
The Conventionality of Real Valued Quantities

The representational theory of measurement provides a collection of results that specify

the conditions under which an attribute admits of numerical representation. The original

architects of the theory interpreted the formalism operationally and explicitly acknowledged

that some aspects of their representations are conventional. There have been a number

of recent efforts to reinterpret the formalism to arrive at a more metaphysically robust

account of physical quantities. In this paper we argue that the conventional elements of

the representations afforded by the representational theory of measurement require careful

scrutiny as one moves toward such an interpretation. To illustrate why, we show that there

is a sense in which the very number system in which one represents a physical quantity

such as mass or length is conventional. We argue that this result does not undermine

the project of reinterpreting the representational theory of measurement for metaphysical

purposes in general, but it does undermine a certain class of inferences about the nature

of physical quantities that some have been tempted to draw.

1. Introduction. The representational theory of measurement (RTM) char-

acterizes the conditions under which qualitative attributes can be represented

numerically.1 This is achieved with representation theorems that demonstrate

the existence of a homomorphism between two types of structure. The do-

main of the homomorphism is an empirical relational structure – a structure

satisfying an axiomatization of the nature of the attribute. The codomain

is a numerical relational structure – typically a set of numbers with a set of

mathematical relations defined over it.

The interpretation of the empirical relational structures preferred by the

original architects of RTM is expressly operationalist. On their view, an

empirical relational structure is taken to consist of a set of objects that all

instantiate the qualitative attribute in question together with a collection of

operationally interpreted relations defined over the set. The numerical rela-

tional structure is typically taken to be the real numbers with the standard

order structure and the standard notion of addition. The existence of a homo-

morphism between these two structures establishes a clear sense in which the

relations over the set in the empirical relational structure can be represented

by the order and addition relations obtaining over the real numbers.

There have been a number of recent efforts to reinterpret the formalism

of RTM for the purposes of articulating a realist metaphysics of quantity.2

1The canonical presentation of the theory can be found in (Krantz, Luce, Suppes, and Tver-
sky 2007; Luce, Krantz, Suppes, and Tversky 2007; Suppes, Krantz, Luce, and Tversky
2007).

2See, for example, (Domotor and Batitsky 2008; Heilmann 2015; Wolff 2020).



We are quite sympathetic to what we take to be one central aspect of this

project: reinterpreting the empirical relational structures of RTM as property

spaces provides an apt characterization of the nature of the quantities arising

in physical theories. There is another aspect of recent realist reinterpreta-

tions of RTM, however, which requires more careful scrutiny. In particular, a

number of authors have recently advocated that in addition to reinterpreting

the empirical relational structure, we ought to strengthen the representation

theorems so that they establish the existence of an isomorphism rather than

a homomorphism.

The move from homomorphism to isomorphism amounts to demanding

that all of the structure of the number system in which the representation

is sought can be projected back onto the empirical relational structure. The

difficulty with this requirement is that certain aspects of the representations

furnished by RTM are conventional. The original proponents of RTM were

well aware of this, and on their operationalist interpretation of the formal-

ism the conventionality of the representations is entirely unproblematic. Our

worry is that the conventionality, together with the demand that the repre-

sentations take the form of isomorphisms, leads to an unjustified pattern of

inference concerning the nature of the empirical relational structure.

In order to make this worry explicit, we establish a new form of con-

ventionality in the representations afforded by RTM. What we show is that

there is an important sense in which the very number system in which one

represents quantities like mass and length turns out to be conventional. More

precisely, what we show is that postive closed extensive structures (PCES) are

homomorphically representable in both the real and the rational numbers. If

one conventionally selects the representation in the reals, and then demands

isomorphism, this prejudges substantive questions about the nature of the

qualitative attribute being represented. We argue that such questions can

only be resolved through empirical investigation of the nature of the qual-

itative attribute, and hence conventionality together with the requirement

of isomorphism can lead to unjustified inferences concerning the nature of

physical quantities.

