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1 Introduction

Generally speaking, when we estimate a fixed population parameter based on the

observation of a sample (i.e., not the whole population), we know that different

samples would have generated different estimates. The magnitude of this differ-

ence is called the sampling error.

When an estimator is consistent and unbiased, the sampling error can be reduce

to an arbitrarily small difference, by increasing the sample size of a study. This is a

desirable property since it implies that the estimates over all possible samples will

be closer to the truth and less variable. Consequently, when a test statistic is based

on a consistent and unbiased estimator, it is always desirable (although not always

possible) to increase the sample size and therefore the power of the test in order to

reduce the sampling error.

This does not only ensure that our estimates are closer to the truth on average,

but that our rejection of the null hypothesis, when it is false, is not caused by

the sampling error of our estimates but by a true discrepancy from the null. In

this specific context, a significant and more powerful test (i.e., one that uses a

greater sample size) will always provide better evidence against the null hypothesis

because one major source of error will be reduced: the sampling error.

Assuming a fixed population parameter to estimate and a test statistic based on

a consistent and unbiased estimator of that parameter, I demonstrate without any

shadow of a doubt that a popular measure of evidence championed by Deborah

Mayo and Aris Spanos (the severity measure) is erroneous because of the sampling

error. In fact, I show that the greater the sampling error, the greater the error of that

measure.

Why am I so confident? Why ’without any shadow of a doubt’? Because I

am presenting mathematical facts: 1-Some statistical tests, like one sided t-tests,
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are using statistics that are based on coherent and unbiased estimators such as the

sample mean (the test statistic is essentially a centered and standardised sample

mean in the one sided t-test). 2- We can increase or decrease the level of sampling

error associated with the estimates at will by decreasing or increasing the sample

size of the experiment. 3- This is equivalent to decreasing or increasing the power

of the associated test, at will, by increasing or decreasing the sample size of the

experiment. 4- As we decrease the power of the test (decrease the sample size),

the only statistics that can reach the critical region under H1 eventually do so only

because of the large sampling error and not because of the underlying truth of

the matter: the real (usually unknown difference) between H0 and H1. 5- In that

scenario, the test statistics become so deviant that they will inevitably corrupt the

severity score because the latter is computed with the estimate that contains the

large sampling error. This is all beautifully illustrated in the paper.

This result is problematic for at least two reasons. The first reason has to do

with the usefulness of the severity measure. That measure of evidence is incom-

plete. It fails to capture every dimension of what constitute evidence against the

null hypothesis. Even with the full knowledge of the adequacy of a model, it is

incomplete because it fails to take sampling error into account.

If someone in my team were to claim that we should reject H0 because the

severity score is high for some discrepancy, I would immediately reply: did you

take into account the sampling error? Would it be possible to take a different

sample of the same population or look at previous studies on that population and

see if the results are robust?

The second, and more important reason, why the demonstration is problematic

has to do with the actions that need to be taken in order to reduce the sampling

error. Under specific conditions, I show that it is in our best interest to work with

the largest sample size that we can reasonable obtain in order to reduce that source
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of error. If the null hypothesis is false, working with the largest possible sample

size will give us the best possible evidence against the null hypothesis by reducing

the chance that our test statistic reaches the critical region of a test because of

the sampling error. It will also improve the reliability of the severity measure of

evidence, should we be inclined to use it.

Here is the catch: Mayo and Spanos( hereafter M & S) are well-known for

claiming that more powerful tests do not provide better evidence against the null

when the test is significant. I show that this is a mistake and that their own measure

of evidence cannot allow them to make such a claim because it is less reliable

when the power decreases. They simply cannot embrace the idea of improving

their measure of evidence by encouraging the use of greater sample sizes and also

claim that this will not improve the evidence against the null. Why bother with

improving the measure of evidence then?

2 More Power is better when tests are based on consistent

and unbiased estimators

In this section, I will discuss a very specific kind of experiment in order to make my

point: the one-tailed t-test. The test statistics used in such tests are based on a con-

sistent and unbiased estimator of the mean of the population: the sample mean of

independent and normally distributed observations. The test statistics, which will

be taken as the evidence against H0 (should the test be significant) is essentially an

unbiased and consistent estimator of the mean that is re-centered and standardised.

