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Abstract

This paper describes an alternative to currently dominant philosophical ap-

proaches to the metaphysics of causation. It is motivated by the gap that

currently exists between metaphysical accounts and recent epistemological re-

search on causal reasoning and methods for discovering causal relationships.

Our approach aims at characterizing structural features of the actual world

that support, and are exploited by, successful strategies for causal reasoning

and discovery. We call these features the “worldly infrastructure” of causation.

We identify several elements of this worldly infrastructure, sketch an account

of their physical bases, and explain how they contribute to the possibility of

successful causal reasoning.

1 Introduction

Recent work on causation has taken a variety of forms. Researchers in statistics,

econometrics, and machine learning have been mainly interested in epistemological
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and methodological issues surrounding causal inference – issues concerning how one

can reliably infer causal conclusions from various sorts of data. Examples include the

constraint-based causal discovery methods in (Spirtes et al., 2000), results about iden-

tifying causal effects (e.g., (Pearl, 2009)), machine learning techniques for inferring

causal direction (Peters et al., 2017) and the potential outcome frameworks employed

by many social scientists (Rubin, 1974; Hernán and Robins, 2020). Many philosophers

– especially those focusing on causal explanation – have devoted significant attention

to these methods. But many have instead been concerned with the metaphysics of

causation. This work also takes a number of forms. Some hold that the metaphysics

of causation requires the introduction of special entities – powers, capacities and the

like. Others reduce causal claims to counterfactuals and elucidate the latter through

possible worlds semantics. Still others propose that causal claims be understood via

their relation to laws of nature. In addition, some philosophers claim that causation

or causal relationships can be identified with processes or relationships in fundamen-

tal physical theories so that, metaphysically, causation is just, e.g., transfer of energy

and momentum. Common to all of these efforts is a search for “truth conditions” or

“grounds” for causal claims and/or attempts to specify what causation “is” or what

in the world “corresponds” to the causal nexus.1

These metaphysical projects are conducted with little or no connection to the

work on the epistemology of causation referenced above. Many metaphysicians do

not acknowledge this work, much less attempt to integrate it with their proposals.

Indeed, many contemporary metaphysicians insist that analyzing the metaphysics of

1Still other authors propose to analyze “our concept” of causation, typically with the aim of
reducing that concept to some non-causal ingredients. We will not discuss these projects except
to say that the infrastructure project we describe is also distinct from them. In particular, we do
not consider the infrastructure features we discuss to be part of “our concept” of causation or the
meaning of the word “cause”.
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causation can, and perhaps should, be sharply separated from the study of epistemo-

logical strategies for discovering causal relationships – the latter regarded as being of

“merely” methodological or practical interest.

A recent prize-winning book (Paul and Hall, 2013) is an exemplar of this general

practice. They aim to reduce garden-variety causal claims to counterfactuals, with

their semantics determined by choosing a Cauchy surface on which the antecedent

is true and evolving it forward in time using equations of motion of fundamental

physical theories (following Maudlin (2007, chapter 1)). Ordinary subjects making

causal judgments obviously don’t do so by anything like this procedure, but Paul and

Hall provide no epistemological story about how, if this is what causal claims are,

people are able to reason to correct causal judgments.2 There is no effort to make

a connection with the large empirical literature on how scientists or laypeople draw

causal conclusions. We single out Paul and Hall not for special criticism, but because

their book is a well-known and particularly thoughtful representative of the general

practice of analyzing the metaphysics of causation independently of epistemological

work on how causal claims are established.3

Our goal in this paper is to describe and develop a project that is different from

the metaphysical projects described above, but is also not properly described as epis-

temology. It represents a third possibility. This project aims to elucidate what we

call the “worldly infrastructure” underlying the application of causal concepts and

2Paul and Hall do discuss, sometimes approvingly, the use of resources from causal modeling to
represent and clarify causal claims, but not for causal discovery. It is precisely those epistemological
strategies for learning about causal relations that are central in the causal modeling literature but
play little role in mainstream work on the metaphysics of causation.

3This separation is facilitated by Paul and Hall’s focus on “actual cause” claims, for which
there is no consensus on an appropriate discovery methodology. The epistemological strategies and
infrastructure features to which we draw attention are primarily exploited to identify type-level
causal relations.
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causal reasoning. The basic idea is this: there are certain generic features of our

world that license and support the application of causal thinking and inferences to

causal conclusions. These features include (but are not limited to) the following: (i)

some variables are statistically independent of others (not everything is correlated

with everything else); (ii) interventions, in the sense of unconfounded manipulations,

are often possible and, more generally, many systems exhibit naturally occurring ex-

ogenous sources of variation that count as interventions in the technical sense even if

they do not involve human manipulation; (iii) the macroscopic, coarse-grained behav-

ior of many systems is largely independent of variations in their microscopic realizing

details and this allows for “unambiguous” interventions into such systems and the

discovery of robust causal generalizations about their macroscopic behavior.

A motivating assumption of our project is that our concepts and strategies for

causal reasoning developed to exploit the fact that we live in a world in which these

generic features obtain. For example, the truth of (ii) is one factor that contributed

to our developing a notion of causation that is closely linked to what happens under

interventions – (ii) helps to ensure that this intervention-based notion will be useful. If

interventions were rarely or never possible, we would presumably not have developed

a notion of causation tied to interventions. This is the sort of thing we have in mind

when talking about the worldly infrastructure that supports causal thinking.

Our project is also motivated by the empirical success of the causal discovery

methods mentioned above. These methods reliably deliver truths about causal rela-

tions and it is natural to ask why they are successful. Our answer is that these causal

discovery methods work because they rely upon, and exploit, the worldly infrastruc-

ture we describe. Insisting that these methods are of no “metaphysical” significance

denies any tight connection between the success of these methods and the structure of
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the world, a position we consider untenable. We consider it a virtue that our project

is responsive to the epistemology and methodology of causal inference and identifies

features of the world that explain the success of those methods; our discussion of the

“worldly infrastructure” catalogues some of these features. As we will argue, the claim

that the success of causal discovery methods supports the structural presuppositions

underlying those methods has much in common with similar inferences commonly

made elsewhere in science.

The project of elucidating the worldly infrastructure supporting causal reasoning

differs in key respects from familiar metaphysical projects. It does not require special

metaphysical concepts (e.g., powers) but employs only notions already in the toolbox

of the practicing scientist, such as statistical independence and exogeneity. It does

not proceed by appealing to intuitions about cases. It aims, first and foremost,

at characterizing the contingent structure of the actual world that supports causal

reasoning. Accordingly, we make no claim that the causal concepts employed in our

world are metaphysically necessary; whether they apply in other worlds – or even to

all phenomena in the actual world – depends on whether the worldly infrastructure

obtains. We offer more extended discussion of these and other differences in section

6.

These differences may suggest that we are not providing “genuinely” metaphysical

information about causation. We have little interest in a dispute about what counts

as genuine metaphysics. What is important is that the infrastructure project char-

acterizes objective structural features of the world on which causal reasoning relies.