Our argument proceeds as follows. In Section 2, we recall the basic ele-

ments of RTM and its operationalist interpretation. We then discuss how to

reinterpret the formalism in terms of property spaces. In the third section we

prove a series of results concerning the numerical representability of positive

closed extensive structures in both the real and rational numbers. In Section

4 we argue that these results demonstrate an important sense of convention-

ality in the choice of numerical structure for a certain class of quantities, and

we discuss the impact of this conclusion for efforts to leverage the results of
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the representational theory of measurement for the metaphysics of quantity.

2. Property space interpretations of RTM. According to the oper-

ational interpretation of RTM, the numerical representation of a physical

quantity is achieved by first enumerating a set of objects A that have the

quantity in question as one of their attributes. In the case of length we might

take A to be a set of rigid rods of varying lengths. Such a collection of rods

can be compared to one another and we introduce a comparison relation de-

noted by ≿, such that for any a, b ∈ A, a ≿ b iff the length of a is greater

than that of b. We also define a concatenation relation, denoted by ◦, such
that for any a, b ∈ A, a ◦ b can enter into the comparison relation with any

c ∈ A. Taken together, ⟨A,≿, ◦⟩ forms the empirical relational structure.

The operationalist nature of the interpretation stems from the interpre-

tation of ≿ and ◦ as concrete comparison and concatenation procedures. In

the case of length, to compare rods a and b we place them side by side with

one end of each aligned with one another. If at the other end a extends past

b, then a ≻ b, if b extends past a then b ≻ a, and if neither rod can be

determined to extend past the other then we have a ∼ b. Concatenation is

interpreted as placing the rods end on end. If we compare c with a placed

end on end with b and find that c extends past a ◦ b, then we have c ≻ a ◦ b.
The sense of numerical representability employed in RTM is then given

by the following definition:

Definition 2.1. An empirical relational structure ⟨A,≿, ◦⟩ is homomorphi-

cally representable in a numerical relational structure ⟨B,≥,+⟩ iff there exists

a function ϕ : A→ B such that ∀a, b ∈ A:

1. a ≿ b iff ϕ(a) ≥ ϕ(b)

2. ϕ(a ◦ b) = ϕ(a) + ϕ(b)

To generate a representation theorem, we need to articulate a particular em-

pirical relational structure and a particular numerical relational structure.

The numerical relational structure is typically taken to be ⟨R,≥,+⟩, or per-
haps ⟨R+,≥,+⟩. The precise nature of the empirical relational structure is

articulated with axioms that specify the properties of ≿ and ◦. For quanti-

ties such as mass and length, the following empirical relational structure is

employed:

Definition 2.2. (Krantz, Luce, Suppes, and Tversky 2007, def. 3.1, p. 73).

Let A be a nonempty set, let ≿ be a binary relation on A, and let ◦ be a

closed binary operation on A. An empirical relational structure ⟨A,≿, ◦⟩ is a
positive closed extensive structure iff ∀a, b, c, d ∈ A, each of the following are

satisfied:
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(Connectedness) Either a ≿ b or b ≿ a.

(Transitivity) If a ≿ b and b ≿ c, then a ≿ c.

(Weak associativity) a ◦ (b ◦ c) ∼ (a ◦ b) ◦ c.

(Monotonicity) a ≿ b iff a ◦ c ≿ b ◦ c iff c ◦ a ≿ c ◦ b.

(Archimedean) There exists a positive integer n such that na ≿ b, where

na is defined inductively as 1a = a, (n+ 1)a = na ◦ a.

(Positivity) a ◦ b ≻ a.

(Solvability) If a ≻ b, then there exists d ∈ A such that a ∼ b ◦ d.

The representation theorem then takes the following form:

Theorem 2.1. (Krantz, Luce, Suppes, and Tversky 2007, thm 3.1, p. 74,

pp. 80–81). Let A be a non-empty set, let ≿ be a binary relation on A, and

let ◦ be a closed binary operation on A. Then the following are equivalent:

1. ⟨A,≿, ◦⟩ is a positive closed extensive structure.