This is the link between ’estimating’ and ’making a statistical inference’. The one-

tailed t-test combines both theory testing and estimation theory, and this makes

sense. T-tests would be of little interest if we did not have a good estimator of the

mean in order to make our inferences.
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I am not claiming that M&S theory on statistical evidence requires that a test

statistics be an unbiased and coherent estimator of the parameter on which we want

to make an inference. I am saying that it is the case in this very well-known and

basic test. This is just a mathematical fact. From an estimation perspective, it is

obvious that it is better to have the largest sample possible in order to reduce the

sampling error and to track the truth: the estimator is coherent and unbiased. I am

assuming here of course that we want to track the truth in science. I hope this is

not controversial.

What seems to be controversial however are the following arguments that are

at the heart of this paper: 1- When we perform a t-test, we also want our test

statistics to track the truth by reducing that very same sampling error as much

as possible. There would be an epistemic/logical incoherence if it were better to

increase the sample size to improve the estimation of a population parameter and

yet not desirable to increase the sample size (and therefore the power of a test)

in order to make a statistical inference about the same parameter. Consequently,

the best possible t-test will be the most powerful test possible. When such as

test is significant, it will provide the best possible evidence against H0. 2- In this

scenario, claiming that a less powerful test can provide better evidence against

the null than a more powerful one, is tantamount to saying that we can obtain

better better evidence against H0 simply by increasing the sampling error of our

estimates. This is ridiculous at best.

In order to avoid any unnecessary complications and useless debates, please

remember the following claim: the independence and normality of all the observa-

tions of every experiment discussed in this paper is a given. It is known by every-

one. There is no doubt possible about the i.i.d. and normality of the observation.

The model used in every experiment mentioned in this paper is never misspecified.

I make sure of it since I control the simulations (the reader can also have control
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since the code is in the Appendix, the box is not black it is open for everyone to

play with). If the severity score fails in this generous situation, it will fail harder in

more complex and realistic scenarios where this knowledge is unavailable.

In this special context, the sample size does not need to be above 20 or some

other arbitrary number in order to satisfy the hypothesis of normality. Do not worry

about it. It is your lucky day. The normality is a God given knowledge here. The

sample size could be 9 and the test would be valid. The sample size will however

determine the sampling error of the estimator/test-statistics. The smaller the sample

size, the greater the sampling error.

Moreover, please keep in mind that when I mention the concept of power like

in the statement ”More power is better because it reduces the sampling error of

a consistent and unbiased estimator” I mean the probability of rejecting the null

hypothesis when it is false. I am not concerned at all with so-called pre-data power

calculations. It is an important aspect of research, but not one that is relevant

for this particular paper. When the sample size of the experiments increases, its

power (the real and most likely unknown power) increases and the sampling error

decreases. That is all that matters in this paper.

2.1 The demonstration

Here is the scenario: we have a population with a true and unknown fixed mean of

1.2. We aim to test if the mean of the population is strictly greater than 1 with a

one-tailed t-test. We know that any given sample will be comprised of independent

observations that are generated by the same normal distribution. In reality we

would be lucky to have this knowledge. If the severity measure fails in this simple

and advantageous scenario, it will not do better when we have less than absolute

knowledge about the i.i.d. nature of the observations.
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We do not aim to detect a difference of 0.2 (the true difference between the

mean under H0 and the mean under H1). We do not perform a pre-data power

calculation to determine the appropriate sample size that would give us the best

chance possible of detecting a difference of 0.2. As far as we are concerned, the

true difference could be as large as 500 or it could be 0. We simply do not know.

We want to know if H0 is false.

Now here is the question, which sample size will give us the best evidence

against H0, should we obtain a significant test? 9, 64, 169, 324, 1089, 2304, 4624,

8649? The answer lies in the distribution of the estimates that we will obtain given

that the test is significant. Those distributions are presented in Figure 1. The first

boxplot on the left illustrates the distribution of all the estimates of the means

that triggered a significant result over 500,000 samples of size 9. All the other

boxplots represent the same thing except that the sample size gradually increases.

The percentage displayed in the graph is the percentage of the 500,000 tests that

actually triggered a significant result. As the sample size increases and therefore

the power, that percentage increases.

Here is what Figure 1 shows: As the power of the test decreases, we see that

the observed means lift off from the ground truth (1.2) and that the variance of

the observed means increases. This is called the inflation of the effect size. It is

uniquely caused by the increasing sampling error that is introduced as the sample

size and the power of the test decreases. You can recreate this figure with the code

bellow. The code contains a seed, but the results on the graph are so robust that

you can change it without any significant differences.