Exploring the worldly infrastructure of causal reasoning, while different from projects

pursued within mainstream metaphysics of causation, is of considerable importance

in its own right.
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2 The General Framework

The framework we adopt has several parts. First, there are the infrastructure features

themselves, such as (i)-(iii) above. Second, there are connecting principles that license

inferences from the presence of some particular infrastructure, typically in conjunction

with other information, to causal conclusions. In this sense the connecting principles

reflect the use of the infrastructure in causal inference. The general form of the

connecting principles is:

P: (a) Particular instances of infrastructure features obtain (e.g., variables

exhibiting some pattern of statistical independence and dependence, some

manipulation of X with respect to Y has the characteristics of an inter-

vention, etc.) + (b) additional information (possibly causal in character)

−→ causal conclusion.

For example, the claim (1) that the world is often such that interventions are

possible is a general claim about an infrastructure feature. The claim (2) that some

particular manipulation of X with respect to Y satisfies the conditions for an inter-

vention is a claim of form (a). The characteristic interventionist claim (M) – if Y

systematically changes under some intervention on X, then X causes Y – is a con-

necting principle of form P. This licenses a causal conclusion if the antecedent of this

conditional is satisfied. For (M), the additional information (b) referred to in P is

built into the characterization of an intervention, which includes causal information

about the effect of an intervention I on X.

Perhaps (M) could be true even if (1) is false, but if (1) were false then (M) would

be largely useless as a principle in causal inference since its antecedent will rarely be
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satisfied. Assuming that our ways of thinking about causation have developed because

they are functional or useful in some way (Woodward, 2014), it is hard to see why we

would have developed a notion of causation in which (M) plays a central role if (1)

were false. In reality (1) is true, so it has been useful for us to develop a notion of

causation that is intimately connected with what happens under interventions. This

is one illustration of what we have in mind when we say that our thinking about

causation is formed in response to, and exploits, the presence of the infrastructure

features.

It may be helpful to clarify the functional approach to causal reasoning with

an analogy. When disambiguating visual scenes, the human visual system relies

on the built-in assumption that illumination is generally from above (e.g., from the

sun) and that objects tend to be convex. That this assumption is generally correct

partially explains why the visual system is generally reliable when inferring shape

from shading. (It also partially explains why the human visual system developed

to exploit it.) We see the existence of the causal infrastructure analogously: the

worldly infrastructure itself is analogous to the physical facts about illumination from

above and the convexity of objects, while the inferential principles that exploit that

infrastructure to deliver causal conclusions are analogous to the visual system that

exploits those physical facts to deliver reliable inferences of shape from shading.

The infrastructure features are related to each other in a way that supports con-

sistent causal reasoning and inference. That is, we can exploit the presence of distinct

infrastructure features in ways that converge on consistent causal conclusions – con-

clusions that thus can be transferred across different inferential contexts. As an

illustration, consider the principle of the common cause (CC): if X and Y are sta-

tistically dependent, then either X causes Y , Y causes X, or X and Y have a (set

7



of) common cause(s). Perhaps one could imagine a world in which CC regularly fails

when “cause” is understood along interventionist lines: a world in which frequently

X and Y are statistically dependent but interventions on X are not associated with

changes in Y , interventions on Y are not associated with changes in X, and there is

no third variable Z such that interventions on Z are associated with changes in X

and Y . Whether or not such a world is possible, our world is not like this. In our

world, there are systematic connections between patterns of statistical association

and what will happen under interventions that are captured by the principle of the

common cause – if X and Y are statistically dependent then one (or more) of the

three possibilities allowed by CC follows. This means that in our world, there is a

connection between what may be inferred from statistical dependencies and what will

happen under interventions. Given CC and that X and Y are statistically dependent,

if we determine that X and Y do not have a common cause and Y does not cause

X, we may infer that some intervention on X is associated with Y . (Here we employ

a connecting principle of form P which uses CC, information about statistical de-

pendence, and information about the absence of causal relations to infer to a causal

conclusion.) Again, our ways of thinking about causation have developed to take

advantage of such connections.

As another illustration, consider the Causal Markov Condition (CMC). The CMC

is satisfied if, for every variable Xi in a causal graph G, conditioning on the parents

(direct causes) of Xi renders Xi statistically independent of every other variable in G,

except possibly its descendants (effects). It is crucial for usefully applying CMC that

statistical dependencies – unconditional and conditional – not be ubiquitous. Sup-

pose instead that for any set of variables X = {X1, . . . , Xn} we could measure, each

Xi and Xj were statistically dependent and remained statistically dependent as we
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conditioned on all subsets of other variables in the set X. All fully connected graphs

(every variable directly causally connected to every other) are consistent with CMC,

so CMC alone would be of little use. Normally we invoke additional conditions that

justify choosing sparser graphs over fully connected ones. For example, the widely

used faithfulness condition selects only graphs that entail, solely from their structure,

all the conditional and unconditional independence relationships in the probability

distribution. However, if for every set of variables X, no such independence rela-

tionships obtain, conditions like faithfulness even in conjunction with CMC would

not be useful for inferring anything definite about causal structure. Fortunately, in

our world there is a considerable amount of unconditional and conditional statistical

independence and we regularly exploit such independence, in conjunction with other

conditions (like CMC and faithfulness), to learn about causal relations.

The existence of variables that are statistically independent is also required for

other familiar causal inference procedures like the use of randomized experiments –

we cannot randomize if there are no natural statistical independencies among the

variables of interest and we cannot produce any. There would be no possibility of

causal learning on the basis of such experiments. Again, we should distinguish be-

tween (i) the connecting principle that licenses causal conclusions from the results of

randomized experiments: roughly, if in an experiment in which assignment of C is

randomized, the incidence of E is higher in the treatment group than in the control

group (and we rule out that this a statistical fluke), then infer that C causes E; and

(ii) the infrastructure feature: statistical independencies that enable randomization

are generically available. That the infrastructure (ii) is required for the strategy (i)

to be used illustrates the general fact that to profitably apply our causal reasoning

strategies, the worldly infrastructure supporting those strategies must be present.
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3 Some examples of worldly infrastructure

We now turn to some candidates for the worldly infrastructure of causation (including

some already introduced). To avoid pedantry, we will use “variable” to describe

both elements of the world standing in causal relations and representations of those

elements.4

3.1 Statistical Independence

The world contains many pairs (triples, n-tuples) of variables that are strictly statis-

tically or probabilistically independent of each other, and many others that “effec-

tively independent,” i.e., sufficiently close to independence that they can be treated

as independent for many inferential purposes. Some examples: (A) The color of our

respective socks on any given day is independent of whether some randomly selected

Parisian had eggs for breakfast that day. (B) The outcomes of successive coin tosses

with the same generating set up are typically effectively independent. Those outcomes

are also independent of many other variables: the time of day at which the tosses

occur, fluctuations in stock prices, etc. (C) Mendel’s law of independent assortment

states that alleles for different traits are passed to offspring independently of each

other. This “law” does not always hold (because of genetic linkage, among other con-

siderations) but when it does, the independence relations it generates can be exploited

in causal inference, as in the use of “Mendelian Randomization” to make inferences

about the role of environmental exposures in causing diseases (Lawlor et al., 2008;

Sanderson et al., 2022). (D) Assumptions that the velocities of any two molecules in

4The reader is free to use “quantity” (where quantities can be two-valued, real-valued, etc.)
when the discussion concerns causal relata in the world and reserve “variable” for representations
of quantities.
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a dilute gas are statistically independent immediately prior to their collision – like the

Stosszahlansatz or the assumption of “molecular chaos” – have played an important

role in statistical physics since the time of Boltzmann (Brown et al., 2009).

