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Abstract
A widespread view among physicists is that Bell’s theorem rests on an

implicit assumption of “classicality,” in addition to locality. According to
this understanding, the violation of Bell’s inequalities poses no challenge
to locality, but simply reinforces the fact that quantum mechanics is not
classical. The paper provides a critical analysis of this view. First we
characterize the notion of classicality in probabilistic terms. We argue
that classicality thus construed is not a mark of the validity of classical
physics, nor of classical probability theory, contrary to what many believe.
At the same time, we show that the probabilistic notion of classicality is
not an additional premise of Bell’s theorem, but a mathematical corol-
lary of locality in conjunction with the standard auxiliary assumptions
of Bell. Accordingly, any theory that claims to get around the deriva-
tion of Bell’s inequalities by giving up classicality, in fact has to give up
one of those standard assumptions. As an illustration of this, we look
at two recent interpretations of quantum mechanics, Reinhard Werner’s
operational quantum mechanics and Robert Griffiths’ consistent histo-
ries approach, that are claimed to be local and non-classical, and identify
which of the standard assumptions of Bell’s theorem each of them is forced
to give up. We claim that while in operational quantum mechanics the
Common Cause Principle is violated, the consistent histories approach is
conspiratorial. Finally, we relate these two options to the idea of realism,
a notion that is also often identified as an implicit assumption of Bell’s
theorem.

Keywords: classicality, Bell’s theorem, Common Cause Principle, local-
ity, conditional probability, interpretations of quantum mechanics
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1 Introduction
Many physicists are unimpressed by Bell’s theorem. A widespread view is that
Bell’s reasoning rests upon an implicit assumption of “classicality” that directly
go against the fundamental principles of quantum mechanics (QM). According
to such an understanding, the violation of Bell’s inequalities poses no challenge
to our causal picture of the world (locality, in particular), but simply reinforces
the fact that QM is not classical. One proponent of such a view is Reinhard
Werner, who concisely puts it like this (Werner 2014a, p. 4):

Bell showed (maybe against his own intentions ...) that classicality
and locality together lead to false empirical conclusions. Of course,
all the talk about the non-locality of quantum mechanics really says
[is] that any classical extension violates locality ...

In line with this picture, physicist have developed various interpretations of
quantum theory that are claimed to be local and non-classical. Among recent
variants are Werner’s operational quantum mechanics (Werner 2014a,b) and
Robert Griffiths’s consistent histories approach (Griffiths 2020).

Others object to this view. Criticizing Werner’s position about the EPR
argument and Bell’s theorem, Tim Maudlin (2014b, pp. 1-2) writes:

Werner thinks that Bell and Einstein and I have all tacitly made
an assumption of which we are unaware, an assumption he labels
C for ‘classicality’. ... Werner concedes that Bell proved that any
classical theory that violates his inequalities must be non-local. But
deny classicality and the arguments no longer go through. ... The
condition C is easily stated: it is that the state space of a theory
forms a simplex. Good. The space of density matrices in quantum
theory does not form a simplex, so if one takes the possible physical
states of a system to be given by the density matrices, then one’s
theory is not classical in this sense. That much is clear. But what
is not at all clear is where the assumption that the state space is a
simplex is presupposed in either Einstein’s or Bell’s reasoning.

It is interesting to compare this debate with an idea developed in the ’80s by
scholars like Itamar Pitowsky, Arthur Fine, and others. On their interpretation,
Bell’s inequalities have nothing to do with locality and causality. The violation
of the inequalities, on their account, is an indication that the classical laws of
probability are no longer applicable in the quantum domain. That is, there is a
sense of classicality that directly entails Bell’s inequalities, without any further
assumption about locality. In Pitowsky’s (1989, p. 8) words:

The set of axioms for classical probability entail that frequencies
should obey an a-priori set of constraints [Bell-type inequalities] that
are often violated by quantum frequencies. The violation itself has
a-priori nothing to do with the principle of locality for it often occurs
in cases where spatio-temporal aspects play no role whatever.

On Fine’s (1982, p. 294) reading:

... hidden variables and the Bell inequalities are all about ... im-
posing requirements to make well defined precisely those probability
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distributions for noncommuting observables whose rejection is the
very essence of quantum mechanics.

Notice that Fine says not only that Bell’s theorem is about probability rather
than locality and causality, but also that Bell’s inequalities follow from a con-
dition (classicality) that contradicts QM, suggesting that the violation of the
inequalities should not be surprising but should actually be expected in the first
place.

In sum, the debate over the role of classicality in Bell’s theorem leaves us
with a confusing disagreement of the following positions:

• Bell’s argument presupposes classicality in addition to locality (Werner)

• Classicality is nowhere referred to in Bell’s argument; the only substantial
assumption is locality (Maudlin)

• Bell’s inequalities follow only from classicality; no further locality assump-
tion is needed (Pitowsky and Fine)

This situation poses two straightforward questions: 1) Is there a common notion
of classicality shared by all parties? 2) If yes, what role exactly does classicality
thus construed play in Bell’s theorem? The aim of this paper is to clarify these
questions.

We will proceed as follows. Section 2 answers question 1 positively: we
show that Werner’s notion of classicality (condition C above) is equivalent with
Pitowsky’s and Fine’s probabilistic conditions of the existence of a Kolmogoro-
vian representation of quantum probabilities and the existence of joint distribu-
tions, respectively. Then, with an unambiguous notion of classicality at hand,
Section 3 answers question 2: we demonstrate that classicality is not a presup-
position of Bell’s theorem but a consequence of the standard causal-statistical
assumptions. Next, in Section 4, we investigate how the approaches of Werner
and Griffiths can claim to get around Bell’s theorem. In light of what we will
have shown about classicality, it is clear that in getting around the derivation
of Bell’s inequalities each of the two approaches in question must violate one
of the standard causal-statistical assumptions of Bell’s theorem. We claim that
while in Werner’s operational quantum mechanics the Common Cause Principle
is violated, in the consistent histories approach of Griffiths, the formulation of
quantum theory turns out to be conspiratorial. Finally, in Section 5, we relate
these two options to the idea of realism, a notion that is also often identified as
an implicit assumption of Bell’s theorem. The Appendix contains the proofs of
the two central mathematical propositions that we formulate in the main text.

2 Classicality as a Probabilistic Notion
Recall Pitowsky’s (1989) formalism. Let n be a natural number and S be a
subset of {(i, j)|i < j; i, j = 1, 2, ..., n}. Suppose we are given n + |S| numbers
(|S| denotes the number of elements of S):

pi i = 1, 2, ..., n
pij (i, j) ∈ S

(1)
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with 0 ≤ pi, pij ≤ 1. We arrange these numbers in a so-called a correlation
vector

−→p = (p1, p2, ..., pn, ..., pij , ...) ∈ Rn+|S| (2)

where the index pairs (i, j) ∈ S are ordered lexicographically. −→p will be thought
of as an array of experimentally ascertained probabilities of n outcomes of some
measurements performed on a given system, and some of the correlations of
these outcomes (the probabilities of their conjunctions). −→p can be seen as a
(partial) description of the system’s “state,” characterizing how the system is
disposed to react to certain measurements performed on it.