Conversely, as the power increases, the observed means are less variable and

closer to the ground truth because the estimator is unbiased and consistent and

because more of them fall withing the critical region of the test as the impact of

the sampling error because less and less significant. In fact, the boxplot on the
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Figure 1: Each boxplot describes the observed distribution of every sample means that

triggered a significant (p-value bellow 0.01) result under H1 over 500,000 samples of a

given size specified on the x-axis. The blue horizontal line is at 1.2 which is the true

unknown and fixed mean of the population that we estimate. The percentage represents the

percentage of the 500,000 samples that generated a significant result under H1.
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right side is right on the money. Estimates with that sample size provide the best

evidence against H0 out of all the other estimates obtained with smaller sample

sizes. Results are robust: we obtain a significant result almost 92 % of the time

and each estimates are closer to the truth of 1.2. What else could we want from a

statistical point of view? Clearly, the more power (the greater the sample size) the

better evidence against the null. The answer to the question is 8649.

But let us see what the severity score tells us. I call it a score, because it

refers to a function that outputs a real number between 0 and 1 and that number is

meant to tell us if we have good evidence for the existence of a particular range of

discrepancy from the null given an observed test statistics. In the case at hand, we

could ask if a significant test statistic warrants the existence of difference strictly

greater than 0 or any other real number greater than 0. The score is computed by

evaluating the cumulative distribution of a Student’s law evaluated at a point of

interest, with the observed statistic.

Within each boxplot let us take the median observed mean (or the one that is

the closest to the median) and let us see what happens when we ask the severity

measure if we have good evidence for a difference that is strictly greater than the

truth of 0.2 (see Appendix to reproduce the results). Let us put the following claim

to the test:

Severity Principle (full). Data x0 (produced by process G) provides

good evidence for hypothesis H (just) to the extent that test T severely

passes H with x0. (Mayo and Spanos 2011, p.162).

For each respective sample sizes on Figure 1, starting with 9 and ending with

8649, we obtain the following severity scores: 0.9939735, 0.9844467, 0.9900222,

0.9742364, 0.9229936, 0.8304057, 0.6731266, 0.540871. It would appear that

would have very good evidence for a difference from the null that is strictly greater
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than 0.2 with a low powered test. Yet, this is incorrect: the real difference is not

strictly greater than 0.2. The problem is that the severity score is computed with

the sampling error. The greater that error, the more erroneous its results.

There is no way around it: this is the demonstration promised in the introduc-

tion. Figure 1 shows, without any shadow of a doubt, that the sampling error of

lower powered tests inflate the observed statistics when the test is significant and

will also inflate the severity score by the very nature of its mathematical form: the

cumulative distribution of a student law evaluated at a given point of interest with

the test statistics! It is the fact that the score is calculated with the observed statis-

tics that makes all the difference because the observed statistics contains sampling

error.

If that score has to have any chance of being correct, we need to keep the

sampling error to a bare minimum and, with the kind of scenario discussed here,

this can only be done by increasing the power of the test. Increasing the power will

not only produce better evidence against H0 by producing estimates that are less

variable and less biased when the test is significant, it will also reduce the pervasive

effect of the sampling error on the severity measure of evidence. The problem is

that M & S refuse to acknowledge that more powerful test provide better evidence

against the null and the reasons for this are misguided. How can they claim that

more powerful tests do not provide better evidence against the null when their

measure of evidence fails to be adequate as the power decreases (see Figure 1)?

They claim that there is a mistaken view ”wherein an α level rejection is taken

as more evidence against the null, the higher the power of the test” (Mayo and

Spanos 2006, p.344) In a recent article, Spanos even claims that a less powerful

test, of the kind discussed here, provides better evidence against the null because

the observed statistics are larger and the confidence intervals are further away from

the parameter under the null hypothesis (Spanos 2022, p.16), but we now know
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that this is a mistake. Estimations will inflate, and so will the confidence intervals,

as the sample size decreases when a test is significant.

Of course, very powerful test will be able to detect very small discrepancies

but this has nothing to do with the quality of the evidence against the null. If I

claim to have no food in my refrigerator, it does not make it better evidence against

that claim if someone finds two apples instead of one. It is a mistake to equate

the magnitude of a different with the quality of the evidence for that difference. It

seems that M & S make that mistake.

