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Abstract:

Neural structural representations are cerebral map- or model-like structures that
structurally resemble what they represent. These representations are absolutely
central to the “cognitive neuroscience revolution”, as they are the only type of
representation compatible with the revolutionaries’ mechanistic commitments.
Crucially, however, these very same commitments entail that structural
representations can be observed in the swirl of neuronal activity. Here, I argue
that no structural representations have been observed being present in our
neuronal activity, no matter the spatiotemporal scale of observation. My
argument begins by introducing the “cognitive neuroscience revolution” (§1)
and sketching a prominent, widely adopted account of structural
representations (§2). Then, I will consult various reports that describe our
neuronal activity at various spatiotemporal scales, arguing that none of them
reports the presence of structural representations (§3). After having de�ected
certain intuitive objections to my analysis (§4), I will conclude that, in the
absence of neural structural representations, representationalism and
mechanism can’t go together, and so the “cognitive neuroscience revolution” is
forced to abandon one of its commitments (§5).
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1 - Introduction: neural structural representations and the cognitive neuroscience revolution

Representations remain as central to cognitive science as elusive to our understanding (Villaroja
2017; Favela & Machery forthcoming). Philosophers invested in the “cognitive neuroscience
revolution” (Boone and Piccinini 2016), however, argue that cognitive neuroscience1 operates upon
a stable concept of neural representation. In their view, cognitive neuroscience provides us with a
concept of neural representations as map- or model- like structures that represent their targets by
resembling them in a particular, structural way. Call these representations neural structural
representations - NSRs for short (see Gładziejewski 2015; 2016; Gładziejewski &Miłkowski 2017;
Williams 2017; Williams and Colling 2017; Wiese 2016, 2017; Morgan & Piccinini 2018; Piccinini
2020a, 2020b, 2022).

Prima Facie, contemporary cognitive neuroscience relies heavily on NSRs. The spatial navigational
skills of rats are explained by appealing to a cognitive map hosted in the rat’s hippocampus (cf.
O’Keefe & Nadel 1978; Moser et al. 2018). Motor control is accounted for in terms of various
models computing and controlling the relevant motor trajectories (Pickering & Clark 2014;
Mcnamee & Wolpert 2019). Moreover, the very same models might underpin social cognition
(Haruno et al. 2003). The “mirror” property of many neurons is increasingly interpreted in terms

1 Here,“cognitive neuroscience” and “cognitive science” will refer only to mainstream approaches - that is,
representational and computational - in the respective disciplines. For non-mainstream alternatives, see (Kelso 1995;
Chemero 2009; Anderson 2014; Bruineberg & Rietveld 2019; Van der Weel et al. 2022).
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of inner models allowing to simulate actions (Kilner et al. 2007; Csibra 2008) and emotions
(Rizzolatti & Sinigaglia 2023) o�ine. Popular neurocomputational frameworks such as predictive
processing cast all brain functions as operations on complex, multifaceted statistical models of the
environment (cf. Buckley et al. 2017).2 More generally, the idea that innermodels are the only way
in which an agent can make sense and control the �ux of input the environment bombards the
agent with is gaining momentum (Seth 2015; Brette 2019). The cognitive centrality of innermodels
is further con�rmed by a host of neurorobotic experiments (Tani 2007; 2016) and
neurocomputational models (cf. Ha & Schmidhuber 2018a, 2018b, Poldrack 2020). And so, whilst
such map- and model- like structures are in no way the only type of representational structure
cognitive neuroscientist invoke (cf. Barack & Krakauer 2021; Backer et al. 2022; Frisby et al. 2023),
it is undeniable that they do play a large explanatory role in contemporary cognitive science. For
proponents of the “cognitive neuroscience revolution”, however, NSRs are not “just” important -
they are central to the success of cognitive neuroscience.

This is because supporters of the “cognitive neuroscience revolution” claim that cognitive
neuroscience is deeply committed to a mechanistic explanatory strategy (see Gładziejewski 2015;
Boone & Piccinini 2016; Williams & Colling 2017; Piccinini 2020a).3 In such a view, to explain
cognitive capacities (and their behavioral manifestations) is to identify and describe the physical
mechanism responsible for such capacities (and behavioral manifestations). Otherwise put: to
explain a cognitive capacity (or a behavioral manifestation thereof) is to identify and describe a set
of organized physical components whose causal interaction constitutes the cognitive capacity in
question (or causes the relevant behavioral manifestation; see Craver 2007; Bechtel 2008).
Crucially, mechanistic explanations are (at least partially) ontic explanations. Their explanantia are
not (only) statements concerning mechanisms, but the actualmechanisms “in �esh and blood”, so
to speak (cf. Craver 2007, p. 27; Illari 2013).

Now, if the representational, content-based explanations of cognitive (neuro)science are
mechanistic explanations, then it seems that (neural) representations must be real and literal
components of our (neuro)cognitive mechanisms, whose content must literally and really be
causally e�cacious within the mechanisms’s inner functional economy. And this entailment is
prima facie highly problematic. For, it is quite natural to think that representational contents are
causally inert. All the heavy causal lifting seems done by the representational vehicles - the physical
structures “doing” the representing by “carrying” the contents around - rather than the contents
themselves (e.g. Egan 2020). So, doesn’t the mechanistic approach to explanation prevent us from
restoring to content-based, representational explanations?

No, it doesn’t - or so the proponents of the cognitive neuroscience revolution claim. For, structural
representations are underpinned by representational vehicles whose physical shape is not just
casually potent, but also semantically relevant. This is because the physical shape of the vehicles,
and the particular way in which they resemble their targets, determines what these vehicles
represent. In the case of NSRs, then, semantic content and vehicular shape are at least largely
overlapping, if not the exact same thing (Williams & Colling 2017; Lee 2019; Piccinini 2022). In

3 But see (Silberstein & Chemero 2013; Silberstein 2021) for a diverging opinion.

2 Even if Predictive Processing also admits non-representational, “Model free” interpretations (Downey 2018; Facchin
2021a). These interpretations, however, remain fairly unorthodox.
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this way, semantic contents are able to play an active causal role within our neurocognitive
mechanisms, and are thus able to play a genuine explanatory role in mechanistic explanations (cf.
O’Brien 2015).

But notice how, given that NSRs are bona �de components of neurocognitive mechanisms, they
must be observable and manipulable as any other component of said mechanisms. Proponents of
the neurocognitive revolution agree - either implicitly (see Williams 2017) or explicitly (Piccinini
2020) - that this is the case. This means that, at least when it comes to NSRs, we can circumvent
the seemingly never-ending debate concerning the reality of internal representations (cf. Ramsey
2007; Hutto & Myin 2013; Segundo-Ortin & Hutto 2021; Anderson & Champion 2022). To
determine whether NSRs are real, one just needs to take a peek inside the neurocognitive system
and see whether NSRs - or, more accurately, NSRs-supporting vehicles4 - can be found (cf. Bechtel
2008, 2014; Thomson & Piccinini 2018; Piccinini 2020a; Facchin 2021a). For simplicity, let me
refer to NSRs supporting vehicles as NSRVs.

The aim of this paper is to take one such peek. As its title might have revealed, I will argue that no
NSRVs can be observed. My analysis will unfold as follows. (§2) introduces a widely accepted
account of structural representations, focusing on the constraint it places on representational
vehicles. (§3) considers whether neuronal vehicles satisfy these constraints. (§3.1) focuses on
individual neuronal responses. (§3.2) focuses on neuronal maps. (§3.3) focuses on activation
spaces In all these cases, I will argue that the relevant candidate vehicles cannot satisfy the
constraints introduced in (§2). Hence, these vehicles cannot be NSRVs. (§4) anticipates some
objections. (§5) considers the implications of my verdict for cognitive neuroscience, concluding the
paper.

2 - A standard account of (neural) structural representations

Informally described, structural representations are model- or map- like structures which represent
their targets (i.e. what the representation is “aimed at”) by being structurally similar to them.
Cartographic maps are paradigmatic examples of structural representations since they represent a
terrain by replicating the terrain spatial structure with their own spatial structure: if location a is
west of location b, then the map will display the point standing for a left of the point standing for
b. Now, how can this intuitive, but imprecise, idea of a structural representation be made more
rigorous?

Paweł Gładziejewski (2015; 2016) o�ers a nowadays standardly accepted philosophical analysis of
structural representations:

Within a system S, a vehicle V is the vehicle of a structural representation
of a target T if and only if:
(1) Structural similarity: V is structurally similar to T; &
(2) Action Guidance: The structural similarity in (1) allows V to guide
S’s action in regards to T; &

4 This caveat is actually important: NSRs proper are relations between neural vehicles and their targets, so they can’t be
observed just by observing neural goings on. At best, then, observing neural goings lets us see one relatum, that is, the
relevant representational vehicles (the NSRV).
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(3) Decouplability: (2) can obtain even when V is decoupled from T; &
(4) Error Detection: S can detect the representational errors V generates

There is much to say about (1)-(4), both as individually and as a whole. One �rst important thing
to notice is that they all concern structural representations in general - they’re not speci�c to NSRs.
This is a good thing, as it allows me to explain (1)-(4) in terms of structural representations
everyone is familiar with, such as maps. The step from structural representation in general to NSRs
can then be easily made by placing an appropriate restriction on the physical medium realizing the
vehicles: vehicles must be realized by neurons - or, more precisely, by patterns of neuronal
activities.

Secondly, (1)-(4) all concern the vehicle of a structural representation. Consider, for example, the
physical support underpinning a cartographic map. It is that support - that is, the representational
vehicle - that (1) is structurally similar to the mapped terrain, (2) is used to guide our actions (e.g. in
traversing said terrain), (3) can guide our actions when we’re decoupled from that terrain (e.g.
allowing us to plan the way ahead), and (4) whose usage allows us to detect its eventual
representational errors (e.g. by noticing that it leads us systematically astray). So, (1)-(4) specify the
relevant vehicular features underpinning structural representations. Notice also that, since (1)-(4)
are imposed in conjunction, the vehicles underpinning structural representations must satisfy all of
them. I will now examine each condition in turn, focusing in particular on (1) and (2), as they will
be extremely important throughout the entirety of (§3).

Condition (1) requires the representational vehicle V to be structurally similar to the represented
target T. The relevant structural similarity relation can be unpacked in a number of ways. Like
Gładziejewski, I chose a very liberal unpacking.5 Choosing such a liberal unpacking makes (1) easier
to satisfy - and so, NSRVs easier to spot. Thus, this is the relevant charitable interpretation of NSRs
in the present context. In this view:

V is structurally similar to T if and only if:
(a) There is a one-to-one mapping from some vehicle constituents (va…vn)
of V to some target constituents (ta…tn) of T; &
(b) There is one relation R holding among the vehicle constituents of V
and one relation R* holding among the target constituents of T such that,
for all the vehicle constituents satisfying (a): (vaRvb) → (taR*tb). (cf.
O’Brien and Opie 2004).