2. ⟨A,≿, ◦⟩ is homomorphically representable in ⟨R+,≥,+⟩.

The operationalist interpretation of the empirical relational structure suited

the purposes of the original architects of the theory, but it is deficient as the

basis for a metaphysics of the quantities that appear in physical theories.

To take just one example, a strict operationalist interpretation requires that

there exists an actual rod of each length that we want to represent numer-

ically. But of course, there are many possible lengths for which there is

no corresponding rod. If one is interested in leveraging the results of the

representational theory of measurement in support of more metaphysically

committal views about the nature of the quantities, we need a new way to

interpret the empirical relational structure.

In the metaphysics literature it has become common to treat quantities

as determinable properties which admit of a collection of determinates as

their possible values. One promising strategy for the reinterpretation of the

empirical relational structure is to understand the underlying set as a property

space. That is, we can take the set A in the empirical relational structure to

be the set of all of the possible determinate values of the quantity and ≿ and

◦ to be relations between determinate values of the quantity.

Reinterpreting the qualitative domain as a property space suggests ad-

ditional constraints on the function ϕ. On an operationalist interpretation,
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the order on A is is not required to be antisymmetric, since there may be

distinct objects a, b such that both a ≿ b and b ≿ a. But the determinates of

a given quantity are such that no distinct determinates may be tied with each

other with respect to their ordering. So on a property space interpretation,

it is reasonable to require that the order on A be antisymmetric. We thus

characterize a property space by adding antisymmetry to the list of axioms

given in Definition 2.2, resulting in the following definition:

Definition 2.3. A positive closed extensive structure ⟨A,≿, ◦⟩ is simply or-

dered iff ∀a, b ∈ A, the following is satisfied:

(Antisymmetry) If both a ≿ b and b ≿ a, then a is (numerically) iden-

tical with b.

In combination with the two conditions on homomorphic representability

given in Definition 2.1, the antisymmetry of the order on A implies that ϕ is

injective. Realist adaptations of RTM often require that the homomorphism

ϕ also be surjective, thereby replacing the notion of homomorphic representa-

tion with that of isomorphic representation.3 This is captured in the following

strengthened notion of numerical representation:

Definition 2.4. An empirical relational structure ⟨A,≿, ◦⟩ is isomorphically

representable in a numerical relational structure ⟨B,≥,+⟩ iff there exists a

function ϕ : A→ B such that ∀a, b ∈ A:

1. a ≿ b iff ϕ(a) ≥ ϕ(b)

2. ϕ(a ◦ b) = ϕ(a) + ϕ(b)

3. ϕ is a bijection.

As Wolff has it, requiring ϕ to be an isomorphism captures the realist com-

mitment that “the rich structure of the numerical representation is projected

back to the physical world” (Wolff 2020, p. 96).

We can now make our worry explicit. Once one moves to requiring iso-

morphic representation, some features of the representations which were un-

problematic when the empirical relational structures were interpreted oper-

ationally start to look quite problematic when they are interpreted as prop-

erty spaces. What we have in mind in particular are conventional elements

of the representation. The original developers of RTM were explicit that the

3See, for example, (Domotor and Batitsky 2008; Wolff 2020). (Narens 2002) also employs
isomorphic representation, though is concerned with meaningfulness and not (explicitly)
with realism.
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interpretation of the relations in the numerical relational structure were con-

ventional. Alternative interpretations of those relations yield equally good

numerical representations. We think there is a response available to advo-

cates of isomorphic representation in the case of this sense of conventionality.

However, in the next section we show that the number system itself is con-

ventionally chosen. This raises serious problems for inferences that involve

projecting structure from the numerical relational structure back to the em-

pirical relational structure.