Some things have to change. First, we need to acknowledge that the severity

measure of evidence is incomplete because sampling error needs to be taken into

account when measuring the quality of the evidence against the null: more sam-

pling error means less evidence against the null. Second, M & S’s view according

to which more powerful tests do not provide better evidence against the null when

tests are significant is false. I have given a compelling counterexample with Figure

1.

3 Conclusion

In conclusion, I would like to address eight common objections to the theses I have

been presenting in this paper. Not all of them are brilliant, but they sure seem

to have convinced brilliant people. Please pay close attention to Objection 6 and

my reply. I believe it is the main point of contention with M&S. They strongly

believe that my claim to the effect that more powerful significant tests provide

better evidence against the null is a fallacy.

Objection 1: M&S never claimed that parameter estimation is part of their

approach and that parameter estimates should be unbiased when conditioned on

statistically significant results.
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Reply to Objection 1: They do not need to claim such a thing. Their approach

applies to t-tests. T-tests are based on unbiased estimators. Those estimators will

generated estimates with large sampling error when the sample size is low. Those

estimates will trigger significant results every now and then (at lest with probabil-

ity alpha (the degree of a test). When they do, they do not provide good evidence

against the null because they are artifact of the the sampling error. They also cor-

rupt the severity score because it is computed with the estimates that contain, in

their magnitude, the sampling error. These facts are at the foundation of this paper.

Objection 2: M&S do not claim that their severity measure if a measure of

evidence.

Reply to objection 2: When someone claims that they have a function that can

determine if an observation is good evidence for a given hypothesis, I call that a

’measure of evidence’. The quote I give in the paper to that effect speaks for itself.

Objection 3: Figure 1 seems to show that the severity score is behaving the way

it should. When the power is low, we obtain greater score than when the power is

high. I fail to see the problem.

Reply to Objection 3: Yes, it behaves the way it is meant to. I argued that this

way is misguided. The score for the claim ”there is a discrepancy strictly greater

than 0.2” was very high with a sample size of 9 and low for a sample size of 8649.

The only difference between the two scenarios is that the sampling error is greater

with a sample size of 9. Conclusion: we need to increase the sample size of our

tests (i.e. increase their power) if we want to reduce the sampling error, obtain a

more reliable severity score, and better evidence against the null hypothesis.

Objection 4: Looking at Figure 1, I understand that someone would have been

lucky to obtain a significant result with only 9 observations. But it’s OK to be

lucky. One can have lucky evidence against H0.

Reply to Objection 4: The problem is not so much that the observation of a sig-
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nificant result is lucky (although that is a problem when you cannot replicate your

results). The problem is the inflation of the estimates. They corrupt the severity

score by making it totally unreliable. There is no luck in a measure telling you that

you have good evidence that there is a greater discrepancy from the null than the

true one.

Objection 5: What you, the author of this paper, have shown here is that if

we make the statistical tests unreliable by decreasing the power (pre-data), then

the severity measure is false (post-data). This is not a problem for the (post-data)

severity measure of evidence. It is good if we assume that the test procedure is

reliable to begin with (pre-data).

Reply to Objection 5: Sampling error is a property of the data and in order

for the severity measure to be reliable, we need to reduce the sampling error to a

minimum by increasing the sample size and the power to a maximum (within oper-

ational constraints). This will also generate better evidence against the null when it

is false (assuming a test based on an unbiased and consistent estimator). The prob-

lem is that M & S’s views, expressed in the quotes given above, are incompatible

with this solution. They simply refuse to acknowledge that a more powerful test

will provide better evidence against the null. It would not make sense for them to

systematically encourage the usage of greater sample sizes. They would have to

claim that greater sample sizes are better for the reliability of the severity measure

of evidence but that the evidence against the null will not be better. Why bother

then?

Objection 6: The paper argues for the following claims: If there is a high

probability that test T will reject H0 when µ = µ′ for µ′ , a value in H1 — that

is, if the power of test T against µ = µ′ is high—then observing a sample mean

M is good evidence that µ is as large as µ′ (where µ′ = µ0 + k standard errors

(SE).) The flaw in this paper’s claim can be seen with an entirely informal example.
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Suppose one is testing if a treatment yields 0 benefit versus various magnitudes of

positive benefit, measured in terms of the percentage of patients cured. Suppose

the test is practically guaranteed to reject H0. In fact, H1, the drug cures practically

everyone. The test has high power to detect H1. Bt merely finding a statistically

significant M does not warrant H1.