(a) imposes a one-to-one mapping from some relevant physical bits and pieces of the vehicle V (i.e.
vehicle constituents) to some bits and pieces of the target T (i.e. the target constituents). I won’t
pose any restriction on what may count as a vehicle constituent - everything may be vehicle
constituent, provided that it is a material constituent of a vehicle. For the sake of simplicity,
however, I won’t consider here arbitrary, gendermarried or otherwise “unnatural” way of carving
up vehicles: whilst “unnatural” mappings alway allow to �nd a structural similarity (cf. McLendon
1955), it is very doubtful our neurocognitive systems care about them - they won’t be, as Shea
(2018) usefully puts it, exploitable by our neurocognitive system. Also, again for the sake of

5 For less liberal views, see (Swoyer 1991; Isaac 2013)
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simplicity, I’ll always assume that the mapping in (a) is “subscript preserving”: va maps onto ta, vb
maps onto tb, … and vn maps onto tn.

(b) forces V and T to share the same inner relational structure: if a relevant relation R holds
between va and vb, then a relevant relationR* holds between ta and tb. Notice that (b)mentions one
relation in V and one in T. So, in order for (b) to obtain the relations preserved by the mapping in
(a) needs to be constant on both sides of the mapping. By this I do notmean thatR andR*must be
the same relation.6 I mean something di�erent - namely that the relation at one side of the
similarity cannot “switch”. Thus, if (vaRvb) → (taR*tb) but (vcRvd) → (tcR**td), then (b) fails to
obtain. Imagine a map representing the distance between some cities in a region in terms of
distances between them, and also the distances between other cities in the same region only in
terms of the colors used to represent the cities (e.g. cities represented in darker colors are further
apart than cities represented in lighter colors). Such a map would not count as a structural
representation according to Gładziejewski’s analysis (and it would also be really hard to use).

Crucially, conditions (a) and (b) determine the relevant semantic properties of structural
representations. They determine what a vehicle V represents.7 In structural representations, va
represents ta, and the fact that vaRvb represents that taR*tb (e.g. Shea 2018). Thus (a) and (b) - that is,
(1) - are the reasons why the physical shape of the representational vehicles of structural
representations are imbued with their semantic properties (Williams and Colling 2017).

Notice how (1) entails that structural representations have a speci�c form of semantic transparency.
Since the mapping in (a) is one-to-one and (b) operates only on one relation for V and one relation
for T, then it is always possible to interpret all the “vxRvy” univocally and transparently: vaRvb can
only represent taR*tb. Notice that since structural representations are transparent, their content is
neither disjunctive nor indeterminate: vaRvb represents that - and only that - taR*tb. Were it to
represent something disjunctive or indeterminate - say, something like (taR*tb or ta*R*tb) or (taR*tb or
taR**tb) - then either (a) or (b) (and so, (1)) would fail to obtain.

Notice further that the fact that the obtaining of (1) determines the semantic properties of
structural representations does not entail that (1) is the content-grounding relation in virtue of
which V is a representation of T (cf. Von Eckart 1996). The structural similarity in (1) need not be
what “makes” a vehicle contentful; it need not be the factor in virtue of which a vehicle comes to
represent a target and thus have a content - even if, according to some, it may (see Cummins 1996;
Lee 2018, 2021). V may come to represent T for di�erent reasons - for example, in virtue of its
informational linkage with T or its proper functions in regard to T (Ramsey 2016; Neander 2017;
Wiese 2017; Piccinini 2020a, b, 2022). The structural similarity in (1) necessarily determines only
how T is represented. That is, if vaRvb is part of that similarity, then T is represented as being such
that taR*tb is the case. Compare: whilst the way in which a map represents a territory is set by the
way the two are structurally similar - that it, the relevant structural similarity in (1) - presumably the
map does not represent the territory in virtue of that structural similarity, but rather in virtue of

7 Or, minimally, some of the relevant semantic properties of structural representations - other ingredients may be
necessary to account for all the semantic properties of structural representations. To give but one example Shea (2018)
argues a teleological component is needed to.

6 Even if it is possible thatR=R* - after all, when cartographic maps are involved, spatial relations are preserved on both
sides of the mapping.
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certain map-involving social practices. At any rate here I will stay neutral on whether (1) is the
content grounding relation of NSRs, and determining such an issue has no bearing on my
arguments.

Condition (2) is satis�ed when the structural similarity in (1) guides the actions of a system S that
are “aimed at” T. When this happens, S’s odds of success are sensitive to the quality of the similarity
holding between V and T (see Shea 2018, p.142). The more V structurally resembles T, the higher
S’s odds of non-accidental success; and, the lower the quality of the resemblance, the lower S’s
odds. Ceteris paribus8, the better the map resembles the terrain, the more one is able to traverse it.
The worse their resemblance, the more one is likely to get lost.

Notice that satisfying (2) entails that content is causally potent. For, intervention on the structural
similarity in (1) just are interventions on what V represents - that is, its contents. But, as seen above,
these interventions also modify the agent’s odds of success: the better the similarity, the better the
agent’s odds. This is enough to make V’s content causally potent under an interventionist notion
of causality (Gładziejewski & Miłkowski 2017): changes in V’s contents cause an agent to be more
likely to non-accidentally succeed or fail.

Here, I wish to highlight two ways in which the structural similarity between V and T can be
worsened - and so, two ways to non-accidentally decrease an agent’s odds of success. First, the
similarity can be worsened because single vehicle constituents of V map onto many target
constituents of T. This is one way to violate (a). I will call it an (a)-violation. Secondly, the similarity
between V and T may be degraded because two constituents of V display the corresponding
constituent of T as being in a relation that does not in fact hold. This is one way of violating (b) -
and I will call it a (b)-violation. Resorting to the map example may help clarify both cases. When an
(a)-violation occurs, one bit of the map “stands for” multiple bits of the terrain - like a dot on a
map representing both Paris and Rome. When a (b)-violation occurs, the map inaccurately displays
the terrain by displaying certain parts of it being in a relation that does not in fact hold between
them - like a map displaying Rome north of Paris. There are of course further ways in which the
structural similarity between V and T may be worsened: (a) and (b) can be violated in many other
ways. But my arguments won’t hinge on these violations, so I won’t discuss them.

Point (3) mentions decouplability. Decouplability is an essential feature of all representations,
which captures the idea that representations represent their target even when their target is not
causally a�ecting them or the agents relying on them (cf. Orlandi 2020). A map can be used even
when the mapped terrain is not causally interacting with the map or its user: for example, a map of
Tokyo represents Tokyo even if it, and its user, are located in Buenos Aires. Minimally, then,
decouplability can be unpacked as follows: V is decoupled from T when T is not causally
in�uencing V - for example, by causing its tokening (cf. Gładziejewski 2015; 2016). Notice,
however, that (3) requires somethingmore than decouplability thus spelled: it requires decouplable
representations to still play the action guiding role speci�ed by (2) when decoupled. So, for a map
of Tokyo to fully satisfy (3) it is not enough that it continues to represent Tokyo while located in
Buenos Aires. It must also perform its action guiding duties while in Buenos Aires - for example, by

8 This Ceteris paribus clause is meant to exclude cases in which excessive degrees of similarity stand in the way of
representational usage, as in the case of an hypothetical map in 1:1 scale.
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allowing the map user to plan her trip to Tokyo in a way such that the plan’s odds of
non-accidental success depend on the degree of similarity holding between the map and Tokyo.

Lastly, (4) is entailed by (2)9: if V guides S’s actions in regards to T as required by (2), then the
degree of similarity between V and T is re�ected in S’s odds of success. Hence non-accidental
behavioral successes can act as reliable (through defeasible) indicators of representational accuracy:
pragmatic successes indicate representational successes, and pragmatic failures indicate
representational failures - thereby allowing the detection of representational errors. (cf.
Gładziejewski 2015; 2016, see also Bielecka andMiłkowski 2020 for further elaboration).

Summing up: structural representations are representational vehicles (1) structurally similar to a
target, (2) whose structural similarity guides an agent’s action aimed at that target, (3) that can do
so even when decoupled from their target and (4) that allow their user to determine their
representational accuracy via the success-rate of the actions they guide. NSRs are just structural
representations realized in the neural medium. Thus, if they are present, we should be able to
observe NSRVs: neural vehicles satisfying (1)-(4).

But, does our neuronal activity really realize such vehicles? I think the existing neuroscienti�c data
motivate a negative answer.

3 - Are bona fide neural vehicles vehicles of neural structural representations?

To determine whether neural vehicles satisfy (1)-(4), one must �rst determine what neural vehicles
are. Here, I take neural vehicles to be neuronal responses, which I analyze at three distinct
spatiotemporal levels: the level of individual neuronal responses (§3.1), the level of neural maps
(§3.2), and the level of entire activation spaces (§3.3). In all cases I claim that they do not, and,
indeed, cannot, satisfy (1)-(4).

What justi�es this focus? Bluntly, the fact that neuronal responses are most often considered the
relevant representational vehicles upon which neurocognitive processes operate (see, for example,
Friston 2005; Mesualm 2008; Backer et al. 2022; Frisby et al. 2023). They’re the vehicles cognitive
neuroscience focuses on the most - the ones that are most central to its explanatory practices.
However, it should be noted that neuronal responses are not the only representational vehicles
cognitive neuroscience deals with. So, I will brie�y consider some other alternative neural vehicles,
claiming that they do not qualify NSRVs either (§3.4). A brief summary of the entire discussion
will then close this whole section (§3.5).

3.1 - Individual neuronal responses are not vehicles of neural structural representations

Individual neurons respond to stimuli selectively: di�erent stimuli elicit di�erent responses.
Typically, neurons have one preferred stimulus, which elicit the strongest response. Preferred
stimuli vary depending from neuron to neuron, re�ecting their specialized roles. For example,
neurons in the primary visual cortices respond to simple visual stimuli like oriented bars (cf. Hubel

9 At least, in su�ciently complex systems: we surely could design a robot whose central control system allows the
tokening of states satisfying (1)-(3) but not (4). However, since the paper focuses on brains (and brains are arguably
sufficiently complex) I will somewhat critically take (2) to entail (4).
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& Wiesel 1968). Neurons in hierarchically higher layers of the visual cortex respond to more
complex stimuli - for example, neurons in area MT respond to movement directions (cf. De
Angelis & Newsome 1999). Neurons further away from sensory areas respond to even more
complex stimuli (or features thereof): the parietal cortex houses neurons responding to speci�c
quantities (Nieder at al. 2006), the inferior premotor areas of the frontal cortex house neurons that
respond to speci�c actions (Kohler et al. 2002) and, apparently, there are even neurons in the
inferior temporal cortex preferring speci�c individuals (Quiroga et al 2005). Thus, individual
neurons have preferred stimuli of di�erent sorts, which they are often said to represent. But are
these representations NSRs? Are they underpinned by NSRVs?

