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Abstract

It’s widely argued that agreement—or “robustness”—across climate models
isn’t a useful marker of confirmation: that the models agree on a hypothesis
does not indicate that that hypothesis should be accepted. The present paper
argues against pinning the failure of agreement-based reasoning on the models.
Instead, the problem is that agreement is a reliable marker of confirmation
only when the hypotheses under consideration are mutually exclusive. Since
most cutting-edge questions in climate modeling require making distinctions
between mutually consistent hypotheses, agreement across models is unlikely
to help answer these questions. Because the problem here is agreement (and
not the models), we should expect that there are other ways of using the models
that are more informative and reliable.

0 Introduction

Climate scientists often use groups—called “ensembles”—of models to provide evi-
dence for hypotheses about the past, present, and future climate. Sometimes these
models all “agree” on a hypothesis; they all generate a result that indicates that
said hypothesis is true. What should we conclude in such cases? The apparent con-
sensus in the literature is that agreement (or “robustness”) across climate models
does not provide significant confirmation, at least not where hypotheses about the
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future are concerned.1 Or, as Wendy Parker carefully puts the point: “When today’s
climate models agree that an interesting hypothesis about future climate change is
true, it cannot be inferred ... that scientists’ confidence in the hypothesis should be
significantly increased” (Parker 2018, 275).

The literature is not only united on this conclusion; it’s united on its diagnosis of
the problem. Agreement across different sources of evidence, the argument goes, only
confirms when the different sources of evidence are sufficiently independent. And
climate models are not sufficiently independent. Hence why agreement in climate
modeling is not confirmatory.

I think this diagnosis is incorrect. Contra the standard assumptions, the actual
degree of independence—or, better, variation—required for confirmation is extremely
minimal, and while extant arguments give us reason to think that climate models are
not highly varied, they fall far short of providing reason to think that climate models
fail to meet the minimal standards required for confirmation or even “significant”
confirmation.

The real problem with agreement across climate models has more to do with the
questions central to cutting-edge climate science than it does with the models. Con-
sider the following two questions concerning equilibrium climate sensitivity (ECS),
or the amount that global temperatures will increase given a doubling of atmospheric
CO2 concentration:

Is ECS within the range 1.5-4.5◦C?

Which temperature range does ECS fall within?

The first of these two questions simply asks whether we should predict that a quantity
of interest (ECS) will be inside of a given range or outside of it. As we’ll see, it’s
plausible that if every model in an ensemble agrees that ECS will be inside this range,
that warrants an increase in confidence that the true value is in the range rather
than outside of it—depending on one’s priors, perhaps even a significant one. By
contrast, the second question asks us to make a choice between different, potentially
overlapping, ranges. On extremely general grounds, it is not plausible that if every

1For a sampling, see Baumberger, Knutti, and Hadorn (2017), Frigg, Thompson, and Werndl
(2015), Harris (2021), Justus (2012), Lloyd (2015b), Parker (2018), and Winsberg (2021). Note
that while some of these philosophers argue that “robustness” has virtues in other contexts—e.g.,
when identifying causal mechanisms (Lloyd) or when comparing models to experimental evidence
(Winsberg)—even these proponents seem to endorse Parker’s the agreement across models cannot
be used to confirm hypotheses about the future (see Lloyd 2015b, 60; Winsberg 2021, §9). The
only dissenting view I’m aware of is offered by O’Loughlin (2021), and he—following Lloyd—offers
an understanding of “robustness” that is very different from the agreement-based reasoning that
concerns us here.
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model in an ensemble agrees that ECS will be inside a particular range, that warrants
an increase in confidence that the true value is in that range rather than in a different,
overlapping, range.

As this example makes clear, the contrast class—that is, the way we divide up
the hypothesis space—matters (compare Lloyd 2015a). My contention in this paper
is that cutting-edge climate science tends to involve contrasts where alternative hy-
potheses are mutually consistent, and this fact provides a better explanation for why
agreement is not a useful heuristic than any flaws with the models.

The difference between these two diagnoses is important. If the standard view is
right, we should expect the problems with agreement to generalize to any other way
of using the models; after all, it’s the models that are the problem. If I’m right, by
contrast, the main problem is the agreement heuristic, and so we should expect that
other ways of using the models might provide more reliable markers of confirmation.2

I begin with an abstract discussion of contrast classes, confirmation, and the
nature of agreement (§1). The main body of the paper examines the application
of these general principles to climate modeling. First, I argue that agreement is
capable of distinguishing between mutually exclusive hypotheses under extremely
weak conditions, and that we have little reason to think that these conditions fail in
the climate modeling context (§2). Second, I show that there are formal reasons why
agreement is ineffective at distinguishing between mutually consistent hypotheses
(§3). Finally, I illustrate that many (most?) of the “interesting” questions at the
cutting edge of climate modeling require distinguishing between mutually consistent
hypotheses, meaning that the inability of agreement to support these distinctions
provides a good explanation for its inefficacy in that domain (§4).

1 Contrast classes, confirmation, and agreement

It’s helpful to begin with the two questions from the introduction. The first of these
two questions, namely,

Is ECS within the range 1.5-4.5◦C?

2Heading off this potential generalization is the main motivation for this paper. Much of this
literature on the application of statistics to climate models takes a negative view of the practice
for a same reason that the literature takes a negative view towards agreement-based reasoning: the
models are not sufficiently independent (see, e.g., Carrier and Lenhard 2019; Jebeile and Barberousse
2021; Katzav et al. 2021; Parker and Risbey 2015; Winsberg 2018; the exception is Dethier 2022,
forthcoming[a]). Showing that this a poor reason to reject the use of agreement-based reasoning in
climate modeling undercuts its use as a reason to reject the application of statistical tools within
the same.
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has two possible answers: (1) ECS is within the range 1.5-4.5◦C and (2) ECS is
not within the range 1.5-4.5◦C. This question concerns only whether or not some
proposition is true and so the potential answers are a proposition and its negation.
By contrast, the second question,

Which temperature range does equilibrium climate sensitivity fall within?

has infinite potential answers, including: ECS is within the range 1.5-4.5◦C, ECS is
within the range 2.0-5.0◦C, ECS is within the range 1.0-5.0◦C, and etc. Unlike the
first question, this second question asks us to distinguish between overlapping, and
thus mutually consistent, hypotheses. While one and the same proposition—namely,
ECS is within the range 1.5-4.5◦C—serves as a potential answer for both questions,
the contrast class—that is, the set of other hypotheses that we’re comparing this
proposition to—differs in the two cases.