3. Numerical representability in R and Q. Theorem 2.1 establishes

that a relational structure is a positive closed extensive structure iff it is

homomorphically representable in ⟨R+,≥,+⟩. In this section we show that

the use of the reals as the underlying set in the numerical relational structure

is a conventional choice. Our strategy is to determine a class of empirical

relational structures that are homomorphically representable in ⟨Q+,≥,+⟩,
and then to explore the constraints that homomorphic representability in

⟨Q+,≥,+⟩ imposes on an empirical relational structure. To start, we first

establish that there exist PCES that are not homomorphically representable

in ⟨Q+,≥,+⟩.4

Theorem 3.1. Not all positive closed extensive structures are homomorphi-

cally representable in ⟨Q+,≥,+⟩.

While all PCES are homomorphically representable in ⟨R+,≥,+⟩, not all

PCES are homomorphically representable in ⟨Q+,≥,+⟩: being a PCES is

not sufficient for being homomorphically representable in ⟨Q+,≥,+⟩. The

following theorem demonstrates that any empirical relational structure that

is homomorphically representable in ⟨Q+,≥,+⟩ is also homorphically repre-

sentable in ⟨R+,≥,+⟩.

Theorem 3.2. Let A be a non-empty set, let ≿ be a binary relation on A,

and let ◦ be a closed binary operation on A. If ⟨A,≿, ◦⟩ is homomorphically

representable in ⟨Q+,≥,+⟩ then ⟨A,≿, ◦⟩ is homomorphically representable

in ⟨R+,≥,+⟩.

From Theorems 2.1 and 3.2, it follows that homomorphic representability of

an empirical relational structure ⟨A,≿, ◦⟩ in ⟨Q+,≥,+⟩ implies that ⟨A,≿
, ◦⟩ is a PCES. Then from Theorem 3.1 it follows that, in addition to the

axioms for PCES, some further constraint delineates those structures that are

homomorphically representable in ⟨Q+,≥,+⟩. This constraint is captured by

the following axiom:

4The proofs of the theorems in this section are given in the appendix.
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Definition 3.1. A positive closed extensive structure is commensurable if it

satisfies the following axiom:

(Commensurability) For every a, b ∈ A, there exists c ∈ A and positive

integers m,n such that a ∼ mc and b ∼ nc.

A PCES is incommensurable if it does not satisfy commensurability.

Being a commensurable PCES is necessary and sufficient for being homo-

morphically representable in ⟨Q+,≥,+⟩:

Theorem 3.3. Let ⟨A,≿, ◦⟩ be a positive closed extensive structure. Then

the following are equivalent:

1. ⟨A,≿, ◦⟩ is commensurable.

2. ⟨A,≿, ◦⟩ is homomorphically representable in ⟨Q+,≥,+⟩.

Theorem 3.3 establishes that a representation theorem formulated in terms of

necessary and sufficient conditions for homomorphic representation in ⟨Q+,≥
,+⟩ is available, provided that the represented PCES is stipulated to be

commensurable. Theorem 2.1 establishes that ⟨R+,≥,+⟩ can accommodate

homomorphic representation of any PCES. This might be taken to suggest

that ⟨R+,≥,+⟩ is to be favored for being generally applicable to any PCES,

whereas the applicability of ⟨Q+,≥,+⟩ is limited to those PCES that are com-

mensurable. It should be noted that this difference in scope of applicability

is a result of the fact that ⟨R+,≥,+⟩ contains ⟨Q+,≥,+⟩ as a substructure,

which implies that any homomorphism into ⟨Q+,≥,+⟩ can be regarded as a

homomorphism into ⟨R+,≥,+⟩. Thus, any ERS that is homomorphically rep-

resentable in ⟨Q+,≥,+⟩ is also homomorphically representable in ⟨R+,≥,+⟩.
The situation is different if we require isomorphic representation. Being

isomorphically representable in ⟨R+,≥,+⟩ and being isomorphically repre-

sentable in ⟨Q+,≥,+⟩ are mutually exclusive. The general applicability of

⟨R+,≥,+⟩ for representation of PCES as established by Theorem 2.1 does

not survive the move from homomorphic to isomorphic representation. To de-

mand that a PCES be isomorphically representable in ⟨R+,≥,+⟩ is effectively
to stipulate that the PCES is incommensurable.