It is a bit hard to provide a direct answer to these questions. Sure, NSRVs should be observable and
manipulable as any other component of a mechanism - but this time it is a bit unclear what we
should be looking at (or thinking with) exactly. For, “individual neuronal response” can be read in
at least three di�erent ways: (i) as designating individual spikes (i.e. single neuronal discharges), (ii)
as designating spike trains (i.e. sequence of discharges) and (iii) as designating a neuron’s �ring rate
compared to a baseline. Options (i)-(iii) all pick up a bona fide representational vehicle supporting a
speci�c representational scheme (see, for example, Dayan and Abbott 2005; Brette 2015). Thus,
the claim that individual neuronal responses are NSRVs can be read in at least three di�erent ways.
As a consequence, it is not immediately clear what sort of observations and manipulations would
support it.10

Now, whilst interpretations (i)-(iii) are all possible, I want to suggest that they all face certain
important challenges, whose collective weight seems enough to reject the idea that individual
neuronal responses may qualify asNSRVs under any interpretation.

First, it is very hard to see how an individual neuronal response could structurally resemble its
target - be it an oriented bar or an individual person. This is because it is very hard to see how the
vehicle (i.e. the individual response, however interpreted) could be non-arbitrarily decomposed into
vehicle constituents as requested by (a). It is not at all clear what could count as a vehicle
constituent of a single neuronal response: a “part” of a spike, an individual spike (or sequence of
spikes) in a spike train, part of the voltage emitted, a fraction of the �ring rate, part of the
neurotransmitters emitted, or something else entirely? All these options pick up certain bona �de
parts of a single neuronal response. Yet, there seems to be no privileged way to choose between
them (cf. Maley 2023): the choice of vehicle constituents seems entirely arbitrary. This is a serious
problem when it comes to satisfying (1). Of course, I don’t want to deny that we may discover that
there are functionally relevant, non-arbitrary ways to decompose individual neuronal responses.
But we’ve not discovered them yet. So, even supposing that one such partition exists (which is
something my dialectical adversaries should argue for!) we’ve not yet observed the relevant NSRVs,
for we simply do not know what that partition is. Moreover, even if a privileged, non-arbitrary way
to identify vehicle-constituents in individual neuronal responses were to be found, we still would
have to specify what sort of relevant relation holding amongst the vehicle-constituents as speci�ed
by (b). A task as daunting as the previous one.

10 Notice that the claims that neuronal maps and activations spaces are vehicles of NSRs are not similarly ambiguous:
both claims express a form of population coding, which is a special case of rate coding. No interpretation of these
claims in terms of single spike trains (or single spikes) is possible.
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Secondly but not least importantly, such tasks are not just daunting. They are also entirely
unmotivated - at least insofar the explanatory practices of present day cognitive neuroscience go.
For, whilst contemporary cognitive neuroscientists typically assume that individual neuronal
responses represent individual targets, they do not claim that speci�c parts of neuronal responses
represent speci�c parts of the target, nor do they claim that relations between parts of neuronal
responses represent relations between parts of the target. But that’s exactly the way in which
structural representations represent. Moreover, I suspect that claims such as “The �rst spike of the
spike train represents the leftmost bit of the oriented bar” or “the fact that spike va preceded spike
vb represents the fact that a part ta of the oriented bar is left of a part tb of the same bar” would be
considered not just unjusti�ed, but entirely exotic by the majority of cognitive neuroscientists. So
exotic, indeed, to be a bona fide reductio of the idea that individual neuronal responses are NSRVs.11

Summing up: the claim that individual responses are NSRvs is hard to “cash out”, it yields
extremely exotic conclusions and it is entirely unjusti�ed by the current practice of cognitive
neuroscience. Individual neuronal responses are in fact typically described as “indicator” or
“detector” representations (cf. Ramsey 2003; Williams & Colling 2017; Gładziejewski &
Miłkowski 2017; Backer et al. 2022).12 On this view, the �ring of a neuron does not provide an
inner model of a target which replicates the target’s inner structure. Rather, the �ring of a neuron
simply signals the presence of the target at the time of �ring. So, the actual practice of cognitive
neuroscience - that is, the observations and manipulations that cognitive scientists actually carry
out - does not suggest or motivate the claim that individual neuronal responses are NSRVs. If
anything, individual neuronal responses are said to be the vehicle constituents of individual
structural representations (cf. Williams & Colling 2017; Gładziejewski &Miłkowski 2017) - a view
whose two di�erent popular incarnations will be discussed in (§§ 3.2 and 3.3)

Before doing so, however, I wish to discuss an increasingly popular line of argument that
purportedly demonstrates that individual neuronal responses are NSRs precisely because they are
indicators. To anticipate: I will claim that indicators cannot be structural representations, as
indicators can never satisfy (2) and (3) in conjunction. To keep things in good order, I’ll do so in a
separate subsection. Readers more interested in hands-down philosophy of neuroscience might
wish to skip to (§3.2). Readers more interested in the “indicators vs structural representations”
debate are instead encouraged to read on.

3.1.1 - Why indicators cannot be structural representations (and individual neuronal
responses can’t be neural structural representations)

According to some, indication is a special case of structural similarity (Nirshberg & Shapiro 2020)
and indicators are a special case of structural representations (Morgan 2014; Facchin 2021b).
Consequently, neural indicators are a special case of NSRs. Were this line of argument correct, the
fact that we have observed individual neuronal responses (in one of the readings of the term) being

12 Piccinini (2020a) might, under a certain reading, be an exception - but he really seems more concerned with
populations of neurons rather than individual neurons. I will thus deal with his view in (§3.2).

11 One could still argue that individual neuronal responses represent what they represent because they are part of a larger
structural representation. Notice, however, that, in such a case, individual neuronal responses would not be NSRVs,
but only vehicle constituents of a larger NSRV. At any rate, §§ 3.2-3.4 will consider putatively larger vehicles,
concluding that they don’t qualify as NSRVs either.
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indicators is su�cient to establish the fact that we have observed individual neuronal responses
being NSRVs.

The argument claiming that indicators are a special case of structural representations goes roughly
as follows. First, notice that there is a one-to-one correspondence between indicator states and
indicated target: for example, each possible height of a thermometer’s mercury ball maps onto one
temperature. Thus, (a) obtains. Notice that there is always a (indicator speci�c) relation such that
(b) obtains: if the mercury bar height va is higher than vb (i.e. vaRvb) then the temperature ta is hotter
than tb (i.e. taR*tb). Minimally - and most essentially, as Facchin (2021b) points out - temporal
relations between corresponding indicator and target states must satisfy (b): if va is present n seconds
after vb (i.e. vaRvb), then the temperature ta followed tb after n seconds (i.e. taRtb); else, the device
would not be indicating the temperature in the �rst place. Thus, all indicators satisfy (1). They also
satisfy (2): if a system relies on indicators to organize its behavior, then the better its indicators
indicate, the better the system’s odds. But, since indication just is a structural similarity, the better
the structural similarity, the better the odds - exactly as (2) requires. What, then, about (3) and (4)?
Here, there seems to be no common argument. Morgan (2014) does not discuss them, and Facchin
(2021b) only presents certain examples suggesting that some (fairly complex) indicators can satisfy
them. Are individual neuronal responses amongst these indicators?

No, they are not. They fail to satisfy both (3) and (4). Consider (4) �rst, as it poses the smallest
problem. As noted above (§2), (4) is entailed by (2): if V guides S’s actions about T, then the failure
(or success) of these actions indicates whether V is an accurate representation of T. Yet, many
indicators - especially these in the primary sensory or motor cortices - do not indicate the targets of
our actions. For example we rarely (if ever) act on straight bars and the other stimuli the neurons in
our primary visual cortex indicate (cf. Hubel & Wiesel 1968). So, these neurons - or better, their
responses - fail to satisfy (4). So, it can immediately be concluded that at least some individual
neuronal states are indicators but not NSRs. One, however, could perhaps solve this problem
noticing that whilst what these indicators indicate is not the target of our actions, it is nevertheless
part of the targets of our actions, in a way that coil allow us to assess the semantic status of these
receptors too (thanks to XYZ for having noticed this). So, the problem with (4) is not fatal - or at
least, not fatal as I’d like it to be.

Luckily for me, the problem with (3) has the desired dose of theoretical lethality. Could a neural
indicator state be used o�ine - in a way that is decoupled from its target? The answer seems
positive: we have compelling evidence that “o�ine” and “online” cognition rely on the same
neuronal resources (e.g. Albers et al. 2013). If those resources include individual neuronal
responses (and they do) and these responses are due to indicators (and they are), then indicators are
used “o�ine”, in absence of the causal touch of the represented target. But if so, then (2) actually
fails to obtain. To see why this is the case, recall, as Facchin (2022b) stressed, that the
indicator-target structural similarity is essentially based upon certain temporal relations holding
amongst indicator states and target states. If va follows vb after n seconds (i.e. vaRvb), then ta follows tb
after n seconds (i.e. taRtb) - else, V would simply fail to indicate T. But when V is used o�ine, in a
decoupled manner, the temporal succession of indicator states and the temporal succession of
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indicated states must diverge - else, V would simply be indicating T online.13 Thus, when an
indicator V is used o�ine, if (vaRvb), then not (taRtb). But this is just a (b)-violation of the relevant
structural similarity: to use V o�ine, one represents certain relevant states of T in temporal
relations that in fact do not hold amongst them. If (2) were the case, that (b)-violation would
hinder S’s behavior, making S more likely to non-accidentally fail. But that’s not the case. For, the
ability to re-use one’s neuronal resources to cognize o�ine has clearly a high adaptive value. It
allows an agent to test behavioral strategies o�ine, without su�ering the consequences of real,
“online” failure (cf. Dennett 1996). It also allows an agent to anticipate various environmental
challenges, so as to take action before the nefarious consequences of such challenges unfold (cf.
Pezzulo 2008). So, the o�ine usage of indicators leads the agent to more frequently and more
robustly achieve behavioral successes, it increases the subject’s odds of success. Thus, if (3) obtains,
then (2) fails to obtain. And vice versa: when (for all indicator and target states) vb follows va after n
seconds and tb follows ta after n seconds, (2) obtains, but, as seen above, the indicator is not
decoupled. So, when (2) obtains (3) fails to obtain. In summary: for all neural indicators (2) and (3)
never obtain together - and so neural indicators are not NSRs. Worse still, the argument can be
easily generalized to all indicators: hence - pace (Morgan 2014; Facchin 2021b) - no indicator
quali�es as a structural representation.

Whilst the two arguments provided above are already su�cient to conclude that neural indicators
are not NSRs (and, more generally, that indicators are not structural representations), I wish to
point out a further problem in (Morgan 2014; Nirshberg & Shapiro 2020; Facchin 2021b). Thus
far, I’ve conceded that these arguments are su�cient to show that indicators satisfy (1) and (2).
Now, I wish to point out that (at least in this context) they do not actually show that (1) and (2)
obtain. More precisely, I want to claim that these arguments do not show that individual neuronal
responses (under any interpretation (i)-(iii)) are structurally similar to their targets; let alone that
that structural similarity plays a relevant action guiding role. For, the structural similarity these
arguments individuate is built around numerous individual indicator states and certain relations
holding amongst them. So, these arguments do not show that individual indicator states are
structurally similar to the targets they individually indicate. These arguments only show that an
indicator’s entire range of states is structurally similar to the indicator’s range of targets. Applied to
neurons, then, these arguments do not show that individual neuronal responses are structurally
similar to their targets; only that a neuron’s response pro�le14 is structurally similar to the entire
range of stimuli eliciting an activation of that neuron.