Generally speaking, answering a question involves showing that a hypothesis is
preferable to the members of the contrast class. As a consequence, a given hypothesis
may be preferable in one setting but not in others: “ECS is within the range 1.5-
4.5◦C” can be preferable to its negation without being preferable to the hypothesis
that ECS is within the range 2.0-5.0◦C. Since truth (or the probability thereof) is one
desideratum for a preferable hypothesis, some evidence helps us answer a question
insofar as it confirms one of the potential answers in the contrastive sense of raising
its probability relative to the alternatives.3

In climate science, as in many real life cases, we face a problem in determining
whether and to what degree evidence supports one hypothesis rather than another.
So, as Parker (2010) and others (e.g. Jebeile and Barberousse 2021) have emphasized,
climate models both rely on risky assumptions and idealizations and are “opaque” in
the sense that the implications of these assumptions and idealizations are (extremely)
hard to evaluate. These facts make it hard to estimate how accurate any model is
likely to be and thus to tell whether a particular model report confirms a particular
hypothesis. On these grounds, both philosophers and climate scientists have argued
against the application of standard statistical tools for evaluating the implications
of evidence (see note 2). After all, the problem is essentially that we don’t know
the precise likelihood of a given model report on different hypotheses. Given that

3Why focus on probability-raising here? Because some of the other desiderata for a good
hypothesis—such as informativeness or decision-relevance—trade off with posterior probability. For
instance: the hypothesis that ECS is in the range 2.0-5.0◦C will always be more probable but less
informative than the hypothesis that it is in the range 1.5-4.5◦C. What we want from our evidence
is information about how much more probable—that is, we want it to raise the probability of one
hypothesis relative to the other (see §3 for further discussion).
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we lack this knowledge, the formal approaches that require it are unwarranted or
inapplicable.

Heuristics—rules for preferring an answer that rely on markers that are more read-
ily apparent than formal probabilities are—are one promising alternative to formal
probabilistic reasoning. One potentially useful marker is agreement : given a number
of different sources of evidence, all of them could “agree” that a hypothesis is true,
and this agreement might give us reason to prefer the agreed-upon hypothesis.4 Fol-
lowing Parker, we can understand what agreement means in the climate modelling
context as follows:

When does an ensemble agree that a hypothesis is true? Assume that
the values of model variables can be translated into statements regarding
target system properties. Then a simulation indicates the truth (falsity)
of some hypothesis h about a target system if its statements about the
target system entail that h is true (false). For example, if h says that
temperature will increase by between 1◦C and 1.5◦C, and each of the
simulations in an ensemble indicates an increase between 1.2◦C and 1.4◦C,
then each of those simulations indicates the truth of h and the ensemble
is in agreement that h is true. (Parker 2018, 290–91, fn 2)

A gloss: on the view we’re adopting from Parker, agreement is a matter of shared
content. That is, whether or not there’s “agreement” between models depends on
what those models say, in much the same way that whether or not there’s “agree-
ment” between witnesses depends on what those witnesses say (though, of course,
people and models don’t quite “say” things in the same way). Presumably, it is easier
to identify whether two models “say” that a hypothesis is true than it is to deter-
mine the likelihood of the evidence given various different hypotheses, meaning that
agreement might potentially help us answer questions in cases—like that of climate
modeling—where quantitative likelihoods are not available and qualitative heuristics
must be employed instead.

Whether agreement is actually a useful marker in climate science depends on
whether it is a reliable marker of confirmation. That is, where there is agreement to
be found, it must be the case that the agreed-upon hypothesis is (almost always)
confirmed in the formal probabilistic sense. Or, in other words, in most cases where

4This treatment of agreement—which broadly follows Wimsatt (1981)—should be distinguished
from those in which agreement or “robustness” is interpreted as a particular formal condition (see,
e.g., Schupbach 2018). I adopt this approach here because, as we’ll see, it’s not clear that the kinds
of formal conditions that define a formal notion of “robustness” obtain in the present case. My
conclusions should be understood to be limited to agreement or robustness in this heuristic sense.
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climate models agree on a particular h1, the odds of h1 relative to the members of
its contrast class increase.5

When is agreement a reliable marker of confirmation in this sense? Well, evidence
e confirms hypothesis h1 relative to h2 iff the likelihood of the evidence on supposition
of the first hypothesis (Pr(e|h1)) is greater than the likelihood of the evidence on
supposition of the second hypothesis (Pr(e|h2)) (Chandler 2013). Following Myrvold
(1996, 2017), notice that the likelihood ratio for any set of evidence E = {e1, ..., en}
can be rewritten in terms the likelihood ratios of the individual pieces of evidence as
follows:

Pr(E|h1)

Pr(E|h2)
=

Pr(E|h1)∏
e∈E Pr(e|h1)

×
∏

e∈E Pr(e|h2)

Pr(E|h2)
×

∏
e∈E

Pr(e|h1)

Pr(e|h2)

For simplicity, call the first and second terms in this equation S(E, h1) and 1/S(E, h2),
respectively. As Myrvold argues, each of the two S terms can be thought of as a
“similarity” measure: each measures how “similar” the different elements of E are
by taking the actual probability of the conjunction (Pr(E|·)) relative to its probabil-
ity were the conjuncts probabilistically independent (

