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Abstract

It has been suggested that the wave function of the universe is not
ontic but nomological, and there are only particles in the ontology of
Bohmian mechanics. In this paper, I argue that this view will lead to
certain impossible situations, such as that two free Bohmian particles,
which have exactly the same properties and the same state of motion
initially, have different states of motion later.
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1 Introduction

Bohmian mechanics or the pilot-wave theory of de Broglie and Bohm pro-
vides an ontology of quantum mechanics in terms of particles and their
trajectories in space and time (de Broglie, 1928; Bohm, 1952). However, it
has been debated if the ontology of Bohmian mechanics includes only par-
ticles. According to some authors, the universal wave function is not ontic,
representing a concrete physical entity, but nomological, like a law of nature
(Diirr et al, 1992; Allori et al, 2008; Goldstein and Zanghi, 2013; Esfeld et al,
2014; Goldstein, 2021). On this view, there are only particles in the ontology
of Bohmian mechanicsﬂ While according to others (Bohm and Hiley, 1993;

!Note that unlike Humeanism and dispositionalism, primitivism about laws as sug-
gested by Maudlin (2007) attributes a fundamental ontic role to the universal wave func-
tion. Thus, on primitivism one may also say that the ontology of Bohmian mechanics
includes both particles and the wave function even when assuming the nomological view
of the wave function (see Dorato and Esfeld, 2015; Dorato, 2015 for a different view). In
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Holland, 1993; Gao, 2017; Hubert and Romano, 2018; Valentini, 2020), the
ontology of Bohmian mechanics includes both particles and the wave func-
tion. In this paper, I will present a new result which may help examine
the ontology of Bohmian mechanics. In particular, I will argue that if the
ontology of Bohmian mechanics includes only particles, then there will exist
certain impossible situations, such as that two free Bohmian particles, which
have exactly the same properties and the same state of motion initially, have
different states of motion later.

2 Bohmian mechanics

In Bohmian mechanics, a complete realistic description of a quantum system
is provided by the configuration defined by the positions of its particles
together with its wave function. The law of motion is expressed by two
equations: a guiding equation for the configuration of particles and the
Schrodinger equation, describing the time evolution of the wave function
which enters the guiding equation. It can be formulated as follows:

dX(t) _ wu
=0, (1)
_ou(t)

where X (t) denotes the spatial configuration of particles, W(¢) is the wave
function, and v equals to the velocity of probability density in standard
quantum mechanics.

The status of the above equations is different, depending on whether one
considers the physical description of the universe as a whole or of a subsystem
thereof. Bohmian mechanics starts from the concept of a universal wave
function (i.e. the wave function of the universe), figuring in the fundamental
law of motion for all the particles in the universe. That is, X (¢) describes
the configuration of all the particles in the universe at time ¢, and ¥(¢) is the
wave function of the universe at time ¢, guiding the motion of all particles
taken together. To describe subsystems of the universe, the appropriate
concept is the effective wave function.

The effective wave function is the Bohmian analogue of the usual wave
function in standard quantum mechanics. It is not primitive, but derived
from the universal wave function and the actual spatial configuration of all
the particles ignored in the description of the respective subsystem (Diirr,
Goldstein and Zanghi, 1992). The effective wave function of a subsystem
can be defined as follows. Let A be a subsystem of the universe including N

this sense, the result of this paper is still consistent with the nomological view of the wave
function when assuming primitivism about laws.



particles with position variables x = (z1, xo, ...,xN). Let y = (y1,y2, ., Yar)
be the position variables of all other environmental particles not belonging
to A. Then the subsystem A’s conditional wave function at time ¢ is defined
as the universal wave function ¥(z,y,t) evaluated at y = Y (¢):

wA(xvt) = \Ij(xvyvt)’y:Y(t)a (3)
where Y (t) is the positions of the environmental particles at time ¢. If the
universal wave function can be decomposed in the following form:

U(z,y,t) = p(z, 1)y, t) + Ou(z,y,1), (4)
where ¢(y,t) and O(x,y,t) are functions with macroscopically disjoint sup-
ports, and Y (¢) lies within the support of ¢(y,t), then a(z,t) = ¢(x,t)
(up to a multiplicative constant) is A’s effective wave function at ¢t. It can
be demonstrated that the temporal evolution of A’s particles is given in
terms of A’s conditional wave function in the usual Bohmian way, and when
the conditional wave function is A’s effective wave function, it also obeys a
Schrodinger dynamics of its own.

3 A special case

Now I will analyze the view that there are only particles in the ontology of
Bohmian mechanics.

First, I will present a result useful for later analysis. Suppose there are
two free (uncorrelated) particles that have the same properties. Moreover,
they have the same state of motion at an initial instant, and the law of
motion is deterministic for them. The question is: will they have the same
state at later instants? If the laws of motion are the same for the two
particles, then they will have the same state at later instants. If the laws
of motion are different for the two particles, then they may not have the
same state at later instants. But this is an impossible situation; since the
two particles have exactly the same properties, the law of motion cannot
distinguish them, and thus it must be the same for the two particles.

Next, I will argue that this impossible situation also appears in a special
Bohmian universe when there are only particles in the ontology of Bohmian
mechanics. Suppose there are two free electrons A and B being in a product
state ¥ (za,to0)p(zp,to) at an initial instant to, where (x4, to) and ¢(x g, to)
are two spatially separated wavepackets. Moreover, the interactions between
these two electrons and the interactions between each of them and the envi-
ronmental particles are so weak that they can be ignored, and thus the two
electrons will keep being in a product state for a long time. The universe
whose wave function is a product state is a very special universe.

If there are only particles in the ontology of Bohmian mechanics, then
we have two Bohmian particles A and B (besides the Bohmian particles



in the environment) in ontology, and the state of motion of each particle
at each instant is represented by its position and velocity at the instant.
The velocity of each Bohmian particle is determined by the guiding equa-
tion: v(x,t) = %VS(x,t), where m is the mass