As an example consider a 2 × 2-type EPR–Bohm (EPRB) scenario. In
each wing of a 2 × 2 EPRB experiment one selects from two given measure-
ment settings (directions). Label by a1, a2 the settings on the left, by b3, b4
the settings on the right. Let A1, A2, B3, B4 denote the corresponding spin
up outcomes. The probabilities of spin outcomes yielded by the experiment
and predicted by QM can be arranged in a correlation vector of type n = 4,
SEPR = {(1, 3), (1, 4), (2, 3), (2, 4)}:

−→p EPR = (p1, p2, p3, p4, p13, p14, p23, p24) ∈ R4+4 (3)

with1

pi = p (Ai|ai) i = 1, 2
pj = p (Bj |bj) j = 3, 4
pij = p (Ai ∩Bj |ai ∩ bj) (i, j) ∈ SEPR

(5)

−→p EPR provides a (partial) description of the spin state of the two-particle sys-
tem (or an ensemble of such systems) prepared and measured in an EPRB
experiment.

We now recall and precisely formulate notions of when such a description—
and hence the system in question and its state—is regarded as “classical.”

The first notion (Pitowsky 1989) requires that a correlation vector be com-
posed of numbers that satisfy Kolmogorov’s axioms, so they be classical proba-
bilities.

Definition 1. Correlation vector −→p admits a classical probability space
representation iff there exists a classical probability space (X,A, µ) and
E1, E2, ..., En ∈ A such that

pi = µ (Ei) i = 1, 2, ..., n
pij = µ (Ei ∩ Ej) (i, j) ∈ S

(6)

The second notion (Fine 1982) requires that the probability values in a correla-
tion vector arise from a joint distribution as marginal probabilities.

1Note that the non-signaling character of the EPRB scenario means that these probabilities
obey

p (Ai|ai) = p (Ai|ai ∩ bj)
p (Bj |bj) = p (Bj |ai ∩ bj)

(i, j) ∈ SEPR

(4)
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Definition 2. Correlation vector −→p is extractable from a joint distribution iff
there exist 2n numbers2 pα1...αn

, α1, ..., αn ∈ {+,−} such that

0 ≤ pα1...αn
≤ 1∑

α1,...,αn∈{+,−}
pα1...αn

= 1 (7)

and
pi =

∑
α1,...,αn∈{+,−}

αi=+

pα1...αn
i = 1, 2, ..., n

pij =
∑

α1,...,αn∈{+,−}
αi,αj=+

pα1...αn
(i, j) ∈ S

(8)

Consider the set Ω of all possible correlation vectors that can be experimentally
realized—with fixed type of measurements, but varying ways in which the sys-
tem is prepared before the measurements are carried out. One assumes that Ω is
a convex set in Rn+|S|, so that the statistical mixture of realizable probabilities
is also realizable. Ω can be associated with the system’s “state space.” The
third notion of classicality (Barrett 2007; Werner 2014) characterizes the state
space of a system as a convex set: it requires that the state space of a classical
system be a simplex, that is, every state has a unique decomposition as a convex
combination of extreme points of state space. Since correlation vectors don’t
necessarily provide a complete description of the system’s “state” in the sense
of specifying the probabilities of atomic events, here we give a slightly modified
formulation of this idea, one where Ω itself is not required to be a simplex, but
be obtainable as a projection (that is, partial description) of one.

Definition 3. Let Ω ⊂ Rn+|S| be a set of correlation vectors. Ω is projectable
from a probability simplex iff there exists a probability simplex ∆d ⊂ Rd with d
number of vertices for some positive integer d, a linear map φ : Rd → Rn+|S|,
and sets of indices Ri ⊆ {1, 2, ..., d} , i = 1, 2, ..., n such that

Ω ⊆ φ (∆d) (9)

and for all −→p ∈ Ω,π ∈ ∆d, if φ (π) = −→p then

pi =
∑

r∈Ri

πr i = 1, 2, ..., n

pij =
∑

r∈Ri∩Rj

πr (i, j) ∈ S
(10)

where πr is the rth component of π.3

In the foundations of QM literature the above notions of classicality are
often used interchangeably. For special, EPRB-type correlation vectors, the
equivalence of the first two notions is an immediate consequence of results by
Fine (1982) and Pitowsky (1989). However, all three notions are in fact equiv-
alent, for generic correlation vectors (for proof see Appendix):

2Numbers pα1...αn encode the probabilities of the 2n number of atomic events constructed
from the n events in question.

3Numbers πr (r = 1, 2, ..., d) are probabilities of some atomic events. Index set Ri corre-
sponds to the set of those atomic events where the ith event of the n events we talk about
occurs.
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Proposition 4. Consider a set of correlation vectors Ω ⊂ Rn+|S|. The follow-
ing conditions are equivalent:

(i) For all −→p ∈ Ω, −→p admits a classical probability space representation.
(ii) For all −→p ∈ Ω, −→p is extractable from a joint distribution.
(iii) Ω is projectable from a probability simplex.

The consequence of Proposition 4 is that classicality as a probabilistic notion
has an unambiguous meaning. Many hold that classicality thus construed is
an implicit assumption of Bell’s theorem, and giving up this assumption then
provides a way to get around the violation of Bell’s inequalities—a particularly
natural way, it is held, given that classicality is already in contradiction with
the fundamental principles of QM. In the next section we will argue that this
picture is mistaken: in fact, classicality is not a presupposition of Bell’s theorem,
in addition to the standard causal-statistical assumptions, rather it is a corollary
of those.

3 Classicality and Bell’s Theorem
Bell’s theorem can be and has been formulated in various different ways. Here
we consider a commonly accepted derivation that is more general than Bell’s
original 1964 reasoning in that it doesn’t presuppose perfect correlations and is
based on the notion of a common cause.

The probabilities measured in an EPRB experiment and encoded in corre-
lation vector −→p EPR ((3)–(5)) in general display statistical correlations between
outcomes in the two wings. In general, we have

p (Ai ∩Bj |ai ∩ bj) ̸= p (Ai|ai ∩ bj) p (Bj |ai ∩ bj) (i, j) ∈ SEPR (11)

Since the two wings are space-like separated, the only way these correlations
can be explained is by assuming the existence of some correlated properties,
commonly described by a “hidden variable,” that the particles carry with them-
selves right from their emission and that are responsible for the outcomes (even
if in a probabilistic sense).4 As many have rightly emphasized (e.g. Bell 2004,
p. 143–144; Norsen 2007, pp. 318–319; Maudlin 2014a, p. 5), these pre-existing
properties are not presupposed but inferred in Bell’s reasoning. Given the ex-
perimentally verified statistics, the fundamental presuppositions from which the
existence of these properties derives are in most general terms captured by the
following two principles.

1) Locality: There can exist no direct causal connection between space-like
separated events.

4As noted by Fine (1989), one could also simply take it as a brute fact that the laws of
physics enforce certain correlations on measurement outcomes in EPRB-type systems, inde-
pendently of whether the measurements are space-like separated or not. Note that if the laws
enforce correlations between space-like separated events in this way, then the laws are, in
an important sense, non-local in themselves: what the laws dictate for the future behavior
of system B is not affected by just what has happened in the recent causal past of B, but
instead may depend on what is happening in distant, space-like separated regions. A second
thing to note is that this brute law-explanation claim—if the non-locality that it entails is not
interpreted in a causal way—is in contradiction with the Common Cause Principle which we
introduce below.
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2) Common Cause Principle: Robust probabilistic correlations do not occur
in nature as a matter of pure accident, or mere hap. Any such correlation
must be brought about either by direct or by common causal connection.5

1–2 entail the existence of a common cause—which we may think of as the
physical event that determines the physical properties of the particles after
emission—in terms of which the EPRB correlations (11) can be explained.6
What it means to explain these correlations is characterized by a second pair of
assumptions.