In the context of homomorphic representation, ⟨R+,≥,+⟩ accommodates

representation of both commensurable and incommensurable PCES. But iso-

morphic representation of a PCES in ⟨R+,≥,+⟩ requires that the represented
PCES be incommensurable, as established by the next result.

Theorem 3.4. Let ⟨A,≿, ◦⟩ be a positive, closed, extensive structure. If

⟨A,≿, ◦⟩ is isomorphically representable in ⟨R+,≥,+⟩, then ⟨A,≿, ◦⟩ is in-

commensurable.
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Theorem 2.1 establishes that any PCES is homomorphically representable in

⟨R+,≥,+⟩, but this is not sufficient to determine whether the PCES is com-

mensurable or incommensurable. If we demand a PCES to be isomorphically

representable in ⟨R+,≥,+⟩, then it follows from Theorem 3.4 that we thereby

indirectly demand the PCES to be incommensurable. The following corollary

emphasizes this point.

Corollary 3.4.1. No commensurable PCES is isomorphically representable

in ⟨R+,≥,+⟩.

Similarly, if we demand a PCES to be isomorphically representable in ⟨Q+,≥
,+⟩, then we indirectly demand that it is commensurable:

Theorem 3.5. Let ⟨A,≿, ◦⟩ be a positive, closed, extensive structure. If

⟨A,≿, ◦⟩ is isomorphically representable in ⟨Q+,≥,+⟩, then ⟨A,≿, ◦⟩ is com-

mensurable.

Corollary 3.5.1. No incommensurable PCES is isomorphically representable

in ⟨Q+,≥,+⟩.

Taken together, the results presented in this section establish a sense in

which the the use of the reals in representations of PCES is conventional.

There exist PCES which are homomorphically representable just as well in

the rationals as they are in the reals. Absent additional argumentation, we

don’t see any reason to prefer the representation in the reals to representation

in the rationals. Defaulting to a representation based on one or the other of

the number systems is to make a conventional choice. This conventionality

combines with the move to isomorphic representation in a perhaps unex-

pected manner. If we naively demand that our conventional homomorphic

representation in the reals can be extended to an isomorphic representation,

we indirectly demand that the PCES exhibits incommensurability. If instead

we conventionally start from the homomorphic representation in the ratio-

nals, and then demand isomorphism, we indirectly demand that the PCES

exhibits commensurability. But conventional representational choices aren’t

the sort of thing that can tell us anything at all about the nature of the

structure being represented, and so we think that the motivations for making

the switch to isomorphic representation require further elaboration.

4. Conclusion. The results of the last section are not intended to under-

mine metaphysical readings of the representational theory of measurement.

Rather, they provide reason to revisit what the commitments of the realist

about quantities are supposed to be. In recent discussions, realism has be-

come bound up with the demand for isomorphic representation. We propose
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that realism about quantities need not be coupled with this demand. One can

be a realist by taking a particular property space to capture the real structure

of a physical quantity. That a quantity understood in this way can be repre-

sented in some number system isomorphically is an additional commitment

that goes beyond realism.

5. Appendix.

5.1. Proofs of theorems

Proof of Theorem 3.1. An example of a positive closed extensive structure

that is not homomorphically representable in ⟨Q+,≥,+⟩ is as follows: let

A = R+, let ≿ be ≥ (the usual non-strict order on R+), and let ◦ be +

(the usual addition operation on R+).
5 Showing that ⟨R+,≥,+⟩ satisfies

Definition 2.2 is straightforward. Suppose for contradiction that there exists

a function ϕ : A → Q+ satisfying the two conditions given in Definition 2.1.