We have already described several ways in which the presence of statistical in-

dependence is exploited in causal inference. As additional illustration, the standard

proof of CMC assumes that each variable is a deterministic function of other mea-

sured variables (its parents) and an additive “error” term. The error term for each

equation is assumed to be probabilistically independent of the parents and the error

terms across equations are assumed to be independent of each other.

Similar independence assumptions concerning error terms are often made when

causal modeling or structural equations frameworks are employed to identify causal

relations, even if CMC is not explicitly used. For instance, applications of the “back-

door criterion” of Pearl (2009, p. 79) identify the effect of X on Y by conditioning

on variables along any confounding paths linking X and Y in a way that ensures any

probabilistic dependence between the variables after conditioning reflects their causal

relationship. This requires that absent the confounding path and the causal relation-

ship, X and Y would be probabilistically independent. Identifiability conditions like

the back-door criterion are crucial in the social sciences, since they are required for

specifying which variable sets suffice to control for confounding. If causal indepen-

dence did not typically produce probabilistic independence, standard techniques for

identifying and estimating causal relations could not be reliably applied.

As yet another illustration, techniques for inferring causal direction often exploit

information about statistical independence. As a simple example, consider a system

of three variables, with X independent of Y but X and Z dependent and Y and
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Z dependent. Then a fairly reliable heuristic delivers the judgment that X and Y

cause Z: the causal direction goes from X and from Y to Z, with X and Y causally

independent.5 Obviously we could not develop or use this heuristic if all or most

variables were pairwise statistically dependent.

Looking beyond explicit frameworks for causal discovery, the factorizability of

joint probability distributions (reflecting statistical independence) is commonly un-

derstood as indicating causal independence in science. For instance, the factorization

of a joint distribution in physics is commonly understood to reflect facts about (ef-

fective) causal independence of the subsystems (i.e., the absence of nontrivial phys-

ical influence between the subsystems). Such inferences are ubiquitous in classical

physics and, although quantum entanglement makes the connection subtle, remain

extremely common in quantum physics as well. This has important methodological

consequences, not least that knowing that a joint probability distribution factorizes

often justifies analyzing the causally independent subsystems independently, greatly

facilitating computation. For example, quantum field theories are required to satisfy

the cluster decomposition principle: roughly speaking, the principle requires any two

events occurring at sufficiently large spatial separation to be probabilistically indepen-

dent (Weinberg, 1995, chapter 4). This is meant to capture the fact that experiments

at Fermilab are causally independent (and thus probabilistically independent) of any-

thing taking place in the accelerator tunnel at SLAC. It speaks to the ubiquity of this

type of reasoning in physics that one of the core principles of quantum field theory is

essentially a formalization of this relationship between causal independence and the

factorization of joint probability distributions.6

5See (Woodward, 2022a) for more on why this and other, more sophisticated procedures for
inferring causal direction work.

6A completely satisfactory characterization of the physical significance of cluster decomposition
is surprisingly subtle; see (Dougherty et al., 2023).
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3.2 The possibility of interventions

It is frequently possible to intervene on some variables with respect to others, or

to find naturally occurring variables that have the characteristics of interventions.

(By “intervention” we mean an unconfounded exogenous manipulation that satisfies

criteria like those described in (Woodward, 2005).) Built into the possibility of an

intervention is that it is possible to intervene on some variables in a way that is in-

dependent (causally and statistically) of the values of other variables, and in a way

that influences certain other variables, if at all, only indirectly.7 The world is such

that it does not conspire to make such interventions impossible. For example, the

world is not superdeterministic: that would entail that whenever a researcher does an

experiment in which she thinks she is performing an intervention I that manipulates

X, and Y changes, this is actually due to some unobserved common cause of I and

Y , or due to some common cause of X and Y that “just happens” to be correlated

with I. The upshot is that the supposed intervention I is not really an intervention

at all and the conclusions the researcher draws about the causal relation between

X and Y are mistaken. The assumption that this sort of systematic confounding is

not widespread is required if we are to draw correct causal conclusions from experi-

ments. Conversely, it might be argued that since we apparently can reason correctly

from experimental results to causal conclusions, this puts pressure on the possibility

of superdeterminism – to accommodate this fact, superdeterminism would have to

incorporate some very remarkable kinds of pre-established harmony to generate this

appearance in the absence of causal connections.8

7It is also generally assumed that the world is such that local interventions are possible. This
means, roughly, that when it is possible to intervene with I on X, I itself does not consist of some
delicately tuned manipulation of many other, perhaps spatially separated, variables.

8Superdeterminism is different from – and much stronger than – the possibility that the world is
governed by deterministic laws. The latter poses no particular problems for causal inference.
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Going further, often variables occur “naturally” that have the characteristics of

interventions (i.e., that are “exogenous” to some candidate causal relationship from

X to Y and that provide sources of variation in X that are associated with variation

in Y only through the variation in X they produce). Such variables greatly facili-

tate causal inference, making possible “natural experiments” in many areas of science

and the identification of variables that can serve as “instruments” (i.e., instrumental

variables) for investigating causal relationships (Angrist et al., 1996). These tech-

niques illustrate, among other things, that even if the relationship between X and Y

is confounded (by a common cause Z, for example), as long as we can find an instru-

mental variable W that is an additional source of variation in X, where this variation

is independent of the variation in X caused by Z, we can use this information to

detect whether there is a causal relation between X and Y . Variables having these

intervention/instrument-like characteristics are not always available, but often they

are (even if identifying them requires considerable ingenuity) and can be exploited in

causal inference. As with other infrastructure features, the existence of such variables

is a broadly empirical fact about our world.

A closely related observation is that it is sometime possible to “fix” the values

of variables exogenously by imposing values that remain unchanged, via processes

that are themselves causally uninfluenced by other variables in the system. Consider

the ideal gas law, (IG) PV = kT , which relates the pressure P , volume V , and

temperature T of a gas at thermodynamic equilibrium. (IG) is silent about the

causal relationships among these variables. Now suppose the gas is confined to a box

of fixed volume and immersed in a heat bath of fixed temperature. The heat bath

fixes the value of T exogenously (since the other variables V and P do not influence

the heat bath), while the volume of the gas is fixed exogenously by enclosing it in a
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rigid container. We can represent this with the equations (2) V = v and (3) T = t

indicating that these variables have been set to fixed values. We can then use (2) and

(3) to solve for the pressure using (IG). In a more general setting, Simon (1953) used

such facts about the order in which the values of variables in a set of equations can

be determined to infer the causal ordering (i.e., which variables cause others). In the

specific experimental setup we consider, this licenses the inference that V and T are

causes of P .