Let Ck(k ∈ K) denote a partition of events, describing the common cause.7

3) Factorization:

p (Ai ∩Bj |ai ∩ bj ∩ Ck) = p (Ai|ai ∩ Ck) p (Bj |bj ∩ Ck)
(i, j) ∈ SEPR, k ∈ K

(12)

4) No-conspiracy:

p (Ck|ai ∩ bj) = p (Ck)
(i, j) ∈ SEPR, k ∈ K

(13)

Both factorization and no-conspiracy are statistical independence conditions.
Factorization expresses the requirement that conditionalizing on the common
cause Ck leaves no residual correlation between Ai and Bj , given the chosen
measurement angles on their respective sides. No-conspiracy expresses the as-
sumption that the choice about which angles to measure, which is something
that can be done at the last moment and by any selection-procedure one likes,
can not influence, nor be influenced by, the common cause, and hence the two
must be uncorrelated.

It is worth noting that the four conditions are in fact inextricably inter-
twined. Both factorization and no-conspiracy incorporate the Common Cause
Principle in a trivial sense: if there could be robust correlations in the world
occurring as a matter of pure accident, then requiring these independence con-
ditions would have no ground, for any such accidental correlation could spoil
these independencies. Further, factorization is often formulated as a joint result
of two conditions: 1) outcome independence

p (Ai ∩Bj |ai ∩ bj ∩ Ck) = p (Ai|ai ∩ bj ∩ Ck) p (Bj |ai ∩ bj ∩ Ck) (14)
5The first formulation of the argument from locality to pre-existing properties is that of

EPR of course. The EPR argument famously employs the Reality Criterion. As is argued by
Gömöri and Hofer-Szabó (2021), the Reality Criterion is just a special case of the Common
Cause Principle for perfect correlations.

6In Bell’s argument this is where the so-called “hidden variable” terms λ come in. At times
physicists such as Werner and Griffiths present this introduction of a factor accounting for
measurement results as an unacceptable move amounting to the presupposition of realism,
or “classical realism.” We feel it is better to keep the mathematical notion of classicality
(Werner 2014a, p. 3) separate from the more general idea that particles have properties that
play a role in explaining measurement outcomes and the correlations observable in them,
which Werner fails to do (as does Griffiths (2020, p. 15)). In Section 5 we briefly return to the
question of how realism in the latter sense is related to the assumptions of Bell’s argument.

7The notion of common cause we employ here is what Hofer-Szabó et al. (2013, Sec. 7)
terms a common cause system.
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which is a characterization of the common cause as a screener-off; and 2) pa-
rameter independence

p (Ai|ai ∩ bj ∩ Ck) = p (Ai|ai ∩ Ck) (15)
p (Bj |ai ∩ bj ∩ Ck) = p (Bj |bj ∩ Ck) (16)

which is taken to be required by locality. Finally, note that no-conspiracy, as a
statement about statistical independence, is also a compound condition: it not
only incorporates the idea of the autonomy of measurement choice (sometimes
referred to as no-conspiracy in a narrower sense), according to which the settings
of measurements can neither be directly influenced by the Ck-s, nor can there
be common causal connection between them. But it also incorporates the idea
of no retrocausation. This is because statistical independence (13) could also
break down in a way that, reversely, the measurement choices have an effect on
the Ck-s, and since the measurement choice can be made at the last moment
before the measurement, while the Ck-s, characterizing the common cause, are
localized at the emission of particles, this would involve retrocausal connection.

Conditions 1–4 above will be referred to as the standard causal-statistical
assumptions of Bell’s theorem. We do not claim that these conditions cover
every detail that the derivation of Bell’s inequalities rests upon8—though we
believe they condense the substantial assumptions—, nor are these conditions
independent or non-redundant, as we have just seen. None of this will be relevant
to our argument; the main ingredient of which is the mathematical fact that
given these four assumptions correlation vector −→p EPR must be classical. To
formulate and prove this we will use Pitowsky’s characterization of classicality
as is encapsulated in Definition 1. The following statement is a consequence of
results by Fine (1982) in conjunction with Proposition 4. In the Appendix we
give a more explicit proof of it based on Hofer-Szabó (2020).

Proposition 5. Suppose that there is a partition of events Ck(k ∈ K) for which
(12)–(13) hold. Then −→p EPR admits a classical probability space representation.

Conditions 1-2 plus the EPRB statistics imply the existence of a common
cause (hidden variable) assumed to be characterized by conditions 3-4. Con-
ditions 3-4 imply that −→p EPR must be classical. Thus, in sum, the standard
causal-statistical assumptions of Bell’s theorem imply that −→p EPR is a classical
correlation vector.

In light of this result, the following remarks about the conceptual terrain
are in order. Firstly, as Pitowsky (1989) and Fine (1982) proved, classicality
(the mathematical condition) alone implies Bell’s inequalities. Therefore it is
strictly speaking incorrect to say, as Werner (2014a) does, that classicality is an
additional premise of Bell’s theorem, on top of the standard causal-statistical as-
sumptions. Werner here seems to have in mind the introduction of the common
cause Ck (“a hidden state λ”), which he takes to either imply, or be equiva-
lent to, classicality. But as we have seen, the necessity of introducing Ck follows
from the standard causal-statistical assumptions alone, so it is not an additional
assumption.

8For example, the argument obviously employs the laws of classical logic. Some suggest
(e.g. Santos 1986; Weingartner 2009) that these too qualify as premises that might be
given up in light of the violations of Bell’s inequalities.
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Secondly, the Pitowsky–Fine derivation of Bell’s inequalities is often inter-
preted as a demonstration that Bell’s theorem has nothing to do with locality,
causality, etc., but is instead essentially about probability. We have two re-
marks on this view. The first one is simply logic: Since Bell’s inequalities can
be derived from two alternative sets of premises (the standard causal-statistical
assumptions on the one hand, and classicality on the other), the violation of the
inequalities implies that both sets of premises must contain a false one. That
is, both classicality and the standard causal-statistical assumptions have to be
violated in the world.