∏
e∈E Pr(e|·)). As such, the two

S terms together give the similarity of the total evidence set given the hypothesis h1

over the similarity of the same evidence given h2. The equation just given can then
be rewritten as:

Pr(E|h1)

Pr(E|h2)
=

S(E, h1)

S(E, h2)
×

∏
e∈E

Pr(e|h1)

Pr(e|h2)
(JL)

Myrvold glosses the insight contained in (JL) as follows: “a diverse body of evidence
confirms a hypothesis more strongly if the hypothesis renders the evidence less di-
verse” than the negation of the hypothesis does (Myrvold 1996, 663). We can add
that in fact the relationship is really one of to the degree that rather than merely if.
As should be obvious, if we hold fixed the individual likelihood ratios, the joint likeli-
hood will vary directly with the ratio between the two S terms (see also Schlosshauer
and Wheeler 2011; Wheeler and Scheines 2013).

As this analysis reveals—and as the formal literature on the subject has re-
peatedly stressed—“independence” strictly understood has no role in confirmation.6

5More formally, let si represent what I’m calling the estimate and what Parker calls the “state-
ment” of the ith model. Then two models agree on h1 iff s1 ⊨ h1 and s2 ⊨ h1. Note that the evidence
(ei) in this situation is not si but the fact that the ith model “says” that si. Agreement is reliable
marker of confirmation to the extent that agreement (s1 ⊨ h1 and s2 ⊨ h1) makes confirmation
(Pr(e1&e2|h1) > Pr(e1&e2|h2)) likely.

6Dethier (forthcoming[c]), Myrvold (1996), and Wheeler (2012) all make this point explicitly
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What matters is the degree of variation or similarity between the sources of evidence
as measured by the ratio between S terms. Of course, we should expect that infor-
mal or intuitive markers of independence—such as whether or not two experiments
employ the same instruments—will track this formal quantity, which is essentially
a generalization of the standard formal definition of probabilistic independence. As
we’ll see, however, the connection between the intuitive markers and the formal
conditions on confirmation is not straightforward, and confirmation is possible even
in situations where there’s a substantial intuitive connection between the different
sources.

Effectively, (JL) provides us with an extremely general formal model of confir-
mation in the setting of multiple sources of evidence—the setting we find ourselves
in when evaluating the evidence provided by groups of climate models. This model
is useful in the present setting because it provides two precise conditions that are
jointly sufficient for the confirmation of h1. If we can show that agreement is highly
correlated with these conditions, we will have established that agreement is a reliable
marker of confirmation.

The two conditions are as follows. First, say that a set of evidence E “converges”
on h1 (relative to h2) iff every piece of evidence raises the probability of h1 relative
to h2. Second, say that a set of evidence is “weakly varied” (with respect to h1, h2)
iff the ratio between S(E|h2) and S(E|h1) is less than the product of the individual
likelihoods. More precisely:

E converges on h1 iff for all e ∈ E, Pr(e|h1) > Pr(e|h2).

E is weakly varied iff S(E|h2)/S(E|h1) <
∏

e∈E[Pr(e|h1)/Pr(e|h2)].

As just noted, these two conditions are jointly sufficient for confirmation: if E con-
verges on h1 relative to h2 and is weakly varied with respect to h1 and h2, then E
confirms h1 relative to h2. These conditions are, notably, fully general: they hold
regardless of the relationship between h1 and h2, the nature or source of the evidence
that makes up E, etc.

The question we have to ask, then, is whether agreement across climate models
reliably correlates with these two conditions. In the next two sections, I’ll argue that
the answer to this question is that it depends on the contrast class: when we’re
concerned only with mutually-exclusive hypotheses, it’s plausible that agreement
does reliably correlate with the two conditions that are sufficient for confirmation;
when we’re concerned with mutually-consistent hypotheses, by contrast, it isn’t.

using variations on the same formalism adopted here. The point holds in other settings, however,
as illustrated by the work of Bovens and Hartmann (2003) and Schupbach (2018).
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2 Agreement and mutually exclusive hypotheses

To determine whether our two formal conditions correlate with agreement, we need
to first map these conditions onto the practice. So let h1 be the hypothesis that
“ECS is within the range 1.5-4.5◦C” and, because we’re currently interested in the
setting where the two hypotheses are mutually exclusive, the contrasting hypothesis
is ¬h1, or “ECS is not within the range 1.5-4.5◦C.” The pieces of evidence that we’re
updating on, e1, e2, e3 etc., are facts about the outputs of the models: that the first
model output an estimate for ECS of x, that the second model output an estimate
for ECS of y, etc. Notice, importantly: this means that the relationship between
the first and second model factors into the probabilistic relationship between e1 and
e2; if the two models are identical, then Pr(e2|e1) = 1. In other words, what our
hypotheses must explain is the fact that each model yields the output that it does.
Roughly speaking, the question is whether “agreeement” between the models—i.e.,
the outputs all falling within a particular range—is better explained by the true
value falling within that range (and the models tracking it) or by some sort of shared
error.7

In this restricted setting where we’re only concerned with mutually exclusive
hypotheses, both convergence and weak variation are extremely minimal conditions,
and if each of the models in an ensemble agrees on one of the two hypotheses in
the sense of generating an estimate for ECS that falls within its range, then we
should expect that these conditions are met—or, more minimally, the arguments in
the literature are not sufficient to motivate rejecting this expectation. And thus, we
don’t have good reason to reject the claim that agreement on h1 is a reliable indicator
of the confirmation of h1 relative to ¬h1.