Here’s another way to make the same point: consider how Morgan (2014) Nirshberg & Shapiro
(2020) and Facchin (2021b) claim that the conditional in (b) (i.e. (vaRvb) → (taR*tb)) does in fact

14 Or - to anticipate a theme from (§3.3) - a neuron’s “activation space”

13 The reason for this is simple: if vb follows va after n seconds and tb follows ta after n seconds, then vb and tb are
co-occurring and so V is actually just indicating the state of T. A toy example to ease the understanding of this point:
Suppose I have a “Jennifer Anyston” neuron (Quiroga et al. 2005), that is, a neuron in the task of indicating the
presence of Jenifer Anyston. Suppose I detected Jennifer Anyston at t1, and call the activated state of my detector va.
Now, let some time pass, and suppose my Jennifer Anyston detector re-activates, entering a detector state vb at time t2.
Let R be the temporal relation between va and vb; e.g. va is followed by vb after nminutes. So, vaRvb holds. Does taRtb
hold too? If so Jenifer Anyston was actually present nminutes after I �rst detected her. So, the second detector state vb
is clearly not decoupled from Jenifer Aniston - I’m actually detecting her at t2 too! So, in order for vb to be used o�ine,
it must be the case that I’m not actually detecting Jennifer Anyston, and so taRtb must fail to hold.
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hold. They claim they hold, for example, because in indicators, if va follows vb after n seconds (i.e.
vaRvb), then ta follows tb after n seconds (i.e. taRtb). Now, whilst this claim is true, they are quite
obviously treating individual indicator states as vehicle constituents, rather than vehicles. Applied to
neurons, this means that they are not treating individual neuronal states as vehicles, but only as
vehicle constituents. But what is at stake in this paper is whether individual neuronal responses are
NSRVs, not whether they are vehicle constituents of larger NSRV.

So, whilst the arguments by Morgan (2014) Nirshberg & Shapiro (2020) and Facchin (2021b) do
show that indicators and their targets are structurally similar (in a quite speci�c sense), using their
arguments to claim that individual neuronal responses are structurally similar to their targets is, if
not an entirely unwarranted move, at least a move that “smuggles in” a signi�cant change in the
focus of the analysis. And, at any rate, the argument they o�er prevents individual neural responses
from being NSRVs: they are, at best, vehicle constituents.15

So much so for the idea that individual neuronal responses may qualify as NSRVs. But about other
bona fide neural vehicles?

3.2 - Neural maps

Above, I’ve argued that individual neuronal responses are not NSRVs. But what about the
responses ofmultiple neurons?

Piccinini (2020a), argues at length that various types of cortical maps - including the retinotopic
map in the primary visual cortex and the motor and sensory homunculi - qualify as NSRVs. Ramsey
(2016), Shea (2018) and Gładziejewski & Miłkowski (2017) all claim that certain neurons in the
hippocampus of rats are connected in a map-like way, so as to structurally represent the rat’s
environment.16 So, many authors suggest that the real NSRVs are responses of multiple neurons
organized in a map-like way.

These arguments can call upon a wealth of well-known neurophysiological and neuropsychological
data. For example, Piccinini (2020a, p. 271) stresses the retinotopic organization of the primary
visual cortices (V1), nicely displayed in �gure 1:

See figure here:
https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRSkGDrucy_wKrm9GoJ6xBUOH1f

ZMrifAYChg&usqp=CAU
Caption - Figure 1: Cortical topography of V1: the spatial structure of the stimulus (left) is
mirrored - in a systematically distorted fashion - by V1 neurons (right). The same topological

structure, however, is instantiated in both. [source: The development of topography in the visual
cortex: a review of models. N. Swindale - PERMISSIONS STILL TO BE ASKED]

16 See (Thomson and Piccinini 2018; Bechtel 2008; 2014) for a non NSRs-centric representational account of these
neural structures.

15 This isn’t however, to deny that the arguments by Morgan, Nirshberg & Shapiro and Facchin show something
important; namely that both indicator and structural representations are analog in an important sense of the term, and
thus that both indicator and structural representations are analog representations in one relevant sense of the term (cf.
Maley 2021a; Lee et al. 2022 for further discussion).
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The neurons constituting V1 them are spatially organized so as to replicate (a tweaked version of)
the spatial structure of the original visual stimulus (cf. Tootell et al. 1988). If neuron va is left of
neuron vb, then ta (i.e. whatever va is responding to) is left of tb. This is a clear structural similarity
tying together the neural map and its representational target. Further, Piccinini stresses that the
columnar organization of V1 contains many “smaller scale” cortical maps representing signi�cant
properties:

“V1 contains multiple �ne-grained topographically organized feature maps
of such properties embedded in the larger-scale retinotopic representation
of space. For instance, those neurons selective for horizontally oriented
bars tend to cluster together in cortical columns in V1, and nearby
columns contain neurons that are tuned to similar orientations” (Piccinini
2020a, p. 272).

So, if column va is close to column vb, then ta is similar to tb. Similar “smaller scale” maps are found
in many neural areas. For example the neurons area MT (a further visual area particularly sensitive
to movement) are arranged so as to compose a “movement map”. Neurons that prefer similar
direction of motion cluster into columns, and columns are spatially organized so that spatially close
columns prefer similar movements (cf. De Angelis & Newsome 1999). The closer two columns (or
two neurons) are, the more similar the velocities they respond: if va is close to vb. then ta is similar to
tb. More intuitively strikingly still, there are the cortical “homunculi” and “simunculi” drawn by
Pen�ed and Woolsey (cf. Pen�eld and Brodley 1937; Woolsey et al. 1952). It’s hard to look at them
without noticing how nicely the spatial organization of these neurons “recapitulates” the spatial
organization of bodily parts - for one example, see �gure 2.

Caption - Figure 2: The sensory homunculus. Note how the spatial relations between the cortical
areas “mirror” the spatial relations between the represented body parts Source: Wikimedia
Commons (https://commons.wikimedia.org/wiki/File:Sensory_Homunculus-en.svg).

Notice how easily the relevant structural similarity can be seen in �gure 1 and �gure 2. Isn’it
simply obvious that these structures are structurally similar to their target, in a way that clearly
satis�es (1)?

Whilst these structures obviously seem structurally similar to their targets, it is not at all obvious
that they are - or so I will later argue. But before doing so, I wish to notice that even if such
similarities were present, the fact that their presence is obvious to us does not entail their presence is
at all obvious to our neurocognitive mechanisms - indeed, it seems that our neurocognitive
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mechanisms are blind such similarities in the execution of their tasks. And, for this reason, these
similarities fail to satisfy (2). Consider, for example, the somatotopic organization of the cortical
homunculi - and the structural similarity it underpins. Does the somatotopic spatial arrangement
of these neurons guide our actions as required by (2)? Prima facie, the answer is negative.
Imaginary interventions that modify only the somatotopic organization of the homunculi (i.e. the
relative spatial locations of the neurons constituting it) do not seem to have any e�ect on our
behavior. After all, if they modify only the somatotopic organization of these neurons, they leave
intact their input-output pro�le and mutual connections, allowing the homunculus they
constitute to contribute to an agent’s behavior in the same way in which a somatotopically
non-modi�ed homunculus would. Changes in the somatotopicity of homunculi - and the
structural similarity they underpin - do neither increase nor decrease the agent's chance of success.
So, (2) fails to obtain.

One could object that similar though experiments are ill-suited to determine whether (2) obtains or
not. Looking at some real experiments, however, yields the same verdict. Consider, for example, the
data collected by Hartmann et al. (2016).17 Simplifying to the extreme, they equipped rats with
prosthesis enabling them to perceive and respond to infrared lights. The prosthesis were “caps” of
infrared sensors (allowing for a 360° panoramic infrared vision) that communicated with the rat’s
“sensory homunculus” (i.e. their primary somatosensory cortices). Crucially, they could do so in a
way that either respected or �outed (to various degree) the homunculus’s somatotopic organization
- e.g. the front-facing infrared sensor could be connected with the head of the rat’s homunculus
(respecting somatotopicity) or with its rear or side (�outing somatotopicity). Now, Hartmann and
colleagues report that all rats managed to achieve a high success rate in the experimental task
(infrared light discrimination), regardless of the degree of somatotopicity of their prosthesis. Sure,
the better the somatotopicity, the faster behavioral success came. But, eventually, even rats
equipped with “non-somatotopic” prosthesis were eventually able to perform at the level of rats
equipped with “somatotopic” prosthesis. This clearly violates (2), according to which the degree of
somatotopicity should be re�ected in higher or lower odds of behavioral success.

Now, one could object that these data are less clear cut that I’m making them appear - after all, rats
with “non-somatotopic” prosthesis learned how to face the experimental task more slowly than rats
with “somatotopic” prosthesis, and this might be counted as one way in which degrees of
somatotopicity in�uence the agent’s odds of non-accidental success during the learning phase. I’m
not persuaded that this is the case (why should the degree of somatotopicity matter only during the
learning phase of a task?) - but even if it were the case, other experimental data on homunculi can be
marshaled to support my conclusion. For example, Chakrabarty &Martin (2000) have found that,
during postnatal development of the primary motor cortex (i.e. the motor homunculus) the
number of sites representing more than one limb increases. This suggests that such “multi target”
sites are needed to e�ectively control movements - something that improves during postnatal
development. And yet, “multi target” neurons clearly degrade the structural similarity in (1), as
they are a case of an (a)-violation (cf §2).18 So, a worsening of the structural similarity correlates

18 More on this point below.

17 Though it should be noted that the experimental interventions in (Hartmann et al. 2016) are not interventions only
on somatotopicity, as they always also change the arti�cial sensors from which neurons receive inputs. Here, I will
ignore this complication for the sake of simplicity.
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with an increase of performance, blatantly violating (2). Martin et al (2005) present similar data,
suggesting that increases in “multi target” neurons are positively correlated with increases of motor
expertise.19

The evidence above gestures towards a point that can perhaps be less messily expressed (and
generalized beyond homunculi) as follows. The structural similarity of cortical maps is based on
certain spatial relations holding amongst the map’s constituents - that is, spatial relation between
neurons. Now, according to a standard neuroscienti�c picture, neurons and neural maps
contribute to an agent’s behavior in virtue of their information-signaling properties; roughly, their
input-output behavior. Their input output behavior is determined by a number of features,
including a neuron’s sensitivity to stimuli, their baseline �ring rate, the connections they have with
other neurons and the nature of such connections (excitatory or inhibitory) and other features.
Spatial features, however, do not in�uence their input-output behavior. So, they don’t contribute
to an agent’s behavior. Hence they can be varied ad libitum, creating arbitrarily large (b)-violations,
without in�uencing an agent’s behavior and its odds of success. And this, of course, means that
they do not play the action guiding role required by (2).