But this picture is still, on its own, potentially misleading. For while the
standard causal-statistical assumptions (locality, the Common Cause Principle,
no-conspiracy, etc.) are all robust physical/metaphysical principles which we
have strong reasons to assume, the mathematical condition of classicality in itself
is completely unreasonable and unmotivated. This is because the components
of correlation vector −→p EPR, (5), are conditional probabilities:

−→p EPR



p1 = p (A1|a1)
p2 = p (A2|a2)
p3 = p (B3|b3)
p4 = p (B4|b4)
p13 = p (A1 ∩B3|a1 ∩ b3)
p14 = p (A1 ∩B4|a1 ∩ b4)
p23 = p (A2 ∩B3|a2 ∩ b3)
p24 = p (A2 ∩B4|a2 ∩ b4)

(17)

Values of conditional probabilities pertaining to different conditions do not form
a probability measure in general, and so it makes no sense in general to require
that these values obey Kolmogorov’s axioms, that is, that they be representable
in a classical probability space in accord with Definition 1.9

The only way classicality is motivated in EPRB is that, as stated by Propo-
sition 5, it is a mathematical corollary of the standard causal-statistical as-
sumptions of Bell’s theorem. So what the Pitowsky–Fine derivation of Bell’s
inequalities provides is not a new understanding of Bell’s theorem, but yet an-
other way of deriving Bell’s inequalities from the standard assumptions:

standard causal-statistical assumptions

⇓

classicality

⇓

Bell’s inequalities10

Therefore, the mathematical condition of classicality makes sense in cases
where the standard causal-statistical assumptions apply: where we have space-
like separated subsystems that are assumed to behave locally, etc. Importantly,

9This observation was first made by Szabó (1995).
10The second arrow here could be a biconditional (⇕), as proved by Pitowsky (1989) and

Fine (1982), but it is the downward direction that matters for our discussion.
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when one or more of those assumptions does not hold, classicality (again, the
mathematical condition) may fail to hold, even in classical physical systems.

One way that this can happen is if the system in question is composed of
time-like separated subsystems that are allowed to interact. As an example,
imagine Laurel and Hardy on a teeter-totter. Assume that Hardy weights twice
as much as Laurel. We want to see if Laurel and Hardy go up or down, under
the following conditions:

a1 : Laurel sits 1.5 meter away from the center of the teeter-totter
a2 : Laurel sits 1 meter away from the center
b3 : Hardy sits 1.5 meter away from the center
b4 : Hardy sits 0.5 meter away from the center

Introduce the following outcome events:

A1 : Laurel goes up when he sits 1.5 meter away from the center
A2 : Laurel goes up when he sits 1 meter away from the center
B3 : Hardy goes down when he sits 1.5 meter away from the center
B4 : Hardy goes down when he sits 0.5 meter away from the center

Suppose that the teeter-totter experiment is performed repeatedly. Elementary
physics entails the following probabilities:11

p13 = p (A1 ∩B3|a1 ∩ b3) = 1
p14 = p (A1 ∩B4|a1 ∩ b4) = 0
p23 = p (A2 ∩B3|a2 ∩ b3) = 1
p24 = p (A2 ∩B4|a2 ∩ b4) = 1

2

(18)

Further, assuming that both Laurel and Hardy sit far from the center and close
to the center half of the times, independently of each other, we have

p1 = p (A1|a1) = 1
2

p2 = p (A2|a2) = 3
4

p3 = p (B3|b3) = 1
p4 = p (B4|b4) = 1

4

(19)

Now, correlation vector −→p LH = (p1, p2, p3, p4, p13, p14, p23, p24) is not classical
since, for example, p1 < p13. There certainly cannot exist a classical probability
space with events E1 and E3 in it such that

p1 = µ (E1)
p13 = µ (E1 ∩ E3) (20)

as that would entail µ (E1) < µ (E1 ∩ E3), in contradiction with Kolmogorov’s
laws of probability. But this fact by no means implies the break down of classical
probability theory, let alone classical physics, in any sense. It is simply that the
values of classical conditional probabilities pertaining to different conditions—
p1 = p (A1|a1) and p13 = p (A1 ∩B3|a1 ∩ b3)—do not form a probability mea-
sure.

11When Hardy sits twice as close to the center as Laurel, they in principle balance. In this
case assume small perturbations to determine how they move, so that half of the times Laurel,
half of the times Hardy ends up going up. That’s why we have 1/2 in the last row of (18).
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At the same time, this example witnesses an obvious violation of the standard
assumptions of Bell’s theorem.12 The outcomes are correlated, for we have:

1
2 = p (A2 ∩B4|a2 ∩ b4) ̸= p (A2|a2 ∩ b4) p (B4|a2 ∩ b4) = 1

2 · 1
2 (21)

The obvious explanation of this correlation is the direct physical influence be-
tween the two ends of the teeter-totter, which ensures that when one end goes
down, the other end goes up. Since there is direct causal connection, the Com-
mon Cause Principle no longer demands the existence of a common cause satis-
fying factorization and no-conspiracy. Indeed, there is just no such an event in
the example. For instance, B4 as a potential direct cause of A2 does screen off
correlation (21), meaning that partition {Ck}k=1,2 = {B4,¬B4} satisfies out-
come independence (14), as well as factorization (12). But B4 fails to satisfy
no-conspiracy (13), for the obvious reason that B4 can only occur when the
corresponding “measurement” b4 is performed, so there is strong correlation be-
tween B4 and b4. Again, the fact that there is no common cause Ck satisfying
the standard Bell assumptions comes as no surprise since, unlike in the EPRB
scenario, events on the two sides of the teeter-totter can, and in fact do, causally
influence each other, with no contradiction to locality.

With these remarks in mind, it is worth mentioning a strand of approaches
to get around Bell’s theorem. The experimental violation of Bell’s inequalities in
conjunction with the Pitowsky–Fine derivation of the inequalities implies that
−→p EPR does not admit a classical probability space representation. A reaction
shared by many scholars is that the way to evade this problem is generalizing the
notion of probability space, relaxing some of Kolmogorov’s axioms, so that under
the generalized notion of probability space −→p EPR does admit a probability space
representation. There are many proposals in this direction, for an overview see
Feintzeig and Fletcher (2017). In light of what we said about classicality, here we
briefly mention two possible concerns with these approaches. First of all, it must
be emphasized that there is a clear sense in which the probability values in −→p EPR
can be represented in a classical probability space: not as absolute probabilities
of events, as Definition 1 requires, but as conditional probabilities conditioned
on different conditioning events, in line with (17).13 Similarly in our example:
−→p LH is not a classical correlation vector, but no one would take this as evidence
of Kolmogorov’s probability rules being violated by the teeter-totter system.
If one wants to write down the numbers in −→p LH as values of probabilities in a
probability space, they will be conditional probabilities in a classical probability
space. Accordingly, to accommodate the Bell inequality violating correlation
vectors in a probability space it is not necessary to generalize the notion of
probability. Secondly, even if one did that, it must be clear that this move
doesn’t save locality. This is because classicality (in the sense of Definition 1),
as we have argued, is not among the premises of the standard derivation of Bell’s

12It is easy to verify that probabilities (18)–(19) violate Bell’s inequalities, more precisely,
the following Clauser–Horne inequality:

−1 ≤ p24 + p23 + p13 − p14 − p2 − p3 ≤ 0

13The thesis that quantum probabilities can always be interpreted as classical conditional
probabilities is called the Kolmogorovian Censorship Hypothesis by Szabó (1995). That fact
that this is indeed always possible mathematically, has been proved in various forms (Bana
and Durt 1997; Szabó 2001; Rédei 2010).
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inequalities—it is just not a condition that one could deny in order to evade the
derivation of the inequalities from locality, no-conspiracy, etc. (without also
having to deny one of these standard assumptions).14