3.3 Connections between Causal and Statistical Relations

We noted above that in our world there are systematic connections between statisti-

cal independence and dependence relations (both conditional and unconditional) and

causal relationships, as reflected in principles like CC and CMC. These principles play

an important role in learning about causal relationships. Indeed, without something

like these principles it is hard to see how one could learn about causal relationships

from observation of statistical relationships, as we sometimes clearly can. However, it

is difficult to argue that they reflect metaphysically necessary features of causation;

even those who aim to identify metaphysically necessary features of causation gener-

ally don’t claim that CC or CMC are among those features. We think that the moral

to draw from this is not that CC or CMC play no important role in understanding

causation, but that this narrow conception of what qualifies as metaphysically impor-

tant information about causation omits important aspects of how causal reasoning

relates to features of the actual world. Our suggestion that CC and CMC reflect

features of the worldly infrastructure that support the application of causal reasoning

is meant to capture this.
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The general usefulness of CC and CMC is not threatened by the possibility that

they are not satisfied by certain phenomena (such as measurement results on en-

tangled quantum systems).9 In line with our characterization of these principles as

reflecting contingent facts about the infrastructure, however, we do not view the

mere possibility that one could imagine cases in which they are violated as a genuine

limitation.10

3.4 Modularity

Say that a representation of a system represents it as modular if certain causal rela-

tionships in the system will remain stable or unchanged under modifications of other

causal relationships represented in the system. (Modularity is not a binary property

but comes in degrees.) For example, a system of two coupled springs is modular to

the degree it is possible to modify the relationship F = −k1x1(t) governing one spring

(e.g., by stretching) while leaving the relationship characterizing the other spring un-

changed. Say that a system is modular if it has a modular representation, at some

level of description, that correctly predicts the results of interventions on variables in

the system. It is implausible that it is somehow metaphysically necessary that there

exist modular representations for all systems of interest and nothing guarantees that

such representations will exist at any chosen level of description. It may well be that

some systems are fundamentally non-modular, i.e., they have no predictively accurate

9There is an enormous literature, and no consensus, about how Bell-type correlations bear on
principles of causal inference. For instance, Glymour (2006) thinks they violate CMC, Wood and
Spekkens (2015) think they violate faithfulness-type conditions, and Hausman and Woodward (1999)
deny that interventions of the required type are well-defined for entangled systems, so a causal
analysis of Bell-type correlations fails even to get off the ground.

10For example, Cartwright (1999) imagines a hypothetical chemical factory where they are violated
and Elliott and Lange (2022) imagine a world containing only two particles that are (by construction)
causally independent but correlated in their movements, but it is not clear that there are realistic
cases (at least in the macroscopic world).
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modular representation at any level of description. Nevertheless, we are sometimes

able to discover modular representations of systems and this greatly facilitates causal

analysis. For example, if I know that intervening to knock out one gene in a ge-

netic regulatory network will not lead the entire system to reorganize so that causal

relations throughout the network change (which would be a massive failure of modu-

larity), this makes it much easier to learn about the causal structure of the network.

(Many investigations of genetic regulatory networks assume this sort of modularity,

often with good empirical support.)11 Again, it is a fact about our world that many

systems of causal relations are modular at some accessible level of measurement and

description. This is another feature of the worldly infrastructure supporting causal

inference.

3.5 Value-Relation Independence

Our discussion of principles such as CC and CMC has emphasized “constraint-based”

methods for learning causal structure based on conditional independence relations,

but there now exist machine learning methods for causal inference that exploit prop-

erties of a probability distribution beyond factorization. Central to these methods is

the “principle of independent mechanisms” (PIM) (Peters et al., 2017, chapter 2.1).

Consider a system of two random variables in which X causes Y ; PIM formalizes

11Again, it may well be that some genetic systems that are non-modular, or at least are best rep-
resented as non-modular at levels of description appropriate for genetics. Mitchell (2009) (following
Greenspan (2001)) describes a hypothetical gene network in which interventions on one gene or node
produces a change in causal relations throughout the network. We agree that there may be real gene
networks that behave this way. Insofar as it makes sense to talk about “the causal structure” of such
networks, our point is that learning this structure is going to be much more difficult than learning
the structure of a modular network. Moreover, if the failure of modularity is too massive – e.g.,
the network completely reorganizes in different ways depending on which node is intervened on – it
becomes an open question whether it is useful or appropriate to talk about the causal structure of
the network. Alternatively, this sort of massive failure of modularity might be taken to signal that
we are analyzing the system at the wrong level of description.
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the sensible expectation that the “mechanism” that determines the probability dis-

tribution over the cause variable X operates independently of the “mechanism” that

determines the conditional probability distribution over the effect variable Y , given

X. More concisely, PIM requires that Pr(Y | X) be “independent” of Pr(X). Here

“independence” clearly cannot mean statistical independence.12 Rather, it means

something like Pr(Y | X) and Pr(X) can vary independently of one another, in the

sense that Pr(Y | X) will not change under suitable changes in Pr(X) (changes in

Pr(X) produced by interventions, roughly speaking), and vice versa. This can be

understood as a modularity condition (since it asserts that the mechanism generating

X can be modified independently of the mechanism connecting X to Y ) and reflects

an assumption found throughout science that laws and initial conditions are similarly

modular.13

One virtue of PIM is that by exploiting information about probability distributions

that goes beyond that used by constraint-based causal discovery methods, it can solve

problems that those methods cannot. For example, for a system of two variables

X and Y , principles like CMC and faithfulness that exploit only conditional and

unconditional (in)dependence relations are unable to distinguish between X → Y and

X ← Y . PIM helps because, given various additional assumptions, if it is satisfied by

X → Y then it will not be satisfied by X ← Y , so it can be inferred that the direction

in which PIM is satisfied is the correct causal direction (Shimizu et al., 2006).14 Such

12Peters et al. (2017) make this notion of independence precise using algorithmic information
theory: they require that Pr(X) and Pr(Y | X) have zero mutual algorithmic information.

13As Woodward (2022a) argues, one of the crucial features of the distinction between laws and
initial conditions is that we expect the former to remain stable or invariant under changes in the
latter. This invariance requirement is closely connected to the expectation that the mechanisms that
generate initial conditions are independent of the laws that evolve those initial conditions.

14These additional assumptions take a variety of forms but concern the functional relation between
X and Y ; for example, that it can be represented by an “additive error model” of the form Y =
f(X) + U or X = f(Y ) + V , or that the distribution of at least one of the variables in the model is
non-Gaussian.
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methods have been tested on data in which the causal direction is independently

known (e.g., the relationship between altitude and temperature) and perform well

above chance (Mooij et al., 2016). PIM thus identifies further worldly infrastructure

that, when present, can be exploited to facilitate reliable causal inference.

