE_2) 
wilcox.test(D$RESPONSE_1, D$RESPONSE_2, paired=TRUE, 
alternative="greater") 
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The combined result is: t(61) = 3.26, p < .001, d = .46; V = 401.5, p = .0012.27 And we get 

comparable results comparing Questions 3 and 4: t(61) = 2.79, p = .0035, d = .27; V = 223.5, 

p = .0039. 

 

5. Correcting for Multiple Comparisons 

To close this chapter, it is important to consider a possible complication that I noted in the 

previous section: when conducting multiple statistical comparisons on the same set of data we 

need to be mindful of how this might affect the way we should interpret our p-values. This 

concern isn’t specific to t-tests, but I most often see this type of issue arise in the x-phi literature 

for sequences of t-tests, such that it makes sense to address it in this context. First, in §5.1, I’ll 

discuss why we sometimes need to correct for multiple comparisons and provide an example 

where I don’t think such a correction is needed. In §5.2, I’ll then discuss different types of 

correction, focusing on two methods—the Bonferoni method and the Holm method. Finally, in 

§5.3, I’ll present a case where I do think a correction is needed and show you how to apply the 

Holm method to this case in R. 

 

5.1 Why should we apply a correction? 

For Study 16 in Reuter and Sytsma (2020) participants were each asked four questions about 

unfelt pains, and in our analysis we began by comparing the mean response for each to the 

midpoint using a sequence of four one sample t-tests, as discussed in the previous section. I 

noted above that this potentially raises a complication, however. Simply put, the worry is that if 

you test enough variables, it is quite likely that some will be significant just by chance even if the 

 
27 As before, we could also dichotomize these questions and compare proportions, although for paired data like this 
we will now want to run a McNemar’s test, as illustrated in the code document. 
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null hypothesis is true. To illustrate, imagine that you’re worried that a mint is producing coins 

that are biased toward coming up heads. Say that you test this by flipping a single coin 10 times. 

If it were to come up heads all 10 times, this would be some evidence for your worry. After all, 

such an outcome is quite unlikely if the coin is fair (roughly a probability of 0.00098). But what 

if you were to test 1000 coins this way? Now it would be more likely than not that at least one of 

the coins would come up heads 10 times in a row (roughly a 0.62 probability) even if all the 

coins are fair.28 As such, finding that one of the coins came up heads 10 times would hardly be 

evidence that the mint is producing biased coins. Running t-tests on lots of variables without 

correcting for multiple comparisons faces a corresponding problem. In this analogy, each t-test 

corresponds with testing a different coin: the more tests we run, the more likely it is that we’ll 

get one or more significant results just by chance even if the null hypothesis is true. Of course, 

this is possible even if we run just one test. This is why we report p-values, since they give us a 

sense of the likelihood of getting a result at least this extreme by chance. But the point is that 

running multiple tests will affect how we should think about those chances when considered as a 

group. 

For the one sample t-tests in our analysis of Study 16 it is unclear that this is a serious 

worry, however. And, indeed, I’m inclined to think that it is not. The reason is that we were 

predicting a pattern of results across the four questions. In more detail, we varied two things 

across the four questions—modality and phrasing. With regard to modality, Questions 1 and 3 

asked about the possibility of unfelt pain, while Questions 2 and 4 asked about their actuality for 

 
28 The probability that a single fair coin will come up heads on a single toss is 1/2. Let’s write this P(H). The 
probability that it would come up heads 10 times in a row is then P(H) * P(H) * P(H) * P(H) * P(H) * P(H) * P(H) * 
P(H) * P(H) * P(H), which is (1/2)10 or 1/1024. Let’s call this P(10H). The probability that this would occur at least 
once in 1000 attempts is equivalent to the one minus the probability that it doesn’t occur in any of the 1000 tests, 
which is equivalent to (1 – P(10H))1000 or (1023/1024)1000, which is roughly 0.3764. As such, 1 – (1 – P(10H))1000 is 
roughly 0.6236. 
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the participant. And while we expected that this would make a difference, for the reason detailed 

above, we nonetheless predicted that participants would still tend to affirm the actuality 

questions. With regard to phrasing, Questions 1 and 2 were phrased in terms a pain that wasn’t 

felt, while Questions 3 and 4 were phrased in terms of a pain that didn’t hurt. We didn’t expect 

that the specific phrasing would make an important difference. As such, we predicted that 

participants would tend to affirm each of the four questions; and if they tended to deny any of the 

four, this would provide some evidence against the general hypothesis. Corrections for multiple 

comparisons, however, essentially make it tougher to get significant results at a given 

significance level. Given our prediction of the pattern of results across the questions, however, 

this doesn’t seem warranted.  