Since A = R+, A is uncountable and, since Q+ is countable, we have that

|A| > |Q+|. It follows that ϕ : A → Q+ is not injective, thus there exist

a, b ∈ A such that a ̸= b and ϕ(a) = ϕ(b). Since ≥ is a total order on R+, we

have that for every x, y ∈ R+, x ̸= y iff either x > y or y > x (where > is

the strict total order associated with ≥). There thus exist a, b ∈ A such that

either a ≻ b or b ≻ a and ϕ(a) = ϕ(b). Suppose without loss of generality

that a ≻ b. From ϕ(a) = ϕ(b) we have ϕ(b) ≥ ϕ(a) and thus, by Condition 1

from Definition 2.1, b ≿ a, a contradiction.

Proof of Theorem 3.2. Suppose that A is a non-empty set, ≿ is a binary

relation on A, and that ◦ is a closed binary operation on A. Suppose also

that ⟨A,≿, ◦⟩ is homomorphically representable in ⟨Q+,≥,+⟩. Then there

exists a function ϕ : A→ Q+ satisfying the two conditions given in Definition

2.1. Define the function ψ : A → R+ such that ψ(a) = ϕ(a) for every

a ∈ A. Since ⟨Q+,≥,+⟩ is a substructure of ⟨R+,≥,+⟩, ψ also satisfies the

two conditions given in Definition 2.1.

Proof of Theorem 3.3. Let ⟨A,≿, ◦⟩ be a positive closed extensive structure.

We first show that 1 implies 2. Suppose that ⟨A,≿, ◦⟩ is commensurable. Let

a, b ∈ A, and let m,n be positive integers. By Commensurability, there exists

5Thanks to Neil Dewar for discussion of this counterexample.
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c ∈ A and positive integers m,n such that a ∼ mc and b ∼ nc. It follows that

na ∼ n(mc) by Lemma 5.5

∼ (nm)c by Lemma 5.2

= (mn)c

∼ m(nc) by Lemma 5.2

∼ mb by Lemma 5.5

Thus for all ordered pairs (a, b) ∈ A×A there exist positive integers n,m such

that na = mb. For each ordered pair (a, b) ∈ A × A, let F(a,b) be the set of

all fractions n
m

such that na = mb. For any given pair (a, b), if n
m
, n′

m′ ∈ F(a,b)

we have that

na ∼ mb n′a ∼ m′b

n′(na) ∼ n′(mb) n(m′b) ∼ n(n′a) by Lemma 5.5

(n′n)a ∼ (n′m)b (nm′)b ∼ (nn′)a by Lemma 5.2

= (mn′)b = (n′n)a

Thus (n′n)a ∼ (mn′)b and (nm′)b ∼ (n′n)a, so that (mn′)b ∼ (nm′)b. By

Lemma 5.7a), it follows that mn′ = nm′. Therefore, for any (a, b) ∈ A × A,

all fractions in F(a,b) are equivalent, so that F(a,b) corresponds to a unique

positive rational number representing the ratio of a to b, denoted [a : b]. To

construct the function ϕ, choose an arbitrary e ∈ A. Then, for every a ∈ A,

define the function ϕ as:

ϕ(a) = [a : e]

We now show that ϕ satisfies both conditions stated in Definition 2.1.

Condition 1: a ≿ b iff ϕ(a) ≥ ϕ(b). Let a, b ∈ A with a ≿ b, and choose

n,m, n′,m′ ∈ Z>0 so that na ∼ me and n′b ∼ m′e. Then ϕ(a) = m
n

and

ϕ(b) = m′

n′ , and we have that

na ∼ me n′b ∼ m′e

m′(na) ∼ m′(me) m(n′b) ∼ m(m′e) by Lemmas 5.5

(m′n)a ∼ (m′m)e (mn′)b ∼ (mm′)e by Lemma 5.2

Since (mm′)e = (m′m)e, it follows that

(m′n)a ∼ (mn′)b
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Now, since a ≿ b, we have that

(mn′)a ≿ (mn′)b by Lemma 5.5 and 5.6

(mn′)a ≿ (m′n)a by (5.1)

mn′ ≥ m′n by Lemma 5.7

m

n
≥ m′

n′

ϕ(a) ≥ ϕ(b)

Conversely, suppose that ϕ(a) ≥ ϕ(b). Then n
m

≥ n′

m′ where n,m, n
′,m′ ∈ Z>0

such that na ∼ me and n′b ∼ m′e. Thus m′(na) ∼ (mn′)b, and the above

inferences can be run in reverse, to arrive at a ≿ b.