Note that what we said about classicality is equally true for the existence
of non-contextual hidden variables: 1) Bell’s inequalities can be derived from
the existence of non-contextual hidden variables (Shimony 1984, pp. 30-31).
2) Many believe that this makes the derivation from the standard causal-
statistical assumptions irrelevant. 3) But the derivation from non-contextual
hidden variables does not invalidate the derivation from the standard causal-
statistical assumptions: the violation of Bell’s inequalities implies that both
non-contextual hidden variables and locality (or another one of the standard
causal-statistical assumptions) must go. 4) Furthermore, as with classicality,
the existence of non-contextual hidden variables in itself is not well-motivated.
Our teeter-totter system is again a good example, since it displays an obvious
violation of non-contextuality in the following sense. Let Ck now describe not
a common cause but the system’s “ontic state,” that is, for the teeter-totter
system, all the physical factors together, including the weights of Laurel and
Hardy and the small perturbations in play in the balance case (but excluding
conditions a1, a2, b3, b4), that go into determining which one of the two goes up
and down. Non-contextuality is the condition that the ontic state determines
the probability of the outcomes of each measurement independently of what
other measurements are simultaneously performed;15 which is, in our case, is
nothing but the condition of parameter independence (15)–(16). The violation
of this condition is due to the fact that, even when Ck is given,16 the outcome
on one side (whether Laurel/Hardy goes up or down) depends on the measure-
ment choice on the other side (where Hardy/Laurel sits, respectively). Again,
contextuality in this sense comes as no surprise since the two ends can and
do physically interact. 5) That said, the existence of non-contextual hidden
variables, just as classicality, does follow when we have space-like separated
subsystems that are assumed to behave locally, etc., that is, where the standard
causal-statistical assumptions apply. For in that case Ck in assumptions 3–4
will just be a non-contextual hidden variable. The most well-known derivation
of non-contextual hidden variables from locality, etc. is the EPR argument.

Indeed, the tight connection between classicality, non-contextual hidden vari-
ables, and the standard causal-statistical assumptions is especially transpar-

14Note that the function p(·) itself (but not p(·|X) for varying X!) is indeed assumed to obey
Kolmogorov’s axioms. That is, in the derivation of Bell’s inequalities we assume that there is
a classical probability space (X, A, p) where a1, a2, b3, b4, A1, A2, B3, B4 and Ck(k ∈ K) are
represented as events, and probability measure p, in terms of which we formulate conditions
(12)–(13), obeys Kolmogorov’s axioms. This is explicitly assumed in the proof of Proposition 5
(see Appendix). It must be emphasized however that the classicality of p(·) (but not of p(·|X)
for varying X!) is an analytic consequence of p being interpretable as relative frequency of
events occurring in the runs of an EPRB experiment; and without such an interpretation the
violation of Bell’s inequalities cannot be said to be empirically confirmed (cf. Szabó 2001,
Sec. 2.2).

15This notion of non-contextuality is what Hofer-Szabó (2022) calls simultaneous non-
contextuality.

16Note that in this simple example not only non-contextuality but also no-signaling (4) is
violated. One can give examples of more fined-tuned classical interacting systems where the
measurement statistics obey no-signaling, but the underlying ontic state fails to satisfy non-
contextuality (and Bell’s inequalities and classicality are also violated). For such an example
see e.g. Hofer-Szabó (2021), Sec. 4.
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ent in the deterministic case. Suppose we have parallel measurement direc-
tions in the two wings of EPRB, with perfect correlation between outcomes
of measurements in the same direction. Perfect correlation can only be ex-
plained by a deterministic common cause (Hofer-Szabó et al. 2013, p. 15,
Proposition 2.7). This fact, together with no-conspiracy (13), imply that
p (Ai|ai ∩ bj ∩ Ck) , p (Bj |ai ∩ bj ∩ Ck) ∈ {0, 1} , (i, j) ∈ SEPR. Parameter in-
dependence (15)–(16) further entails

p (Ai|ai ∩ Ck) , p (Bj |bj ∩ Ck) ∈ {0, 1} (i, j) ∈ SEPR (22)
Now introduce the following events:

CAi =
⋃

k∈K
p(Ai|ai∩Ck)=1

Ck

CBj
=

⋃
k∈K

p(Bj |bj ∩Ck)=1

Ck

(i, j) ∈ SEPR

(23)

In conjunction with (22), the standard causal-statistical assumptions imply (see
formula (32) in Appendix):

p (Ai|ai) = p (CAi)
p (Bj |bj) = p

(
CBj

)
p (Ai ∩Bj |ai ∩ bj) = p

(
CAi

∩ CBj

)
(i, j) ∈ SEPR

(24)

That is, the conditional probabilities of outcome events figuring in −→p EPR must
be equal with the absolute probabilities of the events that predetermine these
outcomes. This gives Proposition 5 a straightforward interpretation: since on
the right hand side we have absolute probabilities of events that are repre-
sentable in a classical probability space, the values of conditional probabilities
on the left hand side must also be so representable: −→p EPR must be classical. On
the other hand, what (24) says is that the measurement outcomes Ai, Bj simply
reveal the pre-existing properties CAi

, CBj
—which is exactly the idea behind

non-contextual hidden variables. It must be stressed that equalities (24), and
thus both classicality and the existence of non-contextual hidden variables, is
a consequence of the standard causal-statistical assumptions of Bell’s theorem,
including, importantly, the causal separation of the subsystems we consider.

All this implies that when the system in question is not composed of space-
like separated subsystems then we have no automatic reason to expect that
classicality, the existence of non-contextual hidden variables and Bell’s inequal-
ities will be satisfied in the first place. A quantum example of such a system
is precisely that of the spin-3/2 Neon atom, as discussed in Griffiths (2020):
Looking at expected values of spins along different axes, one can derive pre-
dicted values that violate a Bell inequality (specifically the CHSH inequality).
Griffiths (2020, p. 3) urges us, on the basis of this example, to view things in
this way (similar to Pitowsky and Fine quoted in the introduction):

Thus the violation of the CHSH inequality in this case has nothing
to do with nonlocality. Instead it has everything to do with the
fact that in quantum mechanics, unlike classical mechanics, physical
properties and variables are represented by noncommuting operators.
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Let us make a few remarks here. Firstly, one way to characterize the significance
of noncommuting operators is what Fine (1982) suggests in the passage quoted
in the introduction: according to the accepted view physical variables repre-
sented by noncommuting operators cannot be measured simultaneously and so
in general they need not, and in fact they do not, have a joint distribution, in
contradiction with what’s required by classicality in the sense of Definition 2.
Notice however that the failure of existence of joint distributions in that sense
is not specific to QM. Indeed, the same holds in our Laurel and Hardy example:
since all three definitions of classicality are equivalent, and classicality in the
sense of Definition 1 is violated in the Laurel and Hardy case, this means that
classicality in the sense of Definition 2 also fails to hold for this simple classical
physical system. Therefore, the absence of joint distributions that comes with
noncommuting operators in the formalism doesn’t seem to mark off quantum
physics from classical physics.