 

5.2 The Bonferroni Method and the Holm Method 

Exactly when one should apply a correction for multiple comparisons is a difficult question and 

there is much disagreement on this score. Nevertheless, sometimes it is essential that we apply 

such a correction, as I’ll illustrate in the next section. Further, when in doubt, I would 

recommend that you go ahead and apply a correction, as this will make your tests more stringent 

and hence render the results more convincing. 

There are many different types of corrections that can be applied. Perhaps the most 

common is the Bonferroni method. The main positive of this method is that it is quite easy to 

use: we simply multiple the p-values of a sequence of tests by the number of tests performed (or, 

equivalently, keep the p-values the same but adjust the significance level by dividing it by the 

number of tests). Let’s say that we decided that a correction for multiple comparisons is 

appropriate for the one sample t-tests performed for Study 16. We performed four tests, getting 
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p-values of 5.9e-13 (i.e., 0.00000000000059), 0.0019, 7.5e-8, and 0.0023, respectively. To apply 

the Bonferroni correction, we simply multiply each of these p-values by four (the number of tests 

performed), giving corrected values of 2.0e-12, 0.0074, 3.0e-7, and 0.0093. (Note that I’ve applied 

the correction to the full p-values given by R to minimize rounding errors.) As we can see, the 

results remain significant at the 0.05 level. The Bonferroni correction can also be applied using 

the p.adjust() function in R with the method argument set to "bonferroni", as 

demonstrated in the code file. 

While the Bonferroni method has the benefit of being simple, I wouldn’t personally 

recommend this correction. The reason is the same as we saw above with regard to using a 

Student’s t-test for comparing the means from independent samples: there is another method that 

is always at least as powerful. In the case of the Bonferroni method, there is is an extension—

what is known as the Holm method or the Holm–Bonferroni method—that makes the same 

assumptions as the Bonferroni method and is always at least as powerful as it (Holm 1979). And 

while the Holm method is somewhat more complicated, it is equally easy to apply in R: all you 

need to do is to switch the value for the method argument in the p.adjust() function to 

"holm". As shown in the code file, applying this method to the sequence of tests for Study 16 

gives lower p-values than the Bonferroni method for three of the four questions: 2.0e-12, 0.0037, 

2.3e-7, and 0.0037. 

A second complication is that while I compared Questions 1 and 2 and Questions 3 and 4 

separately above to illustrate the use of paired samples t-tests, this does not tell us the shared 

impact across the two sets of questions as the modality is varied. And if we also wanted to test 

the impact of the phrasing, we would then need to run two further t-tests using this method, now 

comparing Questions 1 and 3 and Questions 2 and 4. A better solution is to recognize that we are 
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crossing two variables (or ‘factors’) in our study, each taking on one of two values (or ‘levels’): 

as noted above, we’re varying the phrasing (feel, hurt) and the modality (possible, actual), with 

one question corresponding with each combination of values for these two variables. 

Recognizing this, we could test the impact of each variable across the questions, as well as their 

interaction, using an ANOVA (specifically, a two-way within-participants ANOVA). Tests like 

this will be discussed further in Chapter 3, so I won’t try to explain them here, but two ways of 

performing the ANOVA in R are shown in the code document.29 In line with our paired samples 

t-tests, we find that there is a significant main effect for modality (p = .0012). Further, we do not 

find a significant main effect for phrasing (p = .27) or for the interaction of these two factors 

(p = .17). 

 

5.3 Illustrating the Holm Method 

To conclude, I want to briefly discuss a final study where a correction for multiple comparisons 

is clearly called for. While this study does not involve judgments about unfelt pains, it does 

provide evidence for the underlying hypothesis about the commonsense conception of pain that 

motivated my predictions in the studies we discussed above. 