Notice that I’m not claiming that the topographic organization of cortical maps does not play any
relevant functional role. Not all functional roles of neuronal structures must be representational or
cognitive (Haueis 2018). Perhaps the topographic organization of cortical areas minimizes wiring,
speeding up neural signaling (cf. Blauch et al. 2022).20 Maybe it reduces metabolic costs (cf.
Sterling and Laughlin 2015). Or perhaps it is just a side e�ect of certain relevant evolutionary or
developmental constraints - or maybe it is due to all three, and perhaps even more, factors
simultaneously (Cf. Graziano & A�alo 2007, p. 239). I’m not denying these (or similar) claims. I’m
only denying that the topological organization plays the representational role (2) captures. This is
entirely compatible with it playing other biological - or even cognitive - roles (cf. Graziano 2011). To
deny a car’s brakes makes it accelerate is not to say brakes are useless!

One could retort that the argument above is not fully general. In the case of the spatial map in the
rat hippocampus, for example, what matters are not the spatial relations amongst neurons, but
rather the relation of inducing activation. If neuron va tends to induce the activation of vb, then ta is
close in space to tb (cf. Moser et al. 2008). But this relation is a functional relation, the changing of
which changes the way in which inputs are turned into outputs. Hence (2) seems to obtain, and
the argument provided above does not apply. And, perhaps, some similar functional relation might
similarly rescue the neural maps discussed above. For example, the motor homunculus might not
underpin a NSR of our body, but rather a NSR of our action (cf. Graziano 2016). If that were the
case, my focus on somatotopicity might just have distracted from some other functionally relevant
structural similarity.

20 Though others suggest that wiring length minimization does not strongly correlate with topographic organization
(cf Yarrow et al. 2014).

19 One could object that motor homunculus is not a good example, because it is not at all clear how the primary motor
cortex represents our body and its movements (cf. Thomson and Piccinini 2018; Piccinini 2020a). This, however, is
more a problem for the defender of NSRs than for me: how can we claim that the motor homunculus is a NSR if we
do not know what it is structurally similar to?
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Even if that were the case, however, there would still be a signi�cant problem. In general, neurons
(including the neurons of cortical maps) do not respond to just one stimulus. Sure, they respond
most strongly to their preferred stimuli, but it makes sense to say that neurons have preferred
stimuli only because they respond to many di�erent stimuli. Moreover, the response pro�le of
neurons is typically in�uenced by multiple parameters of a stimulus. For example, MT neurons are
not just sensitive to motion direction, but also the retinal position of the stimulus, its size, the speed
of motion and its binocular disparity (Born and Bradley 2005, P. 164). Hippocampal place cells do
not respond only to place, but also to odors, tactile inputs, recognizable chunks of experiences, and
the relative timing of certain events (Wood et al. 1999, 2000; Itskovet al. 2011; Kraus et al. 2013;
Sun et al. 2020). Even the neuronal cells constituting the “cortical homunculi”, probably the most
well known and the most intuitively compelling NSRs, do not always code for single bodily parts
(see Pen�eld and Brodley 1937; Pen�eld and Rasmussen 1957; Woolsey et al. 1952; Kwan et al.
1978; Wasserman et al. 1992; Schieber 2001; A�alo & Graziano 2006). Indeed, some neurons of
the “motor homunculus” appear to code (and control) complex whole-body con�gurations, in a
way that clearly stands in the way of (1) (Gordon et al. 2022): if these neurons are
vehicle-constituents of the NSRV representing our whole body, they can’t be representing our
whole body without violating (1)! All these are signi�cant and systematic (a)-violations of the
relevant structural similarity. So, in general, the neat one-to-one mapping from discrete and
well-identi�ed “bits” of the neural map to discrete and well-identi�ed bits of the world is a huge
idealization of the neurobiological reality.21 As far as neuroscience shows us, (a)-violations are the
rule, not the exception, in cortical maps. So it seems that, as a general rule, (a) fails to obtain. A
fortiori, (1) does not obtain too.22

One could claim that these data pose no threat to (1), as they only show that NSR are much
messier than textbook philosophical examples lead us to suppose (thanks to XYS for this
objection). But these data do not “just” complicate the picture. They complicate the picture in a
way that directly threatens the obtaining of (1) by showing that the relevant vehicle constituents do
not map onto target constituents in the desired manner. They don’t show that (1) obtains, but in a
much messier manner than textbook examples indicate. They show that (1) does not obtain.

One could further claim that these data pose no threat to (1) because structural similarities between
vehicles and targets need not be perfectly accurate nor total. Imperfect, partial, distortive
similarities are su�cient to satisfy (1) too (cf. Williams and Colling 2017; Shea 2018, pp. 140-142).
And indeed, sometimes distortive similarities might be more functional than non-distortive ones:
think the way in which maps of underground metros are way more readable when they do not
display the actual distance holding between the various metro stations. I think this is an important
claim that gets something importantly right.. However, I still think that, in the present context, it is
insu�cient to rescue (1).

22 As an aside, notice that the same state of a�airs prevents us from considering these neurons and neuronal regions
indicators in any straightforward and intuitive way.

21 Pen�eld was explicit on this point. He considered his homunculus as “a cartoon of representation in which scienti�c
accuracy is impossible” intended to be used as an “aid to memory” (both quotes from Pen�eld and Rasmussen 1950,
p.56)
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For, appealing to approximate similarities allows (1) to tolerate local (a)-violations and/or
(b)-violations, global (a)- and/or (b)-violations can’t be tolerated. A map can tolerate a (a)-violation
(e.g. representing Rome and Paris with a single point) only if it correctly represents other places
(e.g. because it represents Lyon and Florence as two distinct points, the former north of the latter).
Else, it ceases to be a map in any recognizable sense. And the same goes for (b)-violation. Thus, (a)-
and (b)-violations cannot be global. In the case at hand, however, the (a)-violation seems to be if
not global at least extremely widespread. Neurons responding (and mapping to) single targets, if
they exist, are rare exceptions - so rare, indeed, they’re yet to be found.

But perhaps one could argue that, unlike cartographic maps, cortical maps might tolerate global (a)-
and/or (b)- violations. After all, neural representations have unique properties, and public
representation o�ers only a limited, and mostly analogical, guidance to the understanding of neural
representations (thanks again to XZY for this objection). Whilst this objection, if successful, would
rescue (1), I’m not entirely sure that it makes sense; and I think that even if it were sensical, it could
not be accepted.

I’m not sure that the objection is sensical because I’m not sure that there is a real di�erence between
something that satis�es (1) while allowing for systematic (a)- and/or (b)-violations and something
that simply fails to satisfy (1). I really don’t have the faintest idea of how that di�erence could be
spelled out and articulated - prima facie, something allowing for systemic (a)- and/or (b)-violations
is simply something that does not satisfy (1). If there is a di�erence between the two, I challenge the
objectior to spell it out in a clear manner.

Now suppose, for the sake of discussion, that such a di�erence has been spelled out in a way that is
su�cient to rescue (1) - that is, concede to the objector that (1) obtains. Would this lead the
objector to win the day? I don’t think so. For, since (a) and (b) partially determine the semantic
properties of structural representations, their global violation yields degenerate semantic
properties. And these degenerate semantic properties seem to impede cortical maps to be counted
as NSRs, for the possession of such degenerate semantic properties is incompatible with the
semantic transparency that characterizes structural representations. Further, such degenerate
semantic properties make cortical maps unable to play the causal role that characterizes structural
representations. So, we can’t really coherently accept that NSRV can allow for systematic (a)- and/or
(b)-violations. Let me elaborate on this (I fear a bit clunkily written) passage.

Recall (§2): in structural representations each vehicle constituent represent the target constituent
onto which it maps, and the fact that vehicle constituents stand in certain relations represent the
fact that corresponding target constituents stand in corresponding relations: vaRvb represents that
taR*tb. But actual neural responses “map onto” more than one target constituent - neurons do not
respond only to their preferred stimuli. So, in the case at hand, va does not map only onto ta, it maps
also onto ta*. But then, what does vaRvb represent? taR*tb, ta*R*tb or some mixture of the two? I
want to argue that no answer to this question can be accepted by a defender of NSRs. For, each
answer fails to deliver contents with the requested semantic transparency. Moreover, since the
content lacks the desired semantic transparency, it is unclear when V represents T. Hence it is
unclear whether V is able to play the action guiding role imposed by (2). Since (4) is entailed by (2),
(4) is in danger too.
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To see why this is the case, suppose, �rst, that vaRvb represents only taR*tb - or only ta*R*tb. Notice
that this is a fairly substantial supposition: it amounts to supposing that V actually satis�es (1) and
so has the required semantic transparency. But even with a substantial supposition in place, it is not
yet determined whether taR*tb or ta*R*tb. The supposition is that only one of the two is represented
- but now it is necessary to determine which one is represented. But how could we do that? What V
represents is determined by the relevant structural similarity V bears to some target - but that
structural similarity does not discriminate between taR*tb and ta*R*tb. So, V’s content is
indeterminate: Sure, V represents one and only one target T, but which individual target T is
represented is left entirely open.23 V is thus semantically transparent in name only. Further, since T is
indeterminate, whether (2) and (4) obtain is left entirely unclear. If we don’t know what V is
structurally similar to, we can’t determine whether increasing (or decreasing) that similarity
increases (or decreases) the agent’s chance of success. V would thus be a vehicle of a structural
representation in name only. Moreover: the fact that neurons commit systematic (a)-violations is
functionally relevant - it improves the way in which our neurocognitive mechanisms work
(Chakrabarty & Martin 2000; Martin et al. 2005). If the way in which such mechanisms function
really is best explained representationally, a representational explanation should should be expected
to emphasize that fact, rather than hiding it under the carpet assigning these representational
vehicles a single representational content by fiat.