8

Let’s begin with convergence, which is the more intuitive condition. Essentially,
what is required for agreement to be a reliable marker of convergence is that if all the
models “say” that a hypothesis is true in the sense of delivering an estimate that falls
within the range picked out by that hypothesis, then the evidence that is generated
by each model is more probable on the assumption that the true value falls within

7Of course, putting the question in these terms is potentially misleading in one respect: the
ranges for ECS are not put forward ahead of time as hypotheses; instead, they’re inferred—typically
using statistics—from the outputs of models and other evidence. My discussion here should be
understood as representing the formal support relationships between the evidence and the space of
hypotheses that we could draw inferences about on the basis of that evidence and not as capturing
anything like the temporal order involved in the practice of drawing these inferences.

8Here’s another way of putting the point. The two conditions outlined above can be thought
to define a formal notion of “agreement” or “robustness” that does figure into confirmation; the
question is whether the intuitive notion of agreement outlined by Parker tracks this formal notion.
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this range than on the assumption that it doesn’t. So in our running example, each
of the models must be more likely to deliver an estimate for ECS that falls within a
given range (e.g., 1.5-4.5◦C) when the truth also falls within that range then when
the truth falls outside of it. Accordingly, if the condition fails to hold, that means
that there is at least one model that is so seriously inaccurate as to be anti-correlated
with the truth: when we learn that it delivers an estimate that falls between 1.5 and
4.5◦C, we should lower our confidence that true value for ECS is actually in this
range.

Notice how strong this requirement is: the demand here is not just that there
is one model or another that is very untrustworthy in the sense that we should as-
sign very little confidence to its estimates; on the contrary, the demand is that one
of the models is untrustworthy in the sense that we expect it to be worse than a
coin-flip at answering yes-no questions. It’s highly implausible that any given model
is this unreliable. It’s even more implausible that a given model would be this un-
reliable without there being substantial evidence of its unreliability—after all, these
models are thoroughly studied and vetted as part of the construction process, in
intercomparison projects (O’Loughlin forthcoming), and in subsequent studies that
compare their results to present-day climate data (see, e.g., Eyring et al. 2020). Ab-
sent evidence that a specific climate model is worse than chance with respect to a
particular variable, therefore, we should presume that the climate models that make
up standard ensembles converge in the very minimal sense offered here.

In her discussion of agreement in climate modeling, Parker offers specific argu-
ments that she takes to undermine a condition that is equivalent to convergence
(Parker 2018, 282, 288). To summarize: today’s ensembles suffer both from the omis-
sion of potential relevant processes and from (shared) idealizations about the nature
of processes that are risky or unjustified. Further, attempts to evaluate how these
omissions and idealizations affect the predictions of ensembles have indicated that
there’s a correlation between one model giving an (in)accurate prediction / estimate
and the next one doing the same.9

I have no grounds for disputing Parker’s descriptive claims about the defects of
contemporary models. What I dispute is that these defects give us reason to reject
convergence on h1 relative to ¬h1 in cases where all of the models agree on h1.
To see why, consider the two main problems that Parker raises for contemporary
climate models, namely that (a) they (all) omit some processes and (b) they idealize
others (often all in the same way). These are good reasons for thinking that the

9Though that doesn’t mean that they’re inaccurate in the same way. On the contrary, there’s
a known correlation between error and spread: when the models get a prediction wrong, they tend
to get it wrong in a bunch of different ways (see Knutti et al. 2010).
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models are imperfect, that they are likely not to give answers that are accurate to
the level of precision that we might desire. They are also good reasons for thinking
that simply collecting more models that share these same defects will not provide
definitive answers to our questions, because there will be potential sources of error
shared across all of the models.

Nevertheless, neither the omission of some processes nor the idealization of others
is a good reason for thinking that a model or ensemble is so defective that they are
more likely to provide evidence for false hypotheses than for true ones. Generally
speaking, if an idealized or abstracted model estimates that some quantity is x, we
think that this result makes it (more) likely that the true value falls in x± y, where
y is the relevant margin of error. In good cases, y is very small; in bad cases, it’s very
large. The presence of idealizations and abstractions is generally speaking a reason
to increase y or to shift it in one direction or another (i.e., to think that the true
value is between x−u and x+v), but not a reason to think that the model’s estimate
of x makes it more likely that the true value is radically different from x. The same
is true of shared assumptions or idealizations: the presence of shared assumptions
across models does not generally make it more likely than not that those models are
all wrong.

Of course, that’s not to say that there aren’t special cases where idealizations or
omissions could undermine our confidence in convergence. So, for example, imagine
that we knew that some omitted process had a massive net positive feedback effect
on ECS; including that process in the model would increase the estimate of ECS by
3◦C.10 Then an estimate of 2◦C would give us good reason to think that the true
value of ECS is outside the range 1.5-4.5◦C. And so we would have a good reason to
doubt that agreement on this range is a good marker of convergence. But the point
made above still holds: absent specific evidence to the contrary, we don’t have good
reason to expect that these kinds of extreme errors are present in the model. This
point is particularly true in contexts where the models have been thoroughly studied
and validated against available data. Convergence fails only when there’s something
seriously wrong with the models, and while it’s always possible that validation studies
could have missed an error, that possibility is not sufficient to motivate the conclusion
that the models are so inaccurate that convergence fails.

Similar comments apply with regard to weak variation. Roughly speaking, we can
think of the similarity measure S(E, ·) as quantifying how well a given hypothesis
explains the clustering of the observed evidence—how well it explains the fact that
we observe e1 and e2 together absent consideration of how well it explains them

10There are cases like this in regional climate modeling; see, e.g., Boé et al. (2020) and Schwing-
shackl et al. (2019).
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each individually. What we then require is that when all the evidence clusters within
the range specified by h1, ¬h1 cannot be a significantly better explanation of this
clustering than h1 itself is. If we even expect the probability of clustering to be
roughly the same given both hypotheses, weak variation is satisfied. The same point
about the implausibility of the models being worse than chance holds here as well,
just at one level removed. While a failure of weak variation doesn’t amount to the
inclusion of a single model that is worse than chance, it does amount to the use of a
group of models that are jointly defective in the sense that they’re much more likely
to agree on falsehoods than on truths. And there’s no reason to think that extant
ensembles are defective in this way.