In Sytsma and Snater (2023a), we conducted a global study in which participants 

answered a large number of test questions. Drawing on studies from Ozdemir (2022) as well as 

Fischer and Sytsma (2021), we either gave participants a vignette describing future scientists 

creating a physical duplicate of a person or creating an android duplicate of a person, then asking 

them whether they agreed or disagreed with each of 25 statements ascribing a mental capacity to 

 
29 For this, we need to restructure the data for Study 16: we need to add columns for each of our two variables, and 
we need to convert it to ‘long form’—adding a column with a participant idea and repeating the data set so that each 
row shows the response for just one question. While this conversion can be done in R, to make things easier I’ve 
instead created a second spreadsheet with the converted data: [RS_2020_STUDY_16_ANOVA.csv].  
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the resulting duplicate. Participants responded using a 7-point scale anchored at 1 with ‘Disagree 

Strongly’ and at 7 with ‘Agree Strongly’. As part of the analysis detailed in the supplemental 

materials (Sytsma and Snater 2023b), we compared responses between the two conditions using 

a series of independent samples t-tests, as illustrated in [SS_2023_STUDY_1.txt] using the data 

provided in [SS_2023_STUDY_1.csv]. Without applying a correction for multiple comparisons, 

we found 10 significant differences at the 0.05 level. But unlike in Study 16 in Reuter and 

Sytsma (2020), we were not predicting a specific pattern of results across these tests and did not 

have specific predictions for all of these comparisons. Further, many of the significant results 

had negligible effect sizes. Given the large number of tests, it is quite likely that some of these 

significant results owed to chance—more than we should accept at the 0.05 significance level 

selected—and hence it was important for us to apply a correction for multiple comparisons. We 

did this using the Holm method introduced above. Applying the correction, we found that only 

three of the results remained significant. This included the question we asked about feeling pain, 

which we had a specific prediction for. 

Recall that in Sytsma (2010a) I hypothesized that the reason lay people in Sytsma and 

Machery’s (2010) first study tended to ascribe seeing red to a simple robot, but not feeling pain, 

is that people tend to hold a naïve view of both types of qualities. With regard to pains, I 

speculated that people tend to conceive of pains as being qualities of injured body parts, but that 

the entity needs the right sort of body parts to instantiate pains: they need soft and fleshy body 

parts, not hard and metallic ones. And, indeed, this hypothesis was directly tested in Sytsma 

(2012), where I found that giving the simple robot from Sytsma and Machery (2010) grasping 

arms made of bioengineered materials, instead of the original hard and metallic ones, notably 

increased ascriptions of feeling pain. Based on this, in Sytsma and Snater (2023a) we predicted 
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that participants would be significantly more likely to judge that the physical duplicate felt pain 

than that the android duplicate felt pain. And, indeed, this prediction was borne out, with 

participants being significantly more likely to agree with the statement ‘the duplicate would feel 

pain when she is injured’ in the physical duplicate condition compared to the android condition, 

even after correcting for multiple comparisons. 

 

Box 1: Partially Paired Samples T-tests 

In the main text we discuss three main types of t-tests: one sample t-tests, independent samples t-

tests, and paired samples t-tests. These are distinguished by the number of conditions we are 

comparing (one for one sample t-tests, two for independent samples t-tests and paired samples t-

tests) and whether the same participants make up the samples (no for independent samples t-

tests, yes for paired samples t-tests). It is possible, however, that the answer could be yes and no: 

some of our participants could be the same across the two samples while others could be 

different. This is an unusual situation, and not one you’re likely to run across. Indeed, while I 

include the test here for completeness, I’ve only run a partially paired samples t-test one time in 

my own work.  

Specifically, a partially paired samples t-test was relevant to the analysis of Study 2 in 

Sytsma et al. (2022). One goal of this study was to test whether participants’ judgments about a 

statement would differ if it was presented alone versus being presented alongside three other 

statements. In order to test this, we ran the study with both a within-participants condition (each 

participant giving judgments about all four statements) and between-participants conditions 

(each participant giving a judgment about just one of the four statements). Comparing judgments 

for each statement between conditions could be done using independent samples t-tests, as we 

saw in the main text. Doing so, we found no significant differences for any of the fourst 
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statements. A second prediction about this study concerned a comparison between two different 

statements. This could be done separately for the within-participants condition (using a paired 

samples t-test) and for the between-participants conditions (using an independent samples t-test). 

Given that the results were not significantly different between the types of conditions, though, 

there is reason to combine these conditions: it would allow us to conduct just one test that would 

have greater statistical power. This couldn’t be done using the standard t-tests we’ve reviewed, 

however, since combining the data would mean that some participants were paired (having given 

judgments about both statements) and others were not (having given judgments about just one 

statement). Fortunately, this is exactly the (rare) type of situation in which a partially paired 

samples t-test is appropriate. Unfortunately, this type of test is uncommon enough, that I was 

unable to find a package in R that implements it. Instead, I adapted the code provided by 

Henriksen (2018) for the t.test.partial() function. 
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