3.6 Realization Independence

It is often the case that upper-level systems of causal relationships display a substan-

tial degree of “realization independence” with respect to their lower-level realizing

details: the same upper-level causal relationships continue to correctly characterize

the behavior of a system across some range of changes in its lower-level realizers. For

example, the thermodynamic behavior of a sample of bulk matter is essentially inde-

pendent of its exact microstate, as long as that state resides within the appropriate

region of the state space. For many psychological and neurobiological phenomena, it

appears that the specific behavior of any individual neuron (which is typically stochas-

tic) hardly matters – the aggregate properties of populations of neurons is what mat-

ters. Many powerful theoretical tools – such as renormalization group methods and

homogenization techniques – were developed to exploit the presence of realization

independence, in its myriad forms, to simplify (or make possible at all) prediction

and explanation (e.g., (Batterman, 2001)). Realization independence, when it ob-

tains, also allows us to ignore or abstract away from lower-level details (the modeling

of which is often intractable) and thus facilitates causal analysis (Woodward, 2018;

Robertson, 2021).

If the behavior of some upper-level system exhibits widespread failure of realization

independence, then to achieve causal understanding of the system’s behavior we must
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advert to some lower-level description that provides stable, realization-independent

relations. If this lower level is not epistemically accessible, or we do not have a

good theory of its behavior, or the task of meaningfully connecting it to upper-level

behavior is computationally intractable, then our pursuit of causal understanding of

the higher-level system will stall. To illustrate the issue, Goldenfeld and Kadanoff

(1999) consider the possibility that to adequately model the behavior of a bulldozer,

one would have to appeal to quantum chromodynamics. They remark that in this

case one would have “model chaos”: the choice of a model for bulldozer behavior

would be highly sensitive to assumptions about the correct model for the behavior of

the strong force, the state of the quark and gluon fields that (partially) realize the

bulldozer, etc. This is information that we have no serious possibility of connecting

to bulldozer behavior; if it were necessary, bulldozer science would be impossible.

If realization independence failed to anything like this degree for sufficiently many

natural phenomena, scientific inquiry itself – let alone causal understanding – would

be impossible.

3.7 Independence as a Common Thread

All of these infrastructure features concern independence relations: statistical inde-

pendence among variables, the existence of variables that are causally independent of

other variables (making possible interventions and natural exogenous sources of vari-

ation), the independence of upper-level relationships from details of their lower-level

realizers, the independence of causal relationships from the mechanism(s) determin-

ing the cause variable(s) in those relationships (PIM), and the independence of some

causal relationships governing the behavior of a system from others (modularity).
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This varied store of independence relations provides the primary resources we use

to learn about causal relationships: it is the existence of such independence rela-

tionships that supports causal learning and the applicability of causal notions. We

learn about (causal) dependence, first and foremost, by exploiting information about

independence.

4 Does the Infrastructure Call for Further Expla-

nation?

Many of the features that we catalogued as part of the causal infrastructure cry

out for further explanation: why do those features obtain in our world? What, for

example, accounts for the ubiquity of statistical independencies? Why is it often

possible to perform interventions whose effects are largely independent of the lower-

level realizers of the manipulated variable? We make no attempt to systematically

answer such questions here, but we sketch some scientific details we take to be relevant.

We hope this will illustrate how the infrastructure project opens the door to novel

lines of inquiry that are easily overlooked when pursuing more familiar metaphysical

projects.

Begin with statistical independence. One important consideration concerns cer-

tain properties of physical forces in the actual world. Forces between physical bodies

decay with distance fairly rapidly: polynomially for the gravitational and electro-

magnetic forces and exponentially for the weak and strong forces.15 This means that

15At least, at scales larger than about 10−5 meters. Inside protons and neutrons the strong force
between quarks and gluons increases with distance, resulting in the confinement of those quarks and
gluons.
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(i) at length scales longer than an atomic radius, only the gravitational and electro-

magnetic forces are relevant and (ii) at any scale, the dominant contributions to the

dynamical evolution of a physical system typically come from other systems in its

immediate environment: the decay of forces ensures that interventions on physical

systems even relatively short distances away often have negligible effect. (Of course,

this depends on the intervention: lighting a candle on the dinner table by striking a

match won’t affect the temperature of my plate, but lighting it with a flamethrower

will.) It is also the case that (iii) essentially all macroscopic systems are electrically

neutral under ordinary conditions, which means that electromagnetic interactions

will not naturally produce correlations between properties of bulk matter and (iv)

the gravitational force is sufficiently weak, and the gravitational effect of any object

in our immediate vicinity so dramatically swamped by the gravitational force exerted

by the earth, that in many circumstances gravity is also an ineffective means of nat-

urally producing correlations between properties of bulk matter. The result is that

many variables of many natural systems, particularly macroscopic systems, will be

effectively independent under most ordinary physical conditions.

A second important consideration is that the interaction of a system with a larger

environment (or even with other parts of the system itself) can produce decorrela-

tion and effective independence among variables within the system, both classically

and quantum mechanically. The environment can, and typically does, interact with

the system in such a way as to “wash out” (often rapidly) statistical correlations

within the system. For example, although two molecules in a gas will have correlated

momenta immediately after they collide, their momenta rapidly become effectively in-

dependent as a result of subsequent independent collisions of each particle with other

molecules in the gas. In quantum theories, environmental decoherence produces a
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similar result. Consider a “system” – two particles, with entangled spins – interact-

ing with molecules constituting an ambient “environment”. This interaction rapidly

entangles the system with the environmental molecules, and although the entangle-

ment between the two initial spins entails that results of appropriate measurements of

those spins should be correlated, the entanglement between system and environment

renders these correlations inaccessible to us via measurements. The result is that en-

vironmental decoherence rapidly renders measurements of the spins of the “system”

particles effectively statistically independent (see e.g., (Schlosshauer, 2019)).

Another important consideration, relevant to the above, is that whether vari-

ables are independent can depend on their “grain” as well as the “cut” we make to

distinguish the system of interest from some larger environment. By choosing an ap-

propriate graining of variables and an appropriate system/environment cut, we can

sometimes characterize systems in such a way that few variables are correlated and

many are independent, thus maximizing the information that can be exploited for

causal discovery. In particular, a description of a system using fine-grained variables

which are dependent can sometimes be replaced by a description using more coarse-

grained variables that are independent. For example, the exact positions of atoms in

my coffee cup may be, at some divinely accessible level of precision, correlated with

my position at my desk because of gravitational interactions. But if we adopt more

tractable, coarse-grained variables – variables that track atomic positions to only the

10th decimal place would suffice, let alone variables that track only the position of

the coffee cup itself on the desk – there will be no such correlation. (Incidentally, this

is one reason why the claim that everything in the backward light cone of some event

E is causally related to E shows much less than is often supposed. The claim might

be correct, in some sense, for maximally fine-grained descriptions of all systems and
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events involved, but even mildly coarse-grained variables will exhibit effective inde-

pendence. It is almost always those variables that are of interest, even in the practice

of fundamental physics (cf. Frisch, 2014, pp. 68-70).16

Causal inference does not require that variables (or relationships) be fully inde-

pendent (or modular) at all spatiotemporal scales, but only that they be effectively

independent at a particular scale of interest. To claim that rainfall is exogenous with

respect to crop growth (Simon and Rescher, 1966), it need not be that agriculture

has no long-term influence on climate. It only need be that over the timescale of

interest (say, five years) any influence of crop growth on rainfall is sufficiently small

to be negligible on that scale. That independence is often only approximate is not

in tension with recognizing independence as a genuine feature of the world. It is still

the case that the possibility of differentiating between dependent and independent

variable sets at one scale requires it not to be the case that all variables influence all

others equally at all scales (Weinberger, 2020). It is fortunate for causal analysis that

it is possible to successfully characterize the dominant behaviors of worldly systems

at different scales in terms of a relatively small set of causal influences.