The presence of omissions and idealizations—even quite serious ones—in the en-
semble certainly does not provide such a reason. These sorts of flawed assumptions
might make it so that h1 and ¬h1 are equally good explanations of the clustering; if
the agreement between models is to be attributed to the failure of a particular ide-
alization, then it doesn’t matter what the true value of ECS is. But the presence of
omissions and idealizations isn’t a reason to think that ¬h1 is a better explanation of
the observed agreement than h1 is. For that we need reasons to think that there are
specific, confounding, interactions between the different pieces of evidence, interac-
tions like those found in Stegenga and Menon (2017) or cases of Simpson’s paradox.
It’s hard to image how such interactions would arise in the climate modeling context,
however, let alone how they would arise without showing up in validation studies: if
the models are really so constructed that they’re substantially more likely to agree
on falsehoods than on truths, we would expect to a correlation between agreement
and error. In fact, what we see is the opposite: error is highly correlated with model
spread (Knutti et al. 2010).11 Just as is true of convergence, in other words, we have
no reason to expect that the models actually employed in climate science are this
defective, and good reason to think that if they were, we would know about it.

Perhaps the foregoing arguments are unfair, however, at least insofar as the tar-
get is taken to be Parker’s views. Rather than arguing that we should think that
convergence or weak variation fails, an opponent might argue that, given the criti-
cisms raised by Parker and others, we should suspend judgment on the status of the
connection between agreement and these conditions and thus also on whether agree-
ment is reliable marker of confirmation. In fact, Parker indicates that this is her view

11The claim here is that we don’t have sufficient reason to expect that these interactions exist in
climate modeling given that climate scientists haven’t found them. The restriction is important. In
other contexts, we might expect that such interactions are common enough that even experts miss
them with a high degree of frequency. I see no reason to postulate that’s the case here without a
specific argument, however.
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with respect to convergence: “The claim here is not that individual modeling results
have negative evidential relevance but that their evidential status (with regard to
interesting hypotheses about long-term climate change) is largely unknown” (Parker
2018, 293, fn 28). I’m tempted to respond to this line of thought by arguing that (at
least in the present case) we should suspend judgment on the question of whether
agreement provides evidence if and only if we think it is (roughly) about as likely
as not to correlate with the conditions given above—and what I’ve essentially been
arguing is that we don’t have good reasons for thinking that.

Tempting as that line is, however, the Parker-inspired critic would be correct
in pointing out that it’s too fast. We can agree that an agent ought to suspend
judgment only when the probability of convergence given agreement is “roughly” .5
while disagreeing on what exactly “roughly” means here. That is, we can imagine
two agents who disagree about whether or not to suspend judgment because they
differ in how cautious they want to be in their positive epistemic judgments. The
arguments I’ve given motivate the following: given the actual practices involved in
model construction and validation, we should expect that the models climate science
use are not anti-correlated with the truth. Minimally, therefore, a reasonable agent
(a) cannot conclude that agreement doesn’t provide evidence and (b) need not sus-
pend judgment. The arguments given in the literature don’t justify the former and
don’t force the latter. At worst, the judgment that agreement provides evidence is
defensible and a reasonable agent might adopt it without being seriously incautious.

This brings us to another respect in which the arguments just given might be seen
as unfair: Parker, at least, is concerned with “significant” increases in confidence,
while all that I’ve established is that it is reasonable to increase one’s confidence to
some degree.12 Of course, the point of the last paragraph applies here too: there’s
no bright line for what counts as significant. Nevertheless, it’s worth stressing how
easy it is for agreement to generate evidence that is significant in an intuitive sense.
So consider a toy example characterized by the following three conditions. First,
our ensemble consists of 10 models (around the average size of extant ensembles).
Second, each of these models is about 1.5 times as likely to say that h1 is true if
it is than if it isn’t—that is, the evidence provided by an individual model favors
h1 but is “not worth more than a mere mention” (Kass and Rafterty 1995, 777).
Third, ¬h1 is five times as good of an explanation for why the models agree as h1 is.
Recall that (JL) tell us that the joint likelihood ratio is equal to the ratio between
S terms (.2) times the product of the individual likelihood ratios (1.510), meaning
that joint likelihood ratio is around 12 (“strong” evidence according to Kass and

12Reasonably, Parker doesn’t define “significant,” but she does note that it depends on contextual
factors (Parker 2018, 281).
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Rafterty 1995, 777). A standard Bayesian agent who was indifferent between h1 and
¬h1 prior to encountering the ensemble should now have a relative confidence in h1

over .9, which is surely a significant increase in confidence. This example is (highly)
arbitrary, but the assumptions are overly pessimistic if anything: we’ve assumed a
realistic number of models, each of which provides poor evidence, and that are on
the whole much worse than a similar ensemble of “independent” models. And yet
the result is significant confirmation. Agreement is an extraordinarily powerful tool
for deciding between mutually exclusive alternatives.

Allow me to step back. What I’ve argued in this section is that agreement across
even highly flawed ensembles can be a reliable marker of confirmation when we’re
concerned only with mutually exclusive hypotheses. As is hopefully already clear, I
don’t take my arguments to definitively show that we should significantly increase
our confidence in all such cases—there are times when we know that a particular
set of models is biased or misleading. Where multiple sources of evidence agree on
one of a set of mutually-exclusive hypotheses, however, the conditions sufficient for
confirmation—even significant confirmation—are so weak that we don’t have good
reason to reject them absent this kind specific evidence about the individual models.
At minimum, more arguments are needed to show that these conditions should be
rejected in the general case, but I think the stronger conclusion is actually warranted:
the general case is one where agreement among models on one of a set of mutually
exclusive hypotheses is powerful evidence for the truth of that hypothesis. The reason
why is illustrated by the arbitrary but pessimistic toy example discussed above: a set
of different model reports can be very informative evidence even when the individual
reports are both poor evidence by themselves and very interrelated. The same is not
true in the context of mutually consistent hypotheses, as I argue in the next section.