Condition 2: ϕ(a ◦ b) = ϕ(a) + ϕ(b). Let na

ma
∈ F(a,e) and

nb

mb
∈ F(b,e). Then

nae ∼ maa and nbe ∼ mbb. Define m := mamb, n := namb, n
′ := nbma.

Then n
m

= na

ma
= [a : e] = ϕ(a) and n′

m
= nb

mb
= [b : e] = ϕ(b), so that

ne ∼ ma and n′e ∼ mb. Then by Lemma 5.3, ne ◦ n′e ∼ ma ◦mb, and by

Lemmas 5.1 and 5.4, (n + n′)e ∼ m(a ◦ b). Thus n+n′

m
∈ F(a◦b,e). It follows

that ϕ(a ◦ b) = n+n′

m
= ϕ(a) + ϕ(b).

Next, we show that 2 implies 1. Suppose that ⟨A,≿, ◦⟩ is homomorphically

representable in ⟨Q+,≥,+⟩. Let ϕ be a homomorphism of ⟨A,≿, ◦⟩ into

⟨Q+,≥,+⟩. Let a, b ∈ A. We will show that there exists c ∈ A such that

a ∼ nc and b ∼ mc. If a ∼ b then n = m = 1 and c = a (or c = b), so suppose

WLOG that a ≻ b. By Archimedean, the set of integers n such that a ≻ nb

is finite. Let N(a, b) be the greatest integer such that a ≻ N(a, b)b. Then

by Solvability, there exists c0 ∈ A such that a ∼ N(a, b)b ◦ c0, and b ≿ c0. If

c0 ∼ b, then a ∼ [N(a, b) + 1]b and thus n = N(a, b) + 1,m = 1, c = b, in

which case we are done. So suppose that b ≻ c0. Then there exists c1 ∈ A

such that b ∼ N(b, c0)c0 ◦ c1. If c1 ∼ c0, then b ∼ [N(b, c0) + 1]c0 and thus

n = N(a, b)[N(b, c0)+ 1],m = N(b, c0)+ 1, c = c0, in which case we are done.

Supposing that c0 ≻ c1, we may continue in this fashion:

a ∼ N(a, b)b ◦ c0
b ∼ N(b, c0)c0 ◦ c1
c0 ∼ N(c0, c1)c1 ◦ c2
...

cn ∼ N(cn, cn+1)cn+1 ◦ cn+2
...
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This process can be iterated for cn as long as cn+1 ≻ cn+2. Once we arrive at

a step for which cn+1 ∼ cn+2, we will have that cn ∼ [N(cn, cn+1)+1]cn+1 and

thus that a ∼ N(a, b)b ◦N(c0, c1)c1 ◦N(c2, c3)c3 ◦ · · · ◦ [N(cn, cn+1) + 1]cn+1.

It follows that a ∼ [N(cn+1, a)+1]cn+1 and that b ∼ [N(cn+1, b)+1]cn+1. We

now show that there exists n′ such that cn+1 ∼ cn+2. First, we have that

ϕ(a) = N(a, b)ϕ(b) + ϕ(c0)

ϕ(b) = N(b, c0)ϕ(c0) + ϕ(c1)

...

ϕ(cn) = N(cn, cn+1)ϕ(cn+1) + ϕ(cn+2)

...

(1)

It follows that

ϕ(a)

ϕ(b)
= N(a, b) +

ϕ(c0)

ϕ(b)

ϕ(b)

ϕ(c0)
= N(b, c0) +

ϕ(c1)

ϕ(c0)
...