So, in the case at hand, a representational explanation should not choose one between taR*tb and
ta*R*tb - it should �nd a way to say that both are represented. Suppose, then, that vaRvb represents
both taR*tb and ta*R*tb. So, vaRvb has a composite content, which might be expressed by (taR*tb &
ta*R*tb). But clearly such a content is not semantically transparent in the desired way. But the
desired semantic transparency seems entailed by (1), and so now it seems that (1) is not the case.
This conclusion generates a contradiction - in fact, we’re trying to determine what would V’s
content be, supposing that (1) obtains in spite of the various (a)-violations it su�ers from. And
even leaving this problem aside, there would be problems with (2) and (4). Suppose that an agent is
using the representation V (which includes vaRvb) to guide their behavior in respect to a T such
that taR*tb is the case but ta*R*tb is not the case. Here, it is legitimate to expect the agent to non
accidentally succeed: vaRvb carries information about taR*tb which the agent can “use” to
appropriately orchestrate their behavior. But if vaRvb actually represents (taR*tb & ta*R*tb), then it is
false (or extremely non-accurate). The truth value (or degree of accuracy) of V no longer correlates

23 A tempting and obvious solution to this problem is that of resorting to a form of informational (or
information-based) semantics; that is, claiming that each neuron “maps onto” the stimulus about which it carries the
most information (cf. Wiese 2017, pp. 219-223). However, such informational linkages are not only far from trivial to
ascertain (cf Brette 2019), they also seem unable to ascribe determined contents (Artiga & Sebastian 2018; Rosche &
Sober 2019) - and, more generally, theories of structural representations interact poorly with informational accounts of
content (cf. Facchin 2021a). A second solution is that of appealing to the agent’s actual context. But this solution can
only work in some cases of successful online behavior. If the relevant vehicle is used in a decoupled manner, in service of
o�ine cognition, then there is nothing in the agent’s context that can discriminate between taR*tb and ta*R*tb - else, the
agent’ would not be decoupled from at least one of them. Moreover, the solution fails to cover for unsuccessful online
behaviors (how can context in principle determine whether the subject is misrepresenting the actually present taR*tb or
whether it is correctly representing an irrelevant or absent ta*R*tb? after all, both options make the agent’s fail in a given
context) and successful online behaviors in which both taR*tb and ta*R*tb are present (context does not discriminate
between the two). So, the solution does not generalize and fails to appropriately restore content determinacy. Other
solutions are far less obvious, and thus cannot be considered here.
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with the agent’s behavioral success, and so (2) fails to obtain. Given that (4) is entailed by (2), (4)
fails to obtain too. Of course, one could solve this speci�c problem by arguing that the composite
content is something that could be best expressed by (taR*tb or ta*R*tb). But now the content of V is
plainly disjunctive, and falls prey to the disjunction problem in its various forms (cf. Neander
2017) - and notice that, since the original assumption was that systematic (a)- (and (b)-)violations
are admissible, the disjunction here seems unrestrained.

Taking stock: that the neurons of neural maps do not map in a neat one-to-one fashion onto
stimuli is a serious problem for the defender of NSRs. The absence of the required one-to-one
mapping may be enough to claim that neural maps fail to satisfy (1). And, even accepting that the
absence of such a map is no reason to deny that (1) obtains, there would still be signi�cant
problems with (2) and (4). It would be at best unclear whether neuronal maps guide their “users”
actions in the way structural representations are supposed to carry out their action guiding duties.

Defenders of NSRs might then be tempted to abandon (2) and (4) to secure the status of cortical
maps as NSRVs. In my assessment, this move is technically viable but practically unwise. Recall why
NSRs are central in contemporary cognitive neuroscience. They are central because they allow for
the happy marriage of mechanical and representational explanations (§1). NSRs allow for this
marriage because their NSRVs - the causally e�cacious bits and pieces that operate within our
neurocognitive mechanisms - are imbued with content: their physical shape has important
semantic properties in a way such that these semantic properties are allowed to play an active causal
role within our neurocognitive systems (§2). In the case of NSRVs, then, the semantics itself does
the pushing and pulling required by mechanistic explanations. But, assuming that representational
accuracy is conducive to pragmatic success, this view entails (2): the degree of accuracy between
vehicle and target must be re�ected in the agent’s odds of pragmatic success. So, abandoning (2)
means either (i) abandoning the view that representational accuracy is conducive to pragmatic
success or (ii) abandoning the view that the content of NSRs plays a causal role compatible with it
being a part of mechanistic explanations. Both options are unattractive to the defender of NSRs.
Denying (i) is tantamount to admitting that representations are conducive to success regardless of
their truth or accuracy value - which is clearly false. But denying (ii) amounts to conceding that the
relevant semantic properties of NSRVs do not play any mechanistically relevant causal role - de facto
undermining the theoretical attractiveness of NSRs for cognitive neuroscience in general and
mechanistic cognitive neuroscience in particular (cf. O’Brien 2015; Williams and Colling 2017).

In spite of their appearance, then, neural maps are not NSRVs - the structural similarity that they so
obviously boast (to our eyes) might not even be really present. And, even if it were present, it would
not play the required representational role.

3.3 - Activation spaces

Thus far, I’ve in an important sense considered only single responses, either of individual neurons
(§3.1) or of multiple neurons topographically organized in neural maps (§3.2). Some defenders of
NSRs would claim my focus has been too narrow. To see NSRVs one should look at multiple
responses from a single neuronal structure. For, the relevant (i.e. NSR-underpinning) similarity
does not hold between a single activation and a target. Rather, it holds among the structure’s entire
activation space (i.e. set of all possible responses) and the entire target domain (i.e. the set of all
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targets the structure is sensitive to). As far as I can see, there are two di�erent arguments for this
claim.

The �rst - and more widespread - variant is ultimately based on the analysis of the behavior of a
large class of neurocomputational models (cf. Churchland 1995; O’Brien and Opie 2004; Grush
2004; Shagrir 2012; Williams 2017; Wiese 2016; 2017).24 Shagrir (2018) usefully expresses the idea
common to all these arguments in terms of input-output modeling. Let f be the function relating
the inputs and outputs of a neurocomputational model. In Shagrir's view, such a model is a model
of a target domain T if, when va and vb are in the relevant input-output relation speci�ed by f, then
the corresponding elements in the target domain (ta and tb) stand in a relation mathematically
described by f too. Consider, for example, a model M that takes as input velocities and yields as
outputs space traveled in a minute at that velocity. According to Shagrir, M is an input-output
model of its target domain just in case it multiplies the input value by 60 - given that s=vt and here
t=60 seconds. When this happens, the activation space of M - that is, the set of all M’s input-output
pairings - is clearly structurally similar to the target domain, in a way that seemingly vindicates (1).
What, then, about (2)-(4)? The argument to the e�ect they obtain vary from account to account -
but here I will ignore them, as they won’t play any role in my argument below.

The second - and less widespread (to my knowledge, is made only by Williams & Colling 2017) -
argument is based on a technique to analyze neuroimaging data known as representational
similarity analysis (RSA, see Kriegeskorte et al. 2008). RSA belongs to the family of “neural
decoding” - or, more soberly, multivariate patterns analysis - techniques. These techniques operate
on various types of imaging data to investigate neural representations (e.g. Haxby et al. 2001).25

RSA typically operates on voxels - think of them as three dimensional pixels “making up” the
images - and their activation levels. Each activation is treated as a vector of voxels activation levels,
so as to compute the distance (i.e. dissimilarity) between each pair of vectors. Based on these
distances, the activations are arranged in a representational dissimilarity matrix: an activation space
expressing the dissimilarity between each pair of activation as a scalar quantity (i.e. a single number;
see Kriegeskorte and Kievit 2013 for an accessible introduction to RSA). Importantly, the pattern
of similarities and dissimilarities between neuronal responses revealed by the representational
dissimilarity matrix “mirrors” the pattern of similarities and dissimilarities expressed by subjects in
their similarity judgments (cf. Connolly et al. 2012; Ritchie et al. 2014; Carlson et al. 2014). So, if
two responses are similar (i.e. vaRvb), then their two targets are similar (taR*tb), in a way that
seemingly vindicates (1).

Sadly for the defender of NSRs, however, none of these two arguments establishes that (1) obtains.
Although both arguments show a structural similarity holding, they show it holding amongst the
wrong sorts of things.

Condition (1) requires a structural similarity to hold between a representational vehicle V and a
represented target T. But the structural similarities shown above do not hold amongst individual
representational vehicles and individual targets. This is especially obvious in the case of the �rst

25 Pitched at this level of generality, the claim is importantly contested (cf. Ritchie et al. 2019; Gessel et al 2021). These
critical arguments, however, do not apply to RSA, and so I will ignore them here.

24 See also (Rutar et al. 2022) for a more nuanced - and less structural-representationalist - treatment.
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argument based on input-output modeling. In that case, the structural similarity holds between a
computational process pairing inputs and outputs and a certain environmental process. But whilst
environmental processes can be represented targets, computational processes can’t be
representational vehicles. Indeed, on a number of accounts of physical computation,
computational processes are defined over representational vehicles - they’re ways in which
representational vehicles are manipulated according to certain rules (cf Fodor 1981; O’Brien and
Opie 2009; Maley 2021a). This clearly entails that computational processes and representational
vehicles are not identical.26 Thus, the structural similarity revealed by input-output modeling
practices can’t be invoked to claim that (1) obtains.

RSA su�ers from a similar problem, though in an attenuated (and less obvious) form. As pointed
out by (Davis and Poldrack 2013; see also Coraci 2022 for a philosopher-friendly analysis) it is not
entirely clear whether the structural similarity RSA reveals depends on the representations involved
within a cognitive process or on the cognitive process being run during the experimental trial. Two
neuronal activation may be similar because they represent similar things - consider, as an example,
the neuronal representation of a male face smiling and the neuronal representation of a female face
smiling. These two neuronal activations are likely similar because they represent similar things. But
now consider the neuronal activation involved in representing a smiling face and a puppy. These
neuronal activation might be similar - but, if so, their similarity would not be due to the similarity
of their contents, but rather to the fact of a same cognitive process (say, judging both the smiling face
and the puppy good and having a positive a�ective response to them) operates on them both.
These two scenarios can be disentangled with certain appropriate experimental procedures. But the
need to disentangle them weakens any inference from the structural similarities shown by RSA and
the claim that (1) obtains.

Worse still even when the structural similarity revealed through RSA techniques is due to the
similarity of the representations (rather than the processes), that structural similarity still fails to
support the claim that (1) obtains. For the relevant similarity holds between a representational
dissimilarity matrix and various targets. But representation dissimilarity matrices are not neural
vehicles: not only do they abstract away from the spatiotemporal information that is needed to
identify vehicles (see Haxby et al. 2014, p. 439; Kriegeskorte & Diedrichsen 2019, p. 418) they are
in no sense neural. They are in no sense “tokened in the head”. They’re not what vindicating (1)
requires in this context.

Defenders of NSRs could plausibly object that, whilst I’m correctly pointing out that
computational processes and representational dissimilarity matrices are not neural vehicles, they
still reveal something important about our neural vehicles: they show us that our neural
representational vehicles being such that certain relevant structural similarities hold between them
and their target domain, in a way that vindicates (1).