Reply to Objection 6: I do not make such a foolish claim. The paper never

argues for ”the following claims:” It will not be so easy to dismiss the result shown

in this paper. I do not believe that the result of a powerful test will provide good

evidence for a grandiose interpretation of H1 such as ”the drug practically cures

everyone” and I certainly do not want to encourage this belief.

However, I believe that the result of such a test will provide great evidence

against H0 which says that the drug has no effect. Please do not interpret my work

in such a way that I would endorse the claim ”the drug will cure everyone”. I do

not understand why anyone would do that anyway in good faith. Nowhere in this

paper have I claimed that the result of a statistical test can provide evidence for a

wide range of different discrepancies from the null. I’m making a point about the

evidence for rejecting H0, not for accepting any kind of interpretation of H1.

The reason for this should be clear by now. I advocate for the highest possible

sample size in order to obtain the best evidence against the null when the test is

significant. When the test statistic is based on a consistent and unbiased estimator,

it will track the truth more efficiently, as shown in Figure 1. If the truth points

towards the existence of a small discrepancy from the null, then so be it. That is

the discovery.

I am certainly not going to be the advocate for outlandish discrepancies that are

incompatible with my estimate and I am certainly not going to reach any conclusion

if I suspect that my estimate is corrupted with a large sampling error. Objection

6 is basically trying to turn the tables on my own arguments. The fact is that
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severity score will warrant the existence of ridiculously large discrepancies when

the estimate contains a large sampling error. This is what I have shown in this

paper. Again, this is a mathematical fact. The only way around it is to reduce the

sampling error by increasing the sample size and the power of the test.

Objection 7: You, the author of this paper, claim that more powerful tests pro-

vide better evidence against the null but consider this scenario: H0: the urn con-

tains 0 yellow balls, 95 red balls and 5 blue balls. H1: The urn contains 1 yellow

ball, 94 red balls and 5 blue balls. The rejection rule is: if you observe a blue or

yellow ball after one draw, reject H0. The probability of rejecting H0 when true

is 5% and the probability of rejecting H0 when H1 true is 5%. The power is very

low. However, imagine that you observe a yellow ball, you would have conclusive

evidence against H0 even if the power is small. You can change the scenario just

a little bit, increase the power slightly, and it will have no impact on the quality of

the evidence when you observe a yellow ball.

Reply to Objection 7: This example relies on the fact that the parameter space is

not the same under H0 and H1. There is no ”yellow” category under H0. Therefore,

the observation of a yellow ball is not even in the critical region. If this kind of

thought experiment has any usefulness here is for me to make the following caveat:

my conclusions apply only for tests that are such that their parameter space is the

same under H0 and H1 and that are based on consistent and unbiased estimators.

Objection 8: The references are skimpy.

Reply to Objection 8: That’s all I need to make my point.

4 Appendix

# ####### t t e s t under H1#########################################
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l i b r a r y ( ” t i d y v e r s e ” )

l i b r a r y ( ” g g p l o t 2 ” )

l i b r a r y ( ” d a t a . t a b l e ” )

s e t . s e ed (1829345)

s i m u l a t i o n s<− l i s t ( )

s i g n i f i c a n t r e s u l t s<− l i s t ( )

sim . s i z e<−500000

e s t i m a t e<−NA

s t d e r r<−NA

p v a l u e<−NA

sample . s i z e<− ( ( seq ( 3 , 100 , by = 5 ) ) ** 2 ) [ c ( 1 , 2 , 3 , 4 , 7 , 10 , 14 , 1 9 ) ]

f o r ( n i n sample . s i z e ){

f o r ( i i n 1 : sim . s i z e ){

obs<−rnorm ( n , 1 . 2 , sd =5)

t e s t<−t . t e s t ( obs , mu=1 , a l t e r n a t i v e = ’ g r e a t e r ’ )

e s t i m a t e [ i ]<− t e s t $ e s t i m a t e

s t d e r r [ i ]<− t e s t $ s t d e r r

p v a l u e [ i ]<− t e s t $p . v a l u e

}

s i m u l a t i o n s [ [ which ( sample . s i z e ==n ) ] ]<− l i s t ( e s t i m a t e , s t d e r r , p v a l u e )

e s t i m<−( s i m u l a t i o n s [ [ which ( sample . s i z e ==n ) ] ] [ [ 3 ] ] <= 0 . 0 1 ) *