ϕ(cn)

ϕ(cn+1)
= N(cn, cn+1) +

ϕ(cn+2)

ϕ(cn+1)

Notice that the second term of the RHS of each equation in this series is

the reciprocal of the LHS of the subsequent equation. Thus, ϕ(a)
ϕ(b)

may be

represented by the following continued fraction:

N(a, b) +
1

N(b, c0) +
1

N(c0, c1) +
1

N(c1, c2) + · · ·

A continued fraction is infinite iff its numerical value is irrational, and ϕ(a)
ϕ(b)

∈
Q+ since ϕ(a), ϕ(b) ∈ Q+. It follows that the continued fraction above is

finite, and thus that the series of equations (1) terminates at ϕ(cn′), for some

integer n′. Thus, the series of expressions terminates with cn′ , which implies

that cn′+1 ∼ cn′+2.

Proof of Theorem 3.4. Let ⟨A,≿, ◦⟩ be a positive, closed, extensive structure

and let ϕ : A → R+ be an isomorphism from ⟨A,≿, ◦⟩ to ⟨R+,≥,+⟩. Since

ϕ is bijective, ∀x ∈ R+∃!a ∈ A : ϕ(a) = x. Let a, e ∈ A be such that
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ϕ(a) =
√
2 and ϕ(e) = 1. Suppose for the sake of contradiction that there

exists c ∈ A and m,n ∈ Z+ such that a ∼ mc and e ∼ nc. Then na ∼ me, so

that ϕ(na) = ϕ(me) and thus ϕ(a) = m
n
ϕ(e) = (m

n
)(1) = m

n
. It follows that√

2 = m
n
where m,n ∈ Z+, a contradiction.

Proof of Theorem 3.5. Let ⟨A,≿, ◦⟩ be a positive, closed, extensive structure

and let ϕ : A→ Q+ be an isomorphism from ⟨A,≿, ◦⟩ to ⟨Q+,≥,+⟩. For all
a ∈ A, ϕ(a) = n

m
for some n,m ∈ Z+. Let a, b be arbitrary elements of A. We

will show that there exist c ∈ A and m,n ∈ Z+ such that a ∼ mc and b ∼ nc.

Let na,ma, nb,mb ∈ Z+ such that ϕ(a) = na

ma
and ϕ(b) = nb

mb
. Then ϕ(a) +

ϕ(b) = mbna+manb

mamb
= ϕ(a ◦ b). Since ϕ is bijective, ∀x ∈ Q+∃!a ∈ A : ϕ(a) = x.

Let c ∈ A be such that ϕ(c) = 1
mamb

. Then ϕ(a) = nambϕ(c) and ϕ(b) =

nbmaϕ(c). Then by Lemma 5.8, ϕ(a) = ϕ(nambc) and ϕ(b) = ϕ(nbmac).

Since ϕ preserves ≿ in ≥, it follows that a ∼ nambc and b ∼ nbmac.

5.2. Lemmas Let a, b, c, d ∈ A, and let m,n be positive integers.

Lemma 5.1. ma ◦ na ∼ (m+ n)a

Lemma 5.2. n(ma) ∼ (nm)a

Lemma 5.3. If a ∼ b and c ∼ d, then a ◦ c ∼ b ◦ d.

Lemma 5.4. m(a ◦ b) ∼ ma ◦mb

Lemma 5.5. For any positive integer n, a ∼ b iff na ∼ nb.

Lemma 5.6. If a ≻ b and c ≻ d then a ◦ c ≻ b ◦ d.

Lemma 5.7. Suppose that a ∼ b. Then,

a) na ∼ mb iff n = m.

b) na ≻ mb iff n > m.

Lemma 5.8. Let ϕ : A→ B be a homomorphism of ⟨A,≿, ◦⟩ into ⟨B,≥,+⟩,
where B = R+ or B = Q+. Then for all a ∈ A and all n ∈ Z+, nϕ(a) =

ϕ(na).
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