5 Success, Realism, and Effective Theories

We have argued that the presence of the worldly infrastructure features explains

the success of our procedures for making reliable inferences about causal relation-

16It is worth adding that when variables are dependent, transformations of those variables may be
available that yield independent variables. All else being equal, we tend to prefer the latter. If q is
position and p is momentum, then the variables U = q+p and V = q−p are statistically dependent,
but q and p will generally not be. This is one reason for preferring q and p over U and V .
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ships.17 We view this argument as an instance of a general form of reasoning em-

ployed throughout science. Scientific modeling rests on empirical presuppositions.

The application of textbook techniques for calculating scattering cross sections in

quantum field theory involves a number of them: for example, that the scattered

particles interact weakly and that the scattering takes place at effectively zero tem-

perature. The use of polygenic risk scores to predict behavioral traits and diseases

rests on the presupposition that the traits in question are the result of a large num-

ber of genetic factors, each individually contributing a very small and approximately

additive effect on the trait in question; it also presumes that the ingredients (SNPs)

that go into the scores, even if not themselves causal, are correlated with genuinely

causal factors (Kendler and Woodward, n d). When these applications are successful,

we can infer that the real-world physical situation satisfies the presuppositions of our

modeling strategies. For example, the fact that polygene risk scores are replicable and

predictively successful suggests to geneticists that these presuppositions concerning

genetic architecture are correct. It also helps to explain why many previous attempts

to identify common candidate genes with large effects on the traits in question were

unsuccessful (in the sense of failing to replicate): for many traits, such genes do not

exist. Concluding that the presuppositions of a modeling strategy are satisfied in the

real world on the basis of that strategy’s empirical success is a familiar inference in

the sciences. We claim that a similar inference holds for the worldly infrastructure

that underlies successful causal reasoning: the success of various causal discovery

strategies reveals facts about what the world is like – i.e., about the presence of the

worldly infrastructure that supports the success of those strategies. In this sense, we

are simply treating causal discovery like other fields of successful scientific inquiry.

17More precisely, it is an indispensable part of the explanation. The success of those procedures
also depends on obvious factors like the existence of users of the procedures, their cognitive abilities,
etc.
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This “argument from success” may remind readers of similar arguments by sci-

entific realists: (1) science (or a particular theory) is predictively accurate, (2) the

success of science (or this particular theory) would be miraculous if its descriptions

of the world were not at least approximately true, therefore (3) those descriptions are

at least approximately true. We think our argument from success is stronger than

this familiar argument in several respects.

One common objection to this argument for scientific realism invokes the specter of

underdetermination. One way to state the objection is that no matter the predictive

success of T, one cannot rule out that T is false and some alternative T∗ is true, where

T∗ is inconsistent with T but accounts for the same phenomena. How seriously one

should take this objection in a given context depends, in part, on how plausible

it is that there is any such theory T∗. Applied to our argument, the analogous

issue is whether there is some alternative account, postulating very different worldly

infrastructure, that accounts equally well for the “phenomena”: the success of our

causal inference procedures. We are not aware of even a hint of a serious proposal in

this direction.

A second disanalogy: our reasons for thinking that the worldly infrastructure

features are present go well beyond the inference to the best explanation on which

the scientific realist relies. Often we can directly establish that the infrastructure

features are present – we observe that certain variables are statistically independent,

etc. Direct observation that the infrastructure features are present, combined with

arguments that if present, they would explain the success of our causal discovery

procedures, and that no other potential explanations of success seem to be available,

all support the claim that the presence of the infrastructure features is crucial for the

success of causal discovery. The resulting argument is thus stronger than the familiar
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inference to the best explanation of the scientific realist. We have something more

like an argument that the presence of the infrastructure features would be the only

empirically viable explanation, bolstered by independent evidence that the potentially

explaining features are, in fact, present.

We conclude by commenting on another issue that, although distinct, might invite

a similar skeptical challenge: the status of the causal claims that our inference proce-

dures deliver. Suppose those procedures seem to tell us that (1) C causes E. How do

we know that some alternative account – perhaps a more “fundamental”, fine-grained

account – won’t one day be accepted, according to which (1) is not true, but rather

some alternative (2) is true: C∗ causes E? If so, our causal inference procedures will

not be successful in the sense we have claimed.

One way this might happen is if there was some unrecognized source of confound-

ing in the procedures that we took to establish (1): we thought we were intervening

on C and observing changes in E, but some other factor Z was associated with our

attempted interventions and in fact Z causes E. This is always possible in principle,

but is extremely far-fetched in many realistic cases and often not a possibility to be

taken seriously in inquiry.

Suppose instead that we succeed in performing genuine interventions on C and

that E changes in accord with (M), or we provide evidence via other inference strate-

gies we have discussed for the same conclusion about how E would respond to inter-

ventions on C. Might we still subsequently discover that (1) is false? This is harder

to envision. This could be a genuine possibility if (M) was an inadequate account

of causation, with the correct account either one that did not incorporate (M) but

instead invoked some entirely distinct condition(s) S, or one according to which a re-
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lationship is causal only if it satisfies (M) and some additional condition R that (M)

omits. Then it might be that even though E changes in response to interventions on

C, the condition(s) S or R are not satisfied so the relation between C and E is not

really causal.

Of course, if (M) or something sufficiently similar is the correct account of causa-

tion, that won’t be a genuine possibility. However, there is reason beyond optimism

about (M) to believe that statements of the form “interventions on C are associated

with changes in E” are unlikely to be overturned by future developments. Statements

of that form, established on the basis of apparently well-designed experiments and

reliable inference procedures but then invalided by subsequent developments, are dif-

ficult to come by. Subsequent discoveries may tell us more about why interventions

on C are associated with changes in E, about which components of C are the genuine

difference-making elements, about mediating variables, about the range of conditions

under the original claim holds, and so on. However, they rarely show that under

the specified conditions the original claim is false. (And if they do, the mistake is

usually discoverable via investigation at the level of the original causal claim, such as

the presence of an unknown confounder or a failure of replicability, and not via some

means that depend on future theorizing about causation.)18 This is, in part, because

interventionist causal claims are “thin”, i.e., relatively ontologically non-committal.