3 Agreement and mutually consistent hypotheses

In this section, I argue on general grounds that agreement is not a reliable marker
of confirmation in the context of mutually consistent hypotheses.

Recall: our goal is to show that one of a set of mutually consistent hypotheses—
hypotheses that might place ECS in the range of 1.0-5.0◦C, 2.0-5.0◦C, 4.0-6.0◦C,
etc.—is to be preferred over the others; since we’re focusing only on the desire for
true hypotheses and not other virtues that a hypothesis might have, agreement on a
hypothesis indicates that the hypothesis preferable iff agreement is a reliable marker
of an increase in the odds of that hypothesis relative to the other hypotheses under
consideration.

Agreement is not a reliable marker of confirmation in this context, however.
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Intuitively, the problem is quite simple. Consider two overlapping potential ranges
for ECS, such as 1.5-4.5◦C and 1.0-5.0◦C. Suppose that a given ensemble agrees on
the first range in the sense that every model generates an estimate that falls within
that range. Then every model generates an estimate that falls within the latter
range as well. So the ensemble agrees on both ranges. But the two ranges cannot
both be confirmed relative to the other: only one of the two agreed-upon hypotheses
can see its relative odds increase. The point this case illustrates is that agreement
cannot be a reliable marker of relative confirmation when there’s agreement on both
hypotheses. The problem is that when working with contrast classes that include
mutually consistent hypotheses, the models are liable to agree on multiple hypotheses
in the requisite sense. Since these hypotheses cannot all be confirmed relative to each
other, the upshot is that agreement is not a reliable marker of confirmation.

Notice that the difficulty here arises from the fact that agreement comes apart
from confirmation in a way that makes agreement less apt for deciding between
mutually consistent hypotheses. So consider again the two ranges 1.0-5.0◦C and 1.5-
4.5◦C. Just as evidence that agrees on the latter agrees on the former, so too is the
former guaranteed to have at least as high a posterior probability as the latter. With
agreement, however, this is all that there is to say about the issue; because agree-
ment is binary, it marks no difference between the two hypotheses. Confirmation,
by contrast, can mark a difference: the odds ratio between these two ranges is not
fixed, meaning that evidence can confirm the narrower relative to the wider. So while
confirmation theory cannot tell us that the narrower hypothesis is true but the wider
one false (nothing can do that, given that the narrower entails the wider), it can tell
us that the narrower is a better representation what the evidence supports (compare
Chandler 2007). Agreement has no resources to do the same.

More technically, the problem is that our notion of agreement allows for weakening
the “consequent” and confirmation doesn’t.13 So two estimates s1 and s2 agree on
a hypothesis hi just in case the truth of any one of the estimates entails hi—e.g.,
s1 ⊨ hi and s2 ⊨ hi (recall note 5). Trivially, however, if hi is entailed, then so is
hi ∨ hj for any hypothesis hj. Indeed, if we write the disjunction of all the estimates
out as s1∨ ...∨ sn, then the ensemble agrees on any hypothesis that can be rewritten
as s1 ∨ ... ∨ sn ∨X. Confirmation doesn’t work like this: that e confirms hi does not
guarantee that it confirms hi ∨ hj—let alone that it does so relative to hi. When our
hypothesis space includes only one hypothesis that can be re-written as s1∨...∨sn∨X,
it’s plausible that this hypothesis—the sole hypothesis that is consistent with any

13The use of “consequent” here can be made more appropriate by reframing the discussion in
terms of an agreement conditional and a confirmation conditional á la Joyce (1999), but I think
that’s unnecessary for communicating the point.
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one of the statements of the ensemble being true—is confirmed. When the potential
answers include more than one hypothesis that can be re-written as s1 ∨ ...∨ sn ∨X,
by contrast, agreement cannot be expected to track confirmation.

The point just made explains why agreement is not generally useful in the context
of mutually consistent hypotheses; it also helps explain why there seem to be notable
exceptions to this general conclusion, such as Perrin’s use of multiple measurements
to estimate Avogadro’s number (see Perrin 1913/1916). In these cases, scientists have
some other grounds for restricting the set of potential hypotheses so that there is only
one answer equivalent to s1 ∨ ... ∨ sn ∨X. The most straightforward (and I suspect
the most common) such grounds are well-founded expectations about experimental
error. For instance, if we have reason to believe that every one of our estimates is
accurate to within 1◦C but no reason to think that any one of them is more accurate
than that, then, from all of the infinity of ranges that the estimates agree on, we
have grounds for preferring one of these, because there is at most one such that it
includes all and only the values that are within 1◦C of every estimate. Of course,
in most cases, our expectations about experimental error will not be this precise,
but the same general lesson applies: knowledge about the potential for experimental
error gives us a reason to prefer one hypothesis to all of the others that the set of
results agrees on.

This use of background knowledge is essentially what vindicates appeals to agree-
ment like those found in Perrin’s estimation of Avogadro’s number.14 Given what Per-
rin knew about the experiments in question, he was able to put relatively accurate
and highly precise (for 1908) limits on what possible values for Avogadro’s number
each of the experiments allowed. With these limits in hand, the problem Perrin faced
was less “which numerical range does Avogadro’s number fall within” than it was
“which (if any) is the unique range such that all and only the values within it are
within the expected experimental error of every result?” That there is such a unique
range—that the results agree in this sense of all being within (relatively) well-defined
experimental error bounds of each other—is often extremely powerful evidence; it’s
a good indication that we should prefer that (unique) range, at least provisionally.
But this reasoning only works because extensive background knowledge is employed
to restrict (in our earlier language) the class of hypotheses so that only one of them
could be rewritten as s1 ∨ ... ∨ sn ∨ X. In other words, the logic of reasoning from
agreement within experimental error is very different from the logic of reasoning from
agreement simpliciter—the modifier is doing a lot of epistemic work.