s i m u l a t i o n s [ [ which ( sample . s i z e ==n ) ] ] [ [ 1 ] ]

e s t i m<−r e p l a c e ( e s t im , e s t i m ==0 ,NA)

e r r<−( s i m u l a t i o n s [ [ which ( sample . s i z e ==n ) ] ] [ [ 3 ] ] <= 0 . 0 1 ) *

s i m u l a t i o n s [ [ which ( sample . s i z e ==n ) ] ] [ [ 2 ] ]

e r r<−r e p l a c e ( e r r , e r r ==0 ,NA)
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s i g n i f i c a n t r e s u l t s [ [ which ( sample . s i z e ==n ) ] ]<− l i s t ( e s t im , e r r )

p r i n t ( n )

}

df <−as . data . frame ( t ( sapply ( s i g n i f i c a n t r e s u l t s , ” [ [ ” , 1 ) ) )

df $ sample . s i z e <− as . f a c t o r ( sample . s i z e )

p e r c e n t<−apply ( apply ( df [ , −( sim . s i z e + 1 ) ] , 1 , i s . na ) , 2 ,

f u n c t i o n ( x ) 100 −((sum ( x ) * 100) / ( sim . s i z e ) ) )

p e r c e n t<−as . data . frame ( t ( rbind ( p e r c e n t , sample . s i z e ) ) )

df l ong <− mel t ( as . data . t a b l e ( df ) , i d = ( ’ sample . s i z e ’ ) )

g g p l o t ( ) +

geom boxp lo t ( data=na . omit ( df l ong ) , a e s ( x = sample . s i z e ,

y = va lue , f i l l = sample . s i z e ) ) +

geom h l i n e ( y i n t e r c e p t = 1 . 2 , c o l o r = ” b l u e ” ) +

geom t e x t ( a e s ( x=as . f a c t o r ( p e r c e n t $ sample . s i z e ) , y =2 ,

l a b e l = p a s t e ( round ( p e r c e n t $ p e r c e n t , 3 ) , ”%” ) ) , nudge y= −1 , c o l o r = ’ b l u e ’ )+

l a b s ( x=” sample s i z e ” , y=” o b s e r v e d mean” )

e s t i m var<−apply ( df [ , −( sim . s i z e + 1 ) ] , 1 , var , na . rm=T )

e s t i m var

df e r r <−as . data . frame ( t ( sapply ( s i g n i f i c a n t r e s u l t s , ” [ [ ” , 2 ) ) )

fun<−f u n c t i o n ( x ){

x<−x [ ! i s . na ( x ) ]

x [ which . min ( abs ( x−median ( x ) ) ) ]

}

mid e s t i m<−apply ( df [ , −( sim . s i z e + 1 ) ] , 1 , fun )

n =1 .2
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pt ( ( mid e s t i m [1] − n ) / df e r r [ 1 , which ( df [ 1 , ] = = mid e s t i m [ 1 ] ) ] ,

8 , lower . t a i l = TRUE)

pt ( ( mid e s t i m [2] − n ) / df e r r [ 2 , which ( df [ 2 , ] = = mid e s t i m [ 2 ] ) ] ,

63 , lower . t a i l = TRUE)

pt ( ( mid e s t i m [3] − n ) / df e r r [ 3 , which ( df [ 3 , ] = = mid e s t i m [ 3 ] ) ] ,

168 , lower . t a i l = TRUE)

pt ( ( mid e s t i m [4] − n ) / df e r r [ 4 , which ( df [ 4 , ] = = mid e s t i m [ 4 ] ) ] ,

323 , lower . t a i l = TRUE)

pt ( ( mid e s t i m [5] − n ) / df e r r [ 5 , which ( df [ 5 , ] = = mid e s t i m [ 5 ] ) ] ,

1088 , lower . t a i l = TRUE)

pt ( ( mid e s t i m [6] − n ) / df e r r [ 6 , which ( df [ 6 , ] = = mid e s t i m [ 6 ] ) ] ,

2303 , lower . t a i l = TRUE)

pt ( ( mid e s t i m [7] − n ) / df e r r [ 7 , which ( df [ 7 , ] = = mid e s t i m [ 7 ] ) ] ,

4623 , lower . t a i l = TRUE)

pt ( ( mid e s t i m [8] − n ) / df e r r [ 8 , which ( df [ 8 , ] = = mid e s t i m [ 8 ] ) ] ,

8648 , lower . t a i l = TRUE)
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