In particular, interventionist causal claims describe a dependence relationship without

making commitments about more “fundamental” or fine-grained characterizations of

the variables involved, nor about the specific mechanism responsible for dependence

18For example, one way that a causal claim might be mistaken is that the cause variable C might
be discovered to be “ambiguous”: different interventions that set C to the same value might be
associated with different outcomes depending on how C is “realized” at some lower level (Spirtes
and Scheines, 2004). This mistake is something that can typically be discovered by doing experiments
at the level of C – no discovery of a deeper or more fine-grained theory is required.
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relationship. For example, if we understand “aspirin causes headache relief” as a

“thin” interventionist claim, it is wildly implausible that it would be falsified by sub-

sequent theoretical developments. After all, it makes no commitments about how

the causal influence is transmitted (e.g., via inhibiting prostaglandin production vs.

via activating µ-opioid receptors) nor about the chemical composition of aspirin, the

physiological realizers of headaches, etc. This results in interventionist relations typ-

ically being preserved under theory change, including the embedding of high-level

causal relations into more “fundamental” or fine-grained theoretical descriptions.

This illustrates another important disanalogy with the familiar argument for sci-

entific realism. There are many examples of theories that are highly predictively

successful but have mistaken ontological commitments –nineteenth-century theories

that held light and electromagnetism were transmitted by a mechanical ether, Dirac’s

“hole theory” that was used to predict the existence of antimatter, and so on. By

contrast, statements of the form “interventions on C are associated with changes

in E” describe a dependence relationship without making such ontological commit-

ments. This makes it possible for interventionist causal claims to survive subsequent

scientific developments and attendant changes in ontology. This is just as true for

claims that more than 40 CAG repeats in the HTT gene causes Huntington’s chorea,

that the motion of a conducting material in a magnetic field causes induction of a

current, etc. as it was for the claim that aspirin causes headache relief.

Our invocation of “well-designed” experiments and inference procedures may seem

question-begging. We disagree. One can always be mistaken in thinking that an ex-

periment is well-designed, but whether this is the case is usually something that can

be determined by subsequent scrutiny of the experiment itself. Consider the replica-

tion crisis affecting portions of psychology. That the experiments claiming to show
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that certain manipulations cause various effects (e.g., priming effects on behavior)

were badly designed can be revealed from inspection of the experiments themselves

and the techniques employed to analyze them (e.g., inappropriate statistical proce-

dures), along with the information provided by their failure to replicate. Again, we

can discover this via investigations at the same level as the original causal claim;

new scientific theories are not required. Our point is not that this is never the case

– nineteenth-century experimenters working with cathode ray equipment could not

possibly have recognized that their experiments were poorly designed and that certain

causal claims rested on shaky ground (because they failed to control for X-rays) until

X-rays were discovered by Roentgen in 1895. Our point is that such cases are the

exception, not the rule, and do not justify anything like a general expectation that

interventionist claims are endangered by future scientific development.

Physicists make increasing use of the notion of an “effective theory”. This is a

theory TE that accurately captures dependence relations over a restricted range of

scales or within a specified domain, but will not be predictively accurate outside that

domain. The use of effective theories is licensed by the fact that their structure is

relatively independent of the structure that might be revealed by more fine-grained

levels of analysis. Put otherwise, the dependence relationships described by TE de-

pend only weakly on which fine-grained theory turns out to be correct: as long as

that fine-grained theory lies in a class of theories that satisfy specified conditions, the

relationships in TE will be retained by that theory (Williams, 2019).19 (In physics,

this can often be demonstrated by the methods for exploiting realization independence

mentioned in section 3.6 or similar techniques.) The use of effective theories in particle

physics has received philosophical attention, but the concept can be profitably applied

19The formal specification of these conditions varies between theories, but they are in general
fairly weak.
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more generally; for example, the use of the Navier-Stokes or Navier-Cauchy equations

to model the continuum-scale properties of fluids and solids (respectively) can be il-

luminatingly understood as making use of effective theories (Batterman, 2021). We

suggest that causal claims, in an interventionist framework like (M), exhibit many of

the same characteristics as the dependence relations found within effective theories

throughout physics: they are typically independent of many details of their lower-

level realizers while remaining non-committal about any detailed ontological account

of those realizers. As discussed above, these properties justify the expectation that

interventionist claims will remain stable across future theoretical developments.

6 Disanalogies with Traditional Metaphysics

We presume it is clear that the “worldly infrastructure” project differs from those

typically engaged in under the heading of the metaphysics of causation. As promised

in the introduction, here we spell out these differences in more detail, with the aim

of further elucidating our approach.

No Special Entities or Relationships: The characterization of the infrastructure does

not require special metaphysical concepts or entities: no powers, no relations between

universals, no Humean mosaic of perfectly natural properties, etc. Instead, a char-

acterization of the worldly infrastructure supporting causal reasoning can be given

using non-metaphysically-loaded notions that are already employed by the workaday

scientist or mathematician (including disciplines like statistics and econometrics) –

notions like statistical independence and exogeneity.

Links to Epistemology: We take it to be a guiding principle of the natural sciences
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that successful methods for detecting empirically accessible manifestations systems

in the natural world are not independent of what those systems are actually like.

Methods for detecting genes and investigating their behavior are not independent of

features that genes possess and general facts about genetic architecture. Similarly

for methods for detecting elementary particles. We think that causation should be

approached in a broadly similar way. By carefully attending to the epistemological

successes of frameworks for causal modeling and inference, one can extract a number

of conclusions about the worldly infrastructure that supports causal reasoning. Un-

like more familiar metaphysical discussions of causation, the infrastructure project

maintains tight connections with the epistemology and methodology of causal infer-

ence since the infrastructure features are exactly those on which successful causal

inference relies.

Metaphysical Necessity: Metaphysicians of causation often understand their task as

characterizing features of causation that are “metaphysically necessary” – perhaps

features that causation must possess in all “metaphysically possible” worlds. The

infrastructure project has more restrained modal ambitions. It does not claim that

the generic features that characterize the worldly infrastructure obtain as a matter

of metaphysical necessity, nor does it claim that there is a metaphysically necessary

connection between causation and the presence of those features. It does not at-

tempt to identify causation with the infrastructure features and it does not take the

infrastructure features to be “grounds” or “truth makers” for causal claims, in the

metaphysician’s sense of those terms (which imports assumptions about metaphysi-

cally necessary relations). Instead, the infrastructure project is solely concerned with

properties of the actual world and how they support causal reasoning. In line with

its restricted modal ambitions, the infrastructure project declines to take a stand on
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how to think about causal relations in “alien worlds” – proposed worlds very different

from our own in which the worldly infrastructure is not present or not connected

with causation in anything like the way it is in the actual world. While entertaining

such possibilities may be worthwhile for those interested in identifying metaphysi-

cally necessary features of causation, they lie outside the purview of an attempt to

characterize the (actual) worldly infrastructure of causation.