14The following discussion is simplified, but a close evaluation of Perrin’s work vindicates the
general picture while complicating our understanding of how well Perrin himself succeed at the task
(see Smith and Seth 2020, chapter 6).
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Unfortunately, it isn’t really possible to approach agreement across climate mod-
els in the same way. The reason why is that we don’t have the requisite background
knowledge of how the individual models work and thus of how accurate they are
likely to be. We’re not in Perrin’s position, where we have a deep understanding
of the specific instruments and techniques involved and the resulting constraints on
how much “random” error we can expect in a given estimate. We can’t, that is, give
a well-founded estimate of a value of y such that a given model is sufficiently likely
to deliver estimates within y of the truth—or at least we can’t for any values of y
that are small enough to allow us to answer interesting questions in this way. The
difficulties involved in understanding the inner workings of the models has been well
covered by others (see, e.g., Jebeile and Barberousse 2021), and so I won’t belabor
the point here.

It’s tempting to respond to this result by concluding that something has clearly
gone wrong. After all, it’s ridiculous to think that when a group of models agree
that ECS is between 1.5 and 4.5◦C, that gives us no reason to prefer the hypothesis
that ECS is actually in that range to the hypothesis that ECS is between -100 and
100◦C. I agree: I too have the intuition that of course the clustering of models within
the smaller range provides us with a reason to prefer it to the latter, and I think
that intuition is right. The takeaway of the present section is that the agreement-
based heuristic is the wrong way to accommodate it: what gives us reason to prefer
the smaller range is not “agreement” in an informal sense—that can’t distinguish
between the two hypotheses—but the distribution or variation found in the ensemble.
One way of looking at agreement is that it ignores question of distribution: if we’re
asking whether the set of estimates agrees on h, we’re putting aside variation in how
much the different estimates support h or where the different estimates fall within the
range captured by h.15 Insofar as we’re interested in distinguishing between mutually
compatible hypotheses, therefore, we should prefer tools—like standard statistical
analyses—that make use of this variation.

That’s a positive argument for another paper, however. For now, I turn to arguing
that cutting-edge climate modeling is an area where the contrast classes usually
involve mutually consistent hypotheses and thus where agreement is likely to be of
little use.

15In Bayesian terms, we’re not updating on the total evidence. One way of viewing cases in which
agreement is a good heuristic is that they’re cases in which the distribution makes little difference
and so updating only on agreement approximates the results that we would get if we updated on
the total evidence.
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4 Interesting questions in climate modeling

The last section argued that agreement is not useful for distinguishing between mu-
tually consistent hypotheses or, in other words, that Parker’s thesis holds in a re-
stricted setting. In this final section, I’ll argue that many of the interesting questions
in cutting-edge climate modeling require us to distinguish between mutually consis-
tent hypotheses and thus that even the restricted version of Parker’s thesis will mean
that agreement across models is not generally useful in cutting-edge climate science.
As we’ll see, however, this does not mean that agreement has no role to play: it may
nevertheless be useful in public-facing contexts.

To begin, note that Parker means “interesting” as something of a technical term:

By an interesting predictive hypothesis, I mean a hypothesis about the
future that scientists (i) do not already consider very likely to be true or
very likely to be false and (ii) consider a priority for further investigation.
In climate science today, these are typically, but not always, quantitative
hypotheses about changes in global or regional climate on the timescale
of several decades to centuries. (Parker 2018, 290, fn. 1)

That is, what Parker means by “interesting hypotheses” are those hypotheses that
are interesting to scientists—the hypotheses that are investigated at the cutting-edge
of science.

To determine the implications of the above arguments for Parker’s claims about
interesting hypotheses, we need to adapt her two conditions to account for contrast
classes. The best way to do this is to shift from talk of interesting hypotheses to talk
of interesting questions : as we saw in section 1, different questions admit different
sets of potential answers. So, say that a question is interesting in this cutting-edge
sense iff scientists (i) do not already consider one of the answers much more likely to
be true than the other(s) and (ii) consider determining which of the possible answers
is true to be a priority for further investigation. Note that these conditions yield
a relatively straightforward way of determining what questions count as interesting
in climate modeling: we should examine (i) what questions the climate scientists
regard as not yet having been definitively answered and (ii) we should examine what
questions they are working to answer.

On the first count, consider what the IPCC says about our running example
(equilibrium climate sensitivity) in the 2013 assessment report:

Equilibrium climate sensitivity is likely in the range 1.5◦C to 4.5◦C (high
confidence), extremely unlikely less than 1◦C (high confidence), and very
unlikely greater than 6◦C (medium confidence). The lower temperature
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limit of the assessed likely range is thus less than the 2°C in the AR4,
but the upper limit is the same. (IPCC 2013, 16)

Here we are confronted with the IPCC’s standard two-tier system of expressing
confidence in hypotheses. How exactly we should interpret these nested probability
judgments is an interesting question in its own right, but it seems clear that, at the
very least, the IPCC considers a claim like “Equilibrium climate sensitivity is likely
in the range 1.5◦C to 4.5◦C” to be a hypothesis—that is a proposition to be tested,
accepted and rejected, etc.16 Insofar as the IPCC’s answers are indicative of their
questions, they seem to take questions like the following to be interesting:

Which temperature range is ECS likely to fall within?

Which temperature range is ECS unlikely to fall within, but not “very”
or “extremely” unlikely to fall within?