The objection gets an important point right: computational processes and representational
dissimilarity matrices do depict a structural similarity holding amongst certain neural goings-on

26 Mutatis mutandis the same holds for “non-semantic” accounts of computations. In this case, computations are
de�ned over non-representational digits or states, strings or combinations of which may be representational vehicles
when the appropriate conditions are met (cf. Piccinini 2015).
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and certain environmental targets. But even this depicted structural similarity fails to satisfy (1). For,
that similarity too does not hold amongst individual neural vehicles and targets. It holds among
the activation space of a neural structure (that is, the range of possible responses that neuronal
structure can produce) and a range of targets that structure is responsive to. And whilst that
activation space does capture something about our brain - namely, how it responds to various
stimuli, the activation space itself is not a neural representational vehicle - it just isn’t something
tokened in the brain. It is only a way to compactlymodelwhat gets tokened in the brain. Or, in the
words of cognitive neuroscientist Davies and Poldrack:

“The dominant theoretical underpinning of representational analyses in
most content areas of fMRI research is that stimulus representations can be
thought of as points in an n-dimensional space. This characterization of
neural representations in terms of n-dimensional spaces follows from
in�uential work in cognitive psychology on how psychological
representations can often be characterized as points in a representational
space and how a variety of cognitive processes, such as stimulus
generalization, categorization, and memory, can be modeled as geometric
operations on these representations.” (Davies & Poldrack 2013, p. 109,
emphasis added).

So, neural representations are points in representational spaces - individual responses to individual
stimuli, rather than range of responses to a stimulus domain.

But can’t defenders of NSRs somehow claim that entire activation spaces are representational
vehicles, so at allow (1) to obtain? No, they cannot. The reason is simple. Activation spaces and
representational dissimilarity matrices show us that - for example - if two neuronal responses are
similar, then their targets (i.e. what these responses are responses to) are similar too. Rewriting this
in the notation used throughout the paper, the result is: (vaRvb) → (taR*tb). So, in this case,
individual neuronal responses are treated as vehicle constituents, and their “targets” are actually
target constituents. But individual neuronal responses just cannot be material constituents of a
larger vehicle V. The reason is simple. As Kirchho� (2014; 2015) has aptly noticed, constitution is a
synchronic relation holding between the constituents and the constituted entity.27 So, if vehicle
constituents va…vn constitute vehicle V at time t, then va…vn must all be present at t. But, in the
case at hand, va…vn cannot all be present at t (and the relevant empirical material does not show that
they are all present at t). The relevant vehicle constituents cannot all be present at t because they are
various neuronal responses - that is, states - of a single neuronal structure or set of structures. And a
single structure or set of structures can only token multiple neuronal responses though time - it
cannot token them all at t. Neurons cannot havemultiple �ring rates at the same time. So, multiple
neuronal responses cannot be material constituents of a larger vehicle. As a consequence, the
structural similarity holding between them and a target domain cannot underpin any NSR.

27 Importantly, some philosophers are elaborating diachronic accounts of constitution (cf. Leuridan & Lodewyckx
2021; Kirchho� and Kiverstein 2021) that could be used to counter my argument. Sadly, due to space limitations I
cannot introduce and comment upon these accounts here. I’m sure the reader will forgive me if I do not further extend
this already long paper.
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At this juncture, a defender of NSRs may claim that my arguments overlook the fact that many
allow for structural representations to be “made up” by more than a representational vehicle. For
example, Shea (2018, p. 118) de�nes structural representations as: “A collection of representations
in which a relation on representational vehicles represents a relation on the entities they represent”.
So do other defenders of structural representations, including Swoyer (1991) and Ramsey (2007).28

So, (1) need not be narrowly de�ned in terms of single vehicles, as I did in (§2). And if so, then the
structural similarity shown by activation spaces and representational dissimilarity matrices can
satisfy (1).

Defenders of NSRs, however, are not free to re-de�ne (1) in this way - unless they are willing to
withdraw their commitment to mechanistic explanations. For, when (1) is so re-de�ned, the
relevant structural similarity holds between abstracta - the relevant set of neuronal representations
and a relevant set of targets. Now, whilst one could perhaps in principle accept that abstracta
function as neural representations (or equivalently, that neural representations really are abstracta),
surely abstracta cannot be components of mechanisms. Mechanisms and their components are
always concrete (cf. Craver 2007). Moreover - and more generally - it is hard not to notice that
taking NSRVs to be abstracta seems an entirely ad hoc (albeit not uncommon) move: cognitive
neuroscientists clearly conceive of representations in very concrete terms; namely as neuronal states
(cf. Friston 2005; Mesualm 2008; Villaroja 2017; Backer et al. 2022).

Am I suggesting that the structural similarity - displayed by activation spaces - holding between
various neuronal responses and their target domain is representationally idle? Not necessarily. I’m
only denying it holds between vehicles and targets so as to underpin NSRs. But it can still have
some relevant representational role. For example, it might determine the content of some other
type of representation. There are various theories of content based on structural similarity (e.g.
Cummins 1996, O’Brien and Opie 2004) - and while these theories often focus on the structural
similarity between individual vehicles and targets, nothing prevents us from applying the same idea
to multiple vehicles and target domains.29 On this view, individual vehicles would get their content
in virtue of the structural similarity holding between a set of di�erent vehicles and a target domain.
Each vehicle would thus represent what it represents in virtue of its overall role in the similarity.
This intuition could be re�ned in a full-blown theory of content - but doing so is a task for another
paper to carry out. But notice that, even if such a theory of content were provided, it would not lend
support to the claim that activation spaces/neural dissimilarity matrices/multiple neuronal
responses are structural representations. There is a clear and obvious di�erence between a set of
vehicles being structurally similar to a set of targets and individual vehicles being structurally
similar to individual targets. The former just isn’t what (1) requires.

29 Indeed, Churchland's (1992) original structural similarity-based account of content was explicitly focused on
multiple vehicles.

28 Importantly, however, this point is contested even in the literature on structural representations. Cummins, for
example, would never de�ne structural representations in terms ofmultiple representations. This is because, in his view,
the parts of a structural representations are not representations in their own right (see Cummins 1996, pp. 96-97).
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3.4 - Alternative neural vehicles

Whilst neuronal responses are the main neuronal vehicles cognitive neuroscience is interested in,
they’re not the only vehicles cognitive neuroscience is interested in. So, what about those? Do they
underpin NSRs? No they don’t, and for fairly obvious reasons (thankfully!)

Neuronal connections have often been considered representational vehicles. Indeed, connectionists
have long argued that connections between neurons may encode information, functioning as our
long-term semantic memory (cf. McClelland et al. 1986). However, it is commonly accepted that if
connections encode information, they do so in a highly distributed way: single connections store
multiple “bits” of di�erent contents, and single contents are “spread over” many connections (see
Van Gelder 1991; Grush & Mandik 2002). But if this is the case, if really multiple contents are
simultaneously encoded by many overlapping connection, then clearly the mapping from vehicle
constituents to target constituents is many-to-many; and so (a) - and, a fortiori (1) - fail to obtain
for reasons connected with systematic (a)-violations explored in §3.2 (see also Facchin 2021a for a
di�erent argument to the same e�ect). So, if connections are representational vehicles (which is
disputable, see Ramsey 2007), then they’re not NSRVs.

Some neuroscientists have recently suggested that global brain states are neural vehicles that
represent the agent’s overall state (Kaplan & Zimmer 2020; Westlin et al. 2023). As far as I can see
no one has ever claimed that global brain states are NSRVs. And it is indeed hard to see how they
could underpin NSRs: there’s clearly no decoupling from an agent’s current state! So, global brain
states clearly fail to satisfy (3).

Lastly, Chemero (2009) and Martinez and Artiga (2021) have argued that neuronal oscillations (i.e.
patterns of time-locked neuronal activity, see Buzsaki 2006) are representational vehicles. Are they
NSRVs? To my knowledge, no one has yet articulated this view. So, I can’t provide a detailed
analysis of it. However, there are potent prima facie reasons to provide a negative answer. Firing
patterns instantiated in different times can’t be constituents of a single vehicle (see §3.3), and this
seems to prevent many neuronal oscillations from qualifying as NSRVs. Further, the individual
neuronal responses “making up” the oscillations would still fail to map on individual targets as
seen in (§3.2), generating all the problems discussed in that section.

Are there other potential neural vehicles? Not to my knowledge. Sometimes neuroscientists talk
about entire neural structures representing (e.g. the fusiform face area is sometimes said to
represent faces) but it seems clear that it is a metonymic way of speaking: what neuroscientists most
plausibly actually mean is that the responses or activations in various structures represent things.
And, there seems to be no other candidate vehicles. Of course, I cannot exclude that new, more
sensitive experimental techniques will reveal functionally salient neuronal aggregations between the
level of the single neurons and that of neuronal maps, or below the level of individual voxels. These
may qualify as NSRVs. But surely such vehicles have yet to be identi�ed - so, we can neither observe
them right now, nor can they provide a reasonable ground for the “cognitive neuroscience
revolution” right now.
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3.5 - Neural representations unobserved

Time to take stocks, and re-observe the arguments I o�ered in a less detailed, more holistic, fashion.
I have argued that NSRs have not been observed nor manipulated. Indeed, if the arguments I
provided thus far are correct, the bona fide neural vehicles are not NSRVs.

In (§3.1) I focused on individual neuronal responses. I argued that the claim that individual
neuronal responses are NSRVs is ambiguous, as it admits three di�erent readings. I have also argued
that -regardless of the reading one wishes to adopt - the claim is hardly defensible: individual
neuronal response do not seem to break down into interrelated constituents in the desired manner;
and indeed the claim that a constituent of an individual neuronal response represents a constituent
of the response’s target would be a reductio of the idea that individual neuronal responses count as
NSRVs. Individual neuronal responses, I suggested, are more plausibly interpreted as indicator
representations.

In (§3.1.1) I focused on a popular argument that could establish that individual neuronal
responses are NSRs. The argument allegedly establishes that indicators are a special case of
structural representations. So, If individual neuronal responses are indicators, they are (a special
case of) NSRs. I attacked that argument on several grounds. Most importantly, I’ve claimed that
individual neuronal responses (and indicators more generally) cannot be (neural) structural
representations, as they always fail to satisfy either (2) or (3). I have also claimed that such an
argument fails to establish that individual neuronal responses (and indicators more generally) are
structurally similar to their target in the way requested by (1). And if so, then the vehicles of
(neuronal) indicators cannot be (N)SRVs.

In (§3.2) I focused on neuronal maps, claiming that they are not NSRVs. First, I have argued that
the topological structural similarity holding between neuronal maps and their target domain does
not satisfy (2). Contrary to what (2) requires (a)- and (b)-violations of that structural similarity do
not decrease an agent’s odd of non-accidental success. I also considered other possible structural
similarities tying together neuronal maps and their targets, which, not being based on their
apparent topological similarity, would be impervious to the argument above. I then ruled this
possibility out based on the fact that individual neurons (that is, the relevant vehicle constituents)
do notmap one-to-one onto their targets as required by (a), and so, (1) systematically fails to obtain.
I considered several ways in which this obstacle could be overcome, and concluded that no one
works.

In (§3.3) I focus on activation spaces. I claimed that, whilst such spaces actually are structurally
similar to their target domains, that structural similarity does not satisfy (1). In fact, (1) requires a
structural similarity holding between individual vehicles and targets - but activation spaces just
cannot be coherently considered being individual vehicles.

Lastly, in (§3.4) I considered a number of other alternative neural vehicles that might underpin
NSRs, showing that none actually underpins them for fairly obvious reasons.