Appeal to intuitions: Relatedly, the infrastructure project is not an attempt to sys-

tematize intuitions about causation. In this regard, it diverges both from the standard

methodology for studying actual causation (Paul and Hall, 2013) and the methodol-

ogy commonly employed when using judgments about non-actual worlds, especially

“alien worlds”, to extract lessons about causation and causal reasoning. The alien

worlds typically considered are worlds in which, by construction, some or all of the

worldly infrastructure that supports successful causal reasoning in the actual world

is missing. It is no surprise, then, that we do not consider the judgments one may be

tempted to make about such worlds – using causal concepts and reasoning strategies

developed in the actual world to exploit precisely that worldly infrastructure – to

provide useful information or insight into causation or causal reasoning in the ac-

tual world. Indeed, our functionalism inclines us toward skepticism about whether

there is a determinate fact about how causal concepts developed to exploit a specific

worldly infrastructure can be applied to worlds that do not exhibit the infrastructure

presupposed by those concepts and strategies.20

Domain-specificity: Although the infrastructure features obtain generically, it is en-

tirely possible that there are actual systems that, at least at some natural levels of

analysis, fail to instantiate the infrastructure features to such an extent that they

20For additional discussion, see (Williams, 2022b; Woodward, 2022b).
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resist causal analysis. For example, there has been recent discussion about whether

structural features of general relativity leave it unable to provide causal explanations

of various phenomena. Several of those structural features apparently imply that

certain interventions (and the associated counterfactuals) that are crucial for causal

interpretation are ill-defined, which would mean a crucial element of the worldly

infrastructure is missing.21

If this is correct, and if sufficiently many other infrastructure features are absent

for certain systems modeled in GR, we think it warranted to conclude that the be-

havior of such systems simply will not admit a straightforward causal interpretation,

at least on anything like how we presently think about causation. This possibility

illustrates our general point that some systems – at least when modeled at certain

levels of analysis – may simply be “unfriendly” to causal analysis because important

worldly infrastructure is not present. Accepting this contingency of the worldly in-

frastructure stands in contrast to the common philosophical expectation that causal

notions should be applicable everywhere that certain minimal constraints (e.g., the

presence of regularities) are satisfied.

Relevance of Physics: The causal modeling techniques that inform our analysis are

widely and successfully used in the social and behavioral sciences and increasingly

in portions of biology, including neurobiology and genetics. However, readers may

21For discussion, see e.g., (Curiel, 2015; Jaramillo and Lam, 2021). Problems with the relevant
counterfactuals arise in several ways. The stress-energy tensor is partly dependent on metric struc-
ture for its characterization, so an intervention on the former with respect to the latter is arguably
not well-defined. This creates difficulties for the claim that any chosen matter distribution “causes”
metric structure. In addition, the absence of unique vacuum solutions creates problems for counter-
factuals concerning what would happen if matter were removed from a region of spacetime (since
there won’t be unique situations associated with the antecedents of such counterfactuals). There are
also global constraints that follow from the field equations that create problems for the possibility
of local interventions. We emphasize that we don’t think these are problems for our project; rather
these pinpoint features of GR that make causal interpretation challenging.
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wonder whether these techniques can be usefully applied within physics and, relatedly,

whether the infrastructure features we describe are important for causal reasoning in

physics. We have several replies. First, there is now a rapidly growing literature

applying causal discovery methods to classical and quantum physics, e.g., (Costa

and Shrapnel, 2016; Janzing et al., 2016; Allen et al., 2017; Barrett et al., 2020).

Perhaps it is unsurprising, then, that the infrastructure features on which we have

focused do often figure in physical reasoning. For instance, assumptions that causally

unrelated variables will be statistically independent very common; for example, this

is why, in the absence of delicately arranged contrivances, the possibility of coherent

electromagnetic radiation converging on a source it is not considered a serious physical

possibility in the actual world, despite being consistent with Maxwell’s equations. The

need for theoretical structure to license interventions also plays an important (albeit

rarely explicit) role in physical theorizing, from thermodynamics to quantum field

theory.22 The principle of independent mechanisms is also universally assumed to

hold in physics and has been put to use in classical and quantum physics for multiple

purposes (e.g., Maudlin, 2007, pp. 130-35; Janzing et al., 2016; Williams, 2022a).

Second, to the extent that these infrastructure features are not satisfied by some

physical systems and we cannot usefully apply causal inference techniques, we think

the appropriate conclusion is that this may simply mark limits on the applicability

of causal thinking in physics. However, we do not conclude from these limits (should

they exist) that the features we discuss are somehow thereby unimportant to causal

22Treating thermodynamics as a “control theory” is a familiar idea (Wallace, 2014), especially in
engineering, but the invocation of quantum field theory may be surprising. The cluster decompo-
sition principle, mentioned above, is one of multiple principles that plays this role: it ensures that
particles separated by sufficiently large spatial or temporal intervals can be treated as dynamically
independent. This means that one can intervene on the states of particles for example, when rep-
resenting the preparation of particles prior to a scattering experiment in a way that is crucial for
representing scattering theory.
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reasoning in circumstances in which they are present.

Primacy of Physics: It is fairly often supposed (and occasionally argued) that the

legitimacy of causation within science depends on whether causal relations figure in

the ontology of fundamental physics. The infrastructure project does not accord

physics privileged status of this sort. The legitimacy of causal reasoning in genetics

does not hinge on whether the Standard Model of particle physics provides causal

explanations of phenomena; whether and when causal reasoning can be applied to

any domain of natural phenomena, including physics itself, depends on whether the

worldly infrastructure that supports causal reasoning is present.

Sufficiency of metaphysical concepts: We have emphasized that many concepts that

are commonplace in metaphysical analyses of causation are unnecessary for charac-

terizing the worldly infrastructure that causal inference exploits. In fact, the concepts

in that familiar metaphysical toolkit also may not suffice for characterizing a causal

system. For example, a number of philosophers hold that there is a tight connection

of some type between causal relations and laws of nature. A simple and very strong

form of this connection might assert that C causes E if and only if C and E “instan-

tiate”, or are “related by”, a “law of nature”. We do not necessarily object to the

“only if” direction of this claim, depending on how the terms in quotation marks are

made precise. It is, however, our view that instantiating the worldly infrastructure

required for causal reasoning requires considerably more than the satisfaction of the

“if” direction. The infrastructure features include facts about the presence of statisti-

cal independencies, the possibility of interventions, and so on. If these features do not

obtain then it may not be true that C causes E, even if C and E are “related by” a

“law of nature”. Our discussion of obstacles to defining interventions and their asso-

ciated counterfactuals in general relativity provide an example; anti-entropic systems
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also appear to defy causal description, despite obeying the same laws of nature as

entropic systems (Williams, 2022b). These examples illustrate the general point that

more is required for causal notions to be applicable to a given system or relationship

than merely that it be lawlike.

7 Conclusion

This paper engages in a novel project – the elucidation of the worldly infrastructure

that supports the application of causal analysis. This is distinct from most projects

pursued within mainstream metaphysics of causation, but it also does not concern

only the epistemology or methodology of causal reasoning. Instead, it aims to identify

the features that are “out there” in nature that underlie our ability to learn about

causal relationships and successfully apply them. The project is is motivated by an

idea that is relatively uncontroversial elsewhere in the philosophy of science: when a

theory or methodology delivers reliable knowledge about its subject, it is worthwhile

to investigate the worldly features that help to explain that success.
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