Secondly, there indeed is an intuition behind non-contextual hidden vari-
ables that might come from (simple cases in) classical physics. In the Neon
atom case, one might say “the value of its spin along any given direction ought
to be well-defined at all times; after all, spin might be roughly analogous to a
classical angular momentum vector, the projection of which along any direction
always has a well-defined value.” But the idea of non-contextual hidden variables
not only incorporates the assumption that there are real, well-defined proper-
ties existing at all times; but, crucially, it brings with it a specific, and rather
simplified, picture of how these properties are revealed in measurements: that
the outcome of a measurement only depends on the corresponding property at
present, irrespective of what other measurements, that is physical interactions,
take place. However, this latter picture of the measurement process is something
that is generally, perhaps even typically, not true in classical physics. The Laurel
and Hardy example is again a case in point. The physics of it incorporates real
properties that are well-defined at all times: the weights of Laurel and Hardy,
their distances from the center, the density distribution of the board, etc. All
these real properties altogether will determine the measurement outcomes, that
is which end will go up and down. But this determination is contextual: whether
Laurel goes up or down will depend not only on a property of Laurel but also on
where Hardy sits. Since non-contextual hidden variables do not exist in general
even for classical physical systems, it doesn’t seem terribly surprising, in itself,
that their existence is not provided for generic physical systems, including the
Neon atom.17

Finally, we agree with Griffiths that the violation of a Bell inequality doesn’t
necessarily have to do with non-locality, as exemplified by the Neon case. Indeed,
the same is true of the violation in the Laurel and Hardy example. While Laurel
and Hardy are somewhat spatially separated, that is inessential; what matters
is that the events A1, B3 etc. are (a) not space-like separated and indeed are (b)
causally connected. So the violation of a Bell inequality in general is neither
surprising nor relevant to whether there is locality in the world. By contrast,
when a Bell inequality has been derived for a setup like EPRB experiments,
with locality as a fundamental physical assumption among the premises, and
the inequality is found to be violated in actual experiments, this does bear on the

17To see how spin is understood as a contextual property in the Bohmian version of QM
see e.g. Daumer et al. (1996).
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principle of locality!18 By analogy: to say that the violation of Bell’s inequalities
in EPRB has nothing to do with non-locality because the inequalities can be
violated in cases where locality perfectly holds, is no better than saying that
the violation of energy conservation in a closed system has no bearing on the
laws of thermodynamics because energy conservation can be violated in an open
system in complete harmony with the those laws.

4 Two Ways to Get Around Bell’s Theorem
Classicality is thus not a condition that one could deny without also having to
deny one of the standard causal-statistical assumptions of Bell’s theorem. If any
theory of quantum phenomena is to avoid the derivation of Bell’s inequalities,
it has to give up one of those standard premises. We will now look at two ver-
sions of standard QM, Werner’s operational quantum mechanics and Griffiths’
consistent histories approach, both of which are claimed to evade Bell’s theorem
by giving up classicality, that is, claimed to be local non-classical quantum the-
ories. We describe what the two versions are claimed to say about the example
of the EPRB scenario, and identify which one of the standard causal-statistical
assumptions of Bell’s theorem each theory is in fact forced to give up.

Operational quantum mechanics (OQM) is basically a variant of standard
QM in which quantum states ψ are treated as purely epistemic, i.e., as tools for
calculating what results to expect from measurements made in various scenarios.
In the EPRB case this means that the only role of ψ is to recover, through Born’s
rule, the measurement statistics encapsulated in −→p EPR:〈

ψs, Âi ⊗ Îψs

〉
= p (Ai|ai) i = 1, 2〈

ψs, Î ⊗ B̂jψs

〉
= p (Bj |bj) j = 3, 4〈

ψs, Âi ⊗ B̂jψs

〉
= p (Ai ∩Bj |ai ∩ bj) (i, j) ∈ SEPR

(25)

where Âi, B̂j are projection operators pertaining the outcomes Ai, Bj respec-
tively, and ψs is the singlet state.

It is not clear in what sense OQM is meant to be local. On the one hand,
Werner seems to suggests that locality simply consists in no-signaling (4), that
is in a statistical independence condition:

. . . in the operational approach no prediction about B changes when
or if a measurement or other procedure is carried out on A. This
independence is built into the structure of quantum theory. This
is also the same as the no-signalling condition and the possibility
of tracing out system A, getting a reduced state for B, which does
not change (and so is undisturbed) whatever happens just to A.
(Werner 2014b, p. 4)

On the other hand, later he explicitly condemns the conflation of mere statistical
dependence and physical disturbance:

18As we noted in footnote 4, one could take the results as showing that we should give up
the Common Cause Principle, as Fine urges, but this leaves us with a sort of non-locality
built into the laws of nature themselves. The only other escape routes run through rejecting
no-conspiracy, which is a price so high that only a handful of physicists have been willing to
consider paying it (see e.g. Hossenfelder and Palmer 2020).
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. . . if you condition on the outcome of a measurement on A, you get a
modified state for B. That is just another way to look at correlation,
but never, not even in classical probability, can this be confused with
a physical disturbance. The state change only becomes effective
when the results from the two labs are brought together and are
jointly analyzed, which can happen centuries later.19 (Werner 2014b,
p. 4)

One can nonetheless accept that OQM is local in the sense that the theory
doesn’t state—in fact, since it only talks about measurement statistics, it has
no words to state—the existence of physical disturbance between the two wings.
The problem is that in the very same way, the theory doesn’t contain any kind of
causal mechanism that could serve to correlate the outcomes in the two wings.
Indeed, since the ontology of OQM only consists of measurement events and
perhaps information states of agents, there are no common causes in it either
that could explain the EPRB correlations. Thus, OQM violates the Common
Cause Principle, the demand that there be no robust regularities without some
sort of causal explanation—which was one of the standard assumptions of Bell’s
theorem. It is by giving up the Common Cause Principle’s requirement that
OQM is able to evade the derivation of Bell’s inequalities. In effect, the defender
of OQM says: “Two guys are flipping coins on opposite sides of the Earth,
whenever they get a “Flip!” command from their cousin Alice. There is no
causal connection—neither direct, nor common causal—between the outcomes.
But the two coins always land oppositely. Deal with it.”

Griffiths’ consistent histories approach (CH) to QM is an expression of Bohr’s
complementarity idea. In CH, every maximal set of compatible measurements
is associated with a so-called “framework.” In the EPRB case we have four
frameworks pertaining to the four measurement pairs in SEPR. Relative to a
given framework, in CH, quantum systems possess real properties that mea-
surements simply reveal. Mathematically, one can model this by assigning to
each framework a “small” probability space (Xij ,Aij , µij) , (i, j) ∈ SEPR.20 In
each of these spaces we have a partition of events C++

ij , C+−
ij , C−+

ij , C−−
ij ∈ Aij

corresponding to the particles having spin properties + or − in the chosen pair
of directions (i, j) ∈ SEPR. Then Born’s rule is said to recover the probabilities
of these properties:〈

ψs, Âi ⊗ Îψs

〉
= µij

(
C++

ij ∪ C+−
ij

)〈
ψs, Î ⊗ B̂jψs

〉
= µij

(
C++

ij ∪ C−+
ij

)
(i, j) ∈ SEPR〈

ψs, Âi ⊗ B̂jψs

〉
= µij

(
C++

ij

) (26)

These properties are thought to be revealed in measurements and hence the
19If quantum states are epistemic, one may wonder that the measurement at A does not

change the state for B, since it clearly does change the epistemic state of the observer at A
who does the measurement! Werner does not say what it means to say that a state change
has “become effective,” nor what happens to the state for B if no measurement is made in
that wing (so that the results cannot be jointly analyzed).