One �nal word of clari�cation about the arguments in (§§ 3.1 - 3.4). A neuroscienti�cally inclined
philosopher might be disappointed by the fact that I’ve discussed a relatively small number of cases.
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For example, in (§3.2) I have never mentioned the primary auditory cortex, even if its map-like,
tonotopic, structure is fairly well known. Or, in §3.1, I’ve considered a fairly small number of
single cells studies. One might thus worry that I’ve just discussed too little neuroscienti�c data to
support my conclusion that NSRVs have not been observed by induction. This would be a fair
criticism, were my line of argument supposed to work by induction. But it is not. If correct, my
arguments do not show that individual neuronal responses, neural maps, and activation spaces all
likely fail to satisfy (1)-(4) because many of them fail to satisfy them. Rather, my arguments show
that these entities cannot satisfy (1)-(4), and thus that they can’t in principle qualify as NSRVs.

4- Objections and replies

Supporters of the “cognitive neuroscience revolution” will no doubt wish to resist my conclusion.
Here I consider some intuitive objections to resist it, showing that they do not really work.

Objection #1: The account of structural representations in (§2) is too demanding. A less
demanding account would reveal that NSRVs are not just present in our brains, but that they have
indeed been observed.

Response: Two points in reply. First, we lack an alternative, less demanding, account of NSRs. The
account in (§2) is widely used (see, for example, Wiese 2016; 2017; Williams 2017; Lee 2019), and
the (few) alternative ones are not less demanding - indeed, they’re often more demanding, as they
adopt a stronger reading of (1) in terms of homomorphisms. Lacking any less demanding
alternative, the objection is pretty toothless.

Secondly, it’s hard to even imagine the shape of a less demanding alternative. Presumably, the
alternative should discard or weaken at least one condition among (1) - (4). But my reading of (1) is
already the weakest one acceptable, and (1) cannot be discarded without thereby discarding the
very idea of a structural representation. My reading of (3) is also the weakest reading of
decouplability on o�er (cf. Chemero 2009, pp. 55-65; Gładziejewski 2015); and (3) cannot be
discarded either, as decouplability is an essential feature of representations (Haugeland 1991;
Orlandi 2020). (2) could be weakened and discarded - but doing so would hinder the causal
relevance of content, in a way that hinders its relevance in mechanistic explanations. Defenders of
NSRs can’t thus rely on this move - at least, not without abandoning their mechanistic
commitments. And since (2) entails (4), (4) seems o� limits too.

Objection #2: NSRs are action-oriented representations (Williams 2017; Piccinini 2022).30 So, they
don’t represent the world objectively, but in action-salient terms. Hence they are distortive - and
thus false or inaccurate - in a way that is nevertheless conductive to an agent’s behavioral success (cf.
Tschantz et al. 2020 for a proof of concept). But this clearly runs counter to (2). So, (2) should be
discarded - and with it, all the arguments above that hinged on (2) failing to obtain. So, NSRVs have
been observed, after all.

30 On the concept of action oriented representations, see (Clark 1997). Curiously, Clark’s original example of an action
oriented representation is that of Mataric (1991) “spatial map” - a robotic replica of the “spatial map” in the rat’s
hippocampus. So, it seems that action oriented representations were NSRs all along.
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Response: The objection misconstrues the sense in which action-oriented representations are
distortive. Sure, they do not represent the world “as is” (whatever this means) - but that’s not to say
that they represent it falsely or inaccurately. They represent it through a pragmatic lens, and what is
represented through such a lens can be either accurate/true or inaccurate/false. If I represent a 6 kg
stone as throwable, I’m accurately representing the stone in an action oriented manner. If I
represent a 666 kg stone as throwable, I’m inaccurately representing it in an action-oriented
manner. Compare: if, by looking through red glasses, I see clouds being red, I’m not misperceiving -
I’m accurately perceiving through red glasses. Thus, the action-oriented nature of NSRs does not
force a rejection of (2) - or of the “bits” of my arguments based on (2) failing to obtain.

Objection #3: The argument in (§3.2) is a bit too quick in establishing that individual neurons map
onto many targets in a way that poses a problem for (1). Neurons need not represent each target to
which they respond. Taking a page out of Dretske’s (1988) book, one could argue that individual
neurons have the function to represent only one target, plausibly their preferred one. That might be
enough (or at least a substantial step towards) solving the problem with (1), in a way that also
avoids the problems with (2) neurons mapping onto many targets generated.

Response: Whilst taking a page out of Dretske’s book would solve these problems, the defender of
NSRs can’t rely on Dretske’s solution. Dretske assigns functions only after a learning period, which
stabilizes the function (i.e. determines what the neuron is “supposed to” represent). But real brains
have no learning period separate from a non-learning period. Neurocognitive networks are
constantly re-organizing and can quickly learn to operate in very odd conditions. As enactivists
have repeatedly pointed out, our sensorimotor system can learn to operate even in conditions
under which sensory and motor signals have been dramatically altered - for exemple, due to one’s
usage of “inverting goggles” (Hurley 1998; O’Regan 2011). Surely a neuron’s learning phase should
be over well before the subject is old enough to take part in psychological experiments involving the
usage of “inverting goggles”! More generally, it is extremely tricky to assign well-defined, individual
functions to neuronal areas. Neural functions appear to be multiple, multidimensional, not
well-determinate and extremely context dependent (cf. Anderson 2014; Burnston 2016; de Wit &
Matheson 2022) - and so will be the contents they ground. Yet, as seen in (§3.2), NSRs require
reasonably well-determinate contents to function.

Objection #4: My objections to NSRs were hyper-focused on the features of their vehicles. Yet
structural representations may not reside at such an “implementational” level of abstraction. They
may reside at a higher, “algorithmic” level.31 Cummins (1989), for example, situated them at the
level of program execution. Johnson-Laird (1983) thought of his mentalmodels as existing roughly
at the same level of abstraction. Similarly, Danks’s (2014) suggestion that cognitive representations
are graphical models sits at a level of abstraction more akin to that of program execution than the
implementation level. My arguments are silent about these structural representations and their
neural vehicles. So, it fails to rule out NSRs at higher levels of abstraction.

Reply: My reply is simple - Cummins, Danks and Johnson-Laird’s models are not neural structural
representations, so they are un�t to support the “cognitive neuroscience revolution”. Moreover,

31 But see Maley (2021b) for an argument to the e�ect that, in the case of analog representations (including structural
ones) the di�erence between implementational and algorithmic level collapses.
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they are not even structural representations in the relevant sense of the term. I maintain that, in the
case of structural representations, the vehicle and the target must be structurally similar. And, as far
as I can see, this is not the case when it comes to the instances of “structural” representations above.
Cummins’s account is aimed at classical - that is, symbolic - architectures, whose vehicles are
arbitrary - and in fact, Cummins’ (1989) account of structural representations is (roughly) based
on the input-output modeling strategy discussed in (§3.3). What, then, about Johnson-Laird’s
mental models and Danks’s graphical models? I think that they are (wrongfully) considered as
structural representations only because they are presented (to us) in an iconic or iconic-like
representational format. Consider, for example, the graphical model in �gure 3:

Caption - Figure 3: A graphical model capturing the statistical dependency relation of some
random variables. Made by the author.

Figure 3 represents a simple “Bayesian model” (i.e. a directed acyclic graph), which can be used to
model a target phenomenon T. Now, the model - as it is presented to us - surely seems a structural
representation of T: the nodes a-h map one-to-one on aspects of T, and the pattern of arrows
“recapitulates” the statistical dependencies in T. But notice that the arrows and nodes we see are
not the vehicle underpinning the model - the vehicle is a complex series of voltages (at the level of
the implementation) or “0”s and “1”s (as a higher level) somewhere in my computer. And there is
no guarantee (nor any reason to believe) that it will be structurally similar to T. Further, the
impression of iconicity can be easily dispelled by visualizing the model of �gure 3 in a less
graphical (pun intended) format - for example, as the probability distribution p(a, b, c, d, e, f, g, h)
= p(g|e) p(h|e, f) p(e|d, c) p(d) p(c|a, b) p(a) p(b).

5 - Conclusions: a dilemma for the cognitive neuroscience revolution.

Suppose my arguments are on the right track: NSRVs have not been observed and there is no easy
way to avoid this conclusion. This is ill-news for defenders of the “cognitive neuroscience
revolution”: NSRs are absolutely central to their account (§1). So, the question now is: what could
revolutionaries do to save their explanatory project? Not much, I fear.

They could try to substitute NSRs with a di�erent type of representation. But this move is
unpromising. According to a popular account, there are three basic representational kinds - icons,
symbols and indices (c.f. Peirce 1931-1958; von Eckart 1996). Now, icons represent by similarity - so
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neural icons just are NSRs, and thus icons are clearly not an option. Symbols represent by
stipulation - and so it is not clear if neural symbols can exist: surely no one has stipulated the
content of our neurons. And even allowing stipulative or stipulation-like processes to take place in
the brain (say, as the upshot of a neural signaling game, see Skyrms 2010) the vehicles of neural
symbols, being arbitrary, do not allow their content to play any causal role within neurocognitive
mechanisms. Thus, symbolic representations have no place in mechanistic explanations. Lastly,
indices represent in virtue of certain causal relation with their targets - they are indicators. Now,
neural indicators surely exist, see (§3.1). Yet, it is far from clear they qualify as representations in
any robust sense - they seem to function as mere causal mediators in our neurocognitive systems
(Ramsey 2003; 2007).

Should then the mechanistic approach to cognitive neuroscience be purged of representational
commitments? Some claim this is the case (Kohar forthcoming). This, however, would be an
extremely painful revision of our current neuroscienti�c practices. Cognitive science is ripe with
representational talk, and cognitive neuroscience is no exception. A non-representational
mechanistic cognitive neuroscience would thus force us to revise and reinterpret a huge mass of
experimental data. It would also force us to �nd a novel, non-representational lexicon with which
to express and communicate the relevant cognitive-scienti�c �ndings. This surely is a tall order -
one that proponents of the “cognitive neuroscience revolution” do not seem willing to execute.

The only way I see to avoid that non-representational revision, however, seems to be by foregoing
one’s realistic commitments to NSRs (or at least to NSRVs). The talk of neural maps and models,
then, should not be interpreted as referring to real, neurally realized, map- and model- like
structures. Rather, neural maps and models are just convenient linguistic tools to understand,
track, or make sense of our neurocognitive activities (see Sprevak 2013; Egan 2020; CoelhoMollo
2021 and Cao 2022 for similar views of representations).32 But to adopt such a construal of NSRs
or NSRVs amounts to abandoning one’s mechanistic commitments, at least insofar mechanistic
explanations are ontic explanations. But the commitment to mechanism is a core part of the
“cognitive neuroscience revolution”, and so abandoning it seems to abandon the “cognitive
neuroscience revolution” project.

It seems, then, that defenders of NSRs face a dilemma: they either have to let go of their
commitment to representationalism to keep their commitment to mechanistic explanations, or vice
versa. The choice is theirs.
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