These questions are straightforwardly questions that admit mutually consistent hy-
potheses as potential answers: they’re asking which range we should prefer rather
than whether-or-not we should prefer a given range to its negation.17

Why not read the above passages instead as answering a question where there
are only mutually exclusive answers? There are at least two reasons. First, as the
final sentence quoted makes clear, the IPCC doesn’t take themselves to merely be
answering the question of whether it is more likely than not that ECS falls within
the range 1.5-4.5◦C; they’re explicitly concerned with whether this range is more
warranted than one in which the low end of the range is 2.0◦C rather than 1.5◦C. So
they’re explicitly concerned with distinguishing between overlapping ranges—that
is, with hypotheses that are mutually consistent. Their discussion of the “very” and
“extremely” unlikely cutoff points is even harder to square with a reading on which
the question is merely whether we should prefer a given range.

The second reason concerns the methods that the IPCC uses in determining the
ranges that they give. If they were seeking to distinguish between mutually exclusive
hypotheses, we might expect them to appeal to model agreement in determining
the range for ECS. But they don’t: the actual range of ECS values reported by
climate models is 2.1-4.7◦C (IPCC 2013, 817)—the models don’t even agree on the
IPCC’s preferred “likely” range. Instead, the IPCC appears to base their estimate

16I’m aware of two extended treatments of these sorts of probability claims: Dethier (forthcom-
ing[b]) and Winsberg (2018). Both explicitly build this point into their account.

17Of course, the real question here is “what is the value of ECS?” which is plausibly a question
where the answers are mutually inconsistent. But the models don’t agree on that question—they
deliver a range of different answers—and so the agreement heuristic cannot help us there.
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on composite evaluations of a number of different sources of evidence (IPCC 2013,
1110, box 12.2, see also 922-923; Winsberg 2021). Nor do they take “agreement” to
pick out the evidence provided by the climate models alone; instead, they prefer the
range of 2-4.5◦C on the grounds that this is the 5− 95% confidence interval given by
the data. The method that the IPCC uses to determine which potential answer to
prefer, in other words, is a quintessential method for distinguishing between mutually
consistent hypotheses.

Similar comments apply when we examine the questions that climate scientists
prioritize answering. A survey of recent papers on ECS, for example, reveals that
climate scientists prioritize at least the following kinds of research relating to ECS:
research into estimating ECS itself, particularly that of combining estimates from
models with other sources of evidence, as in Sherwood et al. (2020); research into
methods for more precisely estimating ECS using climate models (Dai et al. 2020);
research into the accuracy of model-generated estimates of ECS (Gregory et al. 2020);
research into the origins of inter-model spread in estimates of ECS (Caldwell et al.
2016); and research into how various processes—especially those about which there’s
substantial uncertainty—affect ECS (Dong et al. 2020).

There are likely other important categories that I have missed, but none of these
categories lends itself to mutually exclusive hypotheses in any straightforward way.
The first kind of research is essentially research into our running example: which range
does ECS fall within? The others concern how precise and/or accurate we can expect
our estimates to be—where we should make the cutoffs between “likely,” “unlikely,”
and “very unlikely” scenarios—or involve questions about why ECS takes on the
values that it does. (Even these why-questions are probably better thought of as “how
much of ECS / the spread in estimates of ECS does this variable account for?”) None
of these categories involves the kind of yes-no distinction between mutually exclusive
hypotheses that agreement can help us make.

Insofar as the above examples are representative, most of the interesting cutting-
edge questions in climate science require us to distinguish between mutually con-
sistent hypotheses. But Parker’s sense of “interesting” doesn’t (and isn’t intended
to) exhaust all of the ways that a question might be interesting in a more intuitive
sense. So, for instance, a question—even one that scientists deem settled—might be
interesting in virtue of being relevant to an important political or financial decision.
Along these lines, the public is or was interested in yes-no questions like:

Is humanity’s contribution to climate change positive rather than nega-
tive?

even though this question is considered to be conclusively resolved by climate sci-
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entists and the “interesting” question is how positive humanity’s contribution is.
Similarly, both climate scientists and the public are interested in yes-no questions
about the implications of climate change, such as

Is climate change increasing the frequency and/or strength of tropical
hurricanes?

We can even imagine a case in which a particular climate variable has an extremely
important cut-off point—where, for example, an ECS of 4.5◦C has importantly dif-
ferent ethical implications than an ECS of 4.4◦C. It might then be a very interesting
question whether ECS is at least as large as 4.5◦C.

The takeaway here is as follows. It seems to be true that most of the climate sci-
ence questions that are “interesting” in Parker’s sense—a sense that picks out which
questions are on the cutting-edge of scientific research—require us to distinguish be-
tween mutually consistent hypotheses. They concern where to draw the lines between
the reasonably likely scenarios and the extremely unlikely ones, or how to distribute
our confidence across the range of scenarios that are considered reasonably likely.
And so agreement across climate models is unlikely to be useful in cutting-edge cli-
mate science. As just noted, however, that doesn’t mean that agreement is not useful
in answering “interesting” questions in a broader sense. Given that the public is often
more interested in the kind of question that admits of mutually-exclusive hypotheses
than scientists are, agreement across climate models may well be a useful heuristic
in answering the public’s questions even if it isn’t useful for answering those that
concern climate scientists.

5 Conclusion

In this paper, I’ve argued that extant literature on agreement across climate models
is right to argue that agreement is not a useful heuristic for evaluating hypotheses
in cutting-edge climate science, but that the arguments given in this literature—and
the explanation in terms of model deficiencies that they proffer—are wrong. What’s
going on here is simply that agreement is structurally ill-suited for distinguishing
between mutually consistent hypotheses, and the questions that arise in cutting-edge
climate science are primarily the kind of “which-question” where mutually consistent
hypotheses arise.

It’s worth reiterating why this point is important. If the extant literature is right,
and the models really are the problem, then other methods of extracting information
from them are not liable to be any more informative than agreement. If I’m right,
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however, and the heuristic employed is the problem, then we should expect that other
methods—i.e., traditional statistical methods—will be more successful.
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