20For more on employing “large” versus “small” probability spaces for describing quantum
experiments, see e.g. Butterfield (1992); Gömöri and Placek (2017).
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probabilities of these properties return the components of −→p EPR:21

µij

(
C++

ij ∪ C+−
ij

)
= µij (Ai) = pi

µij

(
C++

ij ∪ C−+
ij

)
= µij (Bj) = pj (i, j) ∈ SEPR

µij

(
C++

ij

)
= µij (Ai ∩Bj) = pij

(27)

The essential tenet of CH is the “single framework rule”: properties associated
with different frameworks, and represented in different probability spaces, do not
coexist and cannot be talked about at the same time. In particular, properties
Cαβ

ij do not coexist for different (i, j) ∈ SEPR, and hence the particles possess
spin only in one direction at a time. This notion is what encapsulates Bohr’s
idea of complementary descriptions.

In CH, properties Cαβ
ij operate as (deterministic) common causes in the sense

that they are assumed to obey outcome independence in each probability space
separately:

µij

(
Ai ∩Bj |Cαβ

ij

)
= µij

(
Ai|Cαβ

ij

)
µij

(
Bj |Cαβ

ij

)
(i, j) ∈ SEPR, α, β = +,−

(28)

Notice however that neither parameter independence, nor no-conspiracy can be
written down in the “frameworks” formalism. This is because that would require
an identification of the Cαβ

ij -s across different frameworks (probability spaces),
and that’s exactly what the single framework rule forbids doing. Nonetheless,
there is a clear sense in which no-conspiracy is violated in CH. Consider the
ensemble of runs of an EPRB experiment. The presence of a spin property of
the system, in a given run, depends on the framework in which we choose to
the describe the system, which in turn depends on the measurements we choose
to perform in the given run. Indeed, spin property Cαβ

ij will only be assumed
to be present in a given run if we choose to perform measurements ai and bj .
This means that there is strong correlation, over the runs of the EPRB exper-
iment, between the properties we ascribe to the system and the measurements
we choose to perform—which is a violation of no-conspiracy. Again, here we
use ‘correlation’ in a relative frequency sense rather than a probabilistic sense
expressible in terms of probability spaces (Xij ,Aij , µij). One way to phrase the
point is that in CH, the very existence of the Cαβ

ij properties depends on human
choices and thus cannot have an antecedent probability. Therefore, the right
hand side of equation (13) cannot exist, per the single framework rule.

Thus, in the consistent histories approach, it is the violation of another
standard premise of Bell’s theorem, that of no-conspiracy, which blocks the
derivation of Bell’s inequalities.

5 Conclusion
As we mentioned in the introduction, many physicists adamantly insist that
EPRB-type phenomena do not show that there is genuine non-locality in nat-
ural phenomena. Werner and Griffiths are just two prominent voices making
such claims in recent years. While they advocate different interpretations of

21Here we assume that the measurement outcomes (but not the revealed properties!) can
be identified across different frameworks so that we have Ai, Bj ∈ Aij , (i, j) ∈ SEPR. Note
also that the second equation in each row of (17) makes use of no-signaling (4).
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the standard QM formalism, both options can be related to a form of anti-
realism. The instrumentalist attitude implicit in OQM is certainly a source of
not asking for explanation of correlations, and of not being bothered by the
violation of the Common Cause Principle (cf. Lewis 2019). The violation of
no-conspiracy we found in the CH approach can also be a result of some form
of anti-realism, in which the measurement process is thought to have a role in
constituting the property of the system measured. Such a constitution relation
brings about correlation between performing the measurement and ascribing
the property—a correlation which is not due to a causal link but due to a log-
ical/analytic connection. The idea is reminiscent of the Bohrian position that
Einstein lamented: the moon is only there when you look at it.

In our view, adopting an anti-realist stance of the above sorts does not save
locality. The reason is that the very formulation of locality requires a sort of
realism (cf. Norsen 2007). One piece of evidence for this is that in neither of the
two “anti-realist” versions of QM in question can one meaningfully formulate
the condition of parameter independence (15)–(16), a condition that is usually
taken to be a requirement of locality. In OQM there are no Ck-s, so parameter
independence cannot be written down. Similarly, as we have seen above, to
write down parameter independence in the histories formalism, we need to have
an identification of the Cαβ

ij -s across different “frameworks”; but that’s exactly
what we are forbidden to have in the CH approach.

If this dialectical situation is acknowledged, then the philosophers impressed
by Bell’s theorem and the EPRB experiments can come to a peaceful agreement
with physicists who are not so impressed. Those physicists prefer a strong dose
of anti-realism in their physics, rather than a realistic physics that incorporates
non-locality explicitly. The CH advocate embraces a form of conspiracy between
the pre-existing properties that are revealed by measurement and the choices
we make of what to measure. The OQM advocate must admit that nature
somehow displays (enforces?) the inequality-violating correlations, and that
nothing in the properties of the measured particles pre-determine (or at least
causally explain) what the results would be (cf. Alice’s two friends flipping
coins on opposite sides of the world). In both approaches, it must remain a
mystery how nature can display these correlations between chancy events at
space-like separation.22 As philosophers, we would only ask that the physicists
refrain from making two sorts of statements (i) Saying that the QM treatment
of EPRB is perfectly local (though they can perfectly well say that the QM
treatment is not overtly non-local!). (ii) Saying that Bell did not prove what
many philosophers think he proved, because he made a tacit and inappropriate
presupposition of “classicality” in his argument. As we have seen (Section 3),
“classicality” is a consequence of the standard causal and statistical assumptions
made in Bell’s argument, not a separate, tacit assumption.

Appendix
Here we give the proofs of Proposition 4 and 5.

22As Lewis (2019) points out, the dialectical situation may be different in an Everettian
framework, although there is no consensus among philosophers about whether EPRB phe-
nomena involve non-locality in that framework, or not.
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Proof of Proposition 4. We show that (a) (i) implies (ii), (b) (ii) implies (iii),
and (c) (iii) implies (i).

(a) Let −→p be an arbitrary element of Ω and suppose that −→p admits a classical
probability space representation. We demonstrate that −→p is extractable from a
joint distribution. Since −→p admits a classical probability space representation,
there is a classical probability space (X,A, µ) and E1, E2, ..., En ∈ A such that
(6) holds. As (X,A, µ) is a classical probability space, events E1, E2, ..., En ∈ A
in it has a joint distribution which marginalizes to (6). More precisely, with
notation

E+
i := Ei

E−
i := X \ Ei

i = 1, 2, ..., n

let

pα1...αn := µ (Eα1
1 ∩ Eα2

2 ... ∩ Eαn
n ) α1, α2, ..., αn ∈ {+,−}

Since µ is a Kolmogorovian probability measure, (7) will obviously hold. More-
over, due to (6) and the law of total probability,

pi = µ (Ei) =
∑

α1,...,αn∈{+,−}
αi=+

µ (Eα1
1 ∩ Eα2

2 ... ∩ Eαn
n ) =

=
∑

α1,...,αn∈{+,−}
αi=+

pα1...αn i = 1, 2, ..., n

pij = µ (Ei ∩ Ej) =
∑

α1,...,αn∈{+,−}
αi,αj=+

µ (Eα1
1 ∩ Eα2

2 ... ∩ Eαn
n ) =

=
∑

α1,...,αn∈{+,−}
αi,αj=+

pα1...αn (i, j) ∈ S

that is, (8) is also satisfied. Thus, −→p is extractable from a joint distribution.
(b) Suppose the for all −→p ∈ Ω, −→p is extractable from a joint distribution. We

will demonstrate that Ω is projectable from the 2n-vertex probability simplex
∆2n ⊂ R2n . Instead of r ∈ {1, 2, ..., 2n}, it will be convenient to label the compo-
nents of vectors in R2n by (α1, ..., αn) ∈ {+,−}n, where indices (α1, ..., αn) are
ordered lexicographically, with + preceding −. With this notation, introduce the
following sets of indices: Ri := {(α1, ..., αn) ∈ {+,−}n |αi = +} , i = 1, 2, ..., n;
and let map φ : Rd → Rn+|S| be defined by

(φ (x))i =
∑

(α1,...,αn)∈Ri

xα1...αn
i = 1, 2, ..., n

(φ (x))ij =
∑

(α1,...,αn)∈Ri∩Rj

xα1...αn
(i, j) ∈ S

(29)

for all x ∈ R2n . φ is obviously linear. Now, since for all −→p ∈ Ω, −→p is
extractable from a joint distribution, for all −→p ∈ Ω there exist 2n numbers
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pα1...αn
, α1, ..., αn ∈ {+,−} such that (7) and (8) hold. For each −→p ∈ Ω, con-

sider the vector π ∈ R2n for which πα1...αn
= pα1...αn

. Due to (7), π ∈ ∆2n

for all −→p ∈ Ω. Moreover, due to (8) and the definition of φ, (29), φ (π) = −→p .
Hence, Ω ⊆ φ (∆2n). Furthermore, suppose that for a π′ ∈ ∆2n , φ (π′) = −→p
for some −→p ∈ Ω. Then, again due to (29),

pi =
∑

(α1,...,αn)∈Ri

π′
α1...αn

i = 1, 2, ..., n

pij =
∑

(α1,...,αn)∈Ri∩Rj

π′
α1...αn

(i, j) ∈ S

which is nothing but (10) in terms of indices (α1, ..., αn) instead of r. Thus, Ω
is projectable from the probability simplex ∆2n ⊂ R2n .

(c) Suppose that Ω is projectable from a probability simplex ∆d ⊂ Rd.
Consider the set of vertices of ∆d, X = {e1, e2, ..., ed}, and its subset alge-
bra A. We show that each −→p ∈ Ω admits a classical probability space rep-
resentation over measurable space (X,A). Since Ω is projectable from the
probability simplex ∆d, there is a linear map φ : Rd → Rn+|S|, and sets
of indices Ri ⊆ {1, 2, ..., d} , i = 1, 2, ..., n such that (9) and (10) hold. Let
Ei := {er|r ∈ Ri} ∈ A, i = 1, 2, ..., n. Consider an arbitrary −→p ∈ Ω. Since
Ω ⊆ φ (∆d), there is a π ∈ ∆d such that φ (π) = −→p . Now, define µ in the
following way:

µ : A → [0, 1] , µ (E) :=
∑

r:er∈A

πr

µ is obviously a probability measure on A, and

µ (Ei) =
∑

r:er∈Ai

πr =
∑

r∈Ri

πr = pi i = 1, 2, ..., n

µ (Ei ∩ Ej) =
∑

r:er∈Ai∩Aj

πr =
∑

r∈Ri∩Rj

πr = pij (i, j) ∈ S

that is, (6) is satisfied. Thus, (X,A, µ) with E1, E2, ..., En ∈ A provides a
classical probability space representation of −→p .

Proof of Proposition 5. As Pitowsky (1989) showed, the fact that a corre-
lation vector −→p ∈ Rn+|S| admits a classical probability space representation is
equivalent with the fact that −→p lies within the so-called classical correlation
polytope

c(n, S) =

 ∑
ε∈{0,1}n

λε
−→u ε

∣∣∣∣∣∣λε ≥ 0,
∑

ε∈{0,1}n

λε = 1

 ⊂ Rn+|S|

the convex hull of the classical vertex vectors −→u ε ∈ Rn+|S| (ε ∈ {0, 1}n) whose
components are defined as

uε
i = εi i = 1, ..., n

uε
ij = εiεj (i, j) ∈ S

We will show that −→p EPR ∈ c (4, SEPR).
First, note that any correlation vector −→p ∈ Rn+|S| for which

pij = pipj (i, j) ∈ S (30)
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is an element of c(n, S). Indeed, it easy to verify that such a vector can be
expressed as a convex combination of classical vertex vectors −→u ε with coefficients

λε =
n∏

i=1
p∗

i , where p∗
i =

{
pi, if εi = 1
1 − pi, if εi = 0

Now suppose that there is a classical probability space (X,A, p) where
a1, a2, b3, b4, A1, A2, B3, B4 and Ck(k ∈ K) are represented as events
(a1, a2, b3, b4, A1, A2, B3, B4, Ck ∈ A, k ∈ K), {Ck}k∈K is a partition of A,
and probability measure p satisfies (12)–(13). Since Ck(k ∈ K) partition A,
one can apply the law of total probability with respect to conditional measures
p (·|ai ∩ aj) to receive

p (Ai|ai ∩ bj) =
∑

k∈K

p (Ai|ai ∩ bj ∩ Ck) p (Ck|ai ∩ bj)

p (Bj |ai ∩ bj) =
∑

k∈K

p (Bj |ai ∩ bj ∩ Ck) p (Ck|ai ∩ bj)

p (Ai ∩Bj |ai ∩ bj) =
∑

k∈K

p (Ai ∩Bj |ai ∩ bj ∩ Ck) p (Ck|ai ∩ bj)

(i, j) ∈ SEPR

(31)

Taking into account no-signaling (4) and assumptions (12)–(13), equations (31)
simplify to

p (Ai|ai) =
∑

k∈K

p (Ai|ai ∩ Ck) p (Ck)

p (Bj |bj) =
∑

k∈K

p (Bj |bj ∩ Ck) p (Ck)

p (Ai ∩Bj |ai ∩ bj) =
∑

k∈K

p (Ai|ai ∩ Ck) p (Bj |bj ∩ Ck) p (Ck)

(i, j) ∈ SEPR

(32)

Now introduce correlation vectors −→p k ∈ R4+4 (k ∈ K) with components

pk
i = p (Ai|ai ∩ Ck) i = 1, 2
pk

j = p (Bj |bj ∩ Ck) j = 3, 4
pk

ij = p (Ai|ai ∩ Ck) p (Bj |bj ∩ Ck) (i, j) ∈ SEPR

(33)

Observe that correlation vectors −→p k are of the form (30), and thus they all lie
in c (4, SEPR). Furthermore, notice that what (32) says is

−→p EPR =
∑
k∈K

p (Ck) −→p k

where p (Ck) ≥ 0,
∑

k∈K

p (Ck) = 1 since {Ck}k∈K is a partition. This means that
−→p EPR is a convex combination of elements of c (4, SEPR), which entails that
−→p EPR ∈ c (4, SEPR) as c (4, SEPR) is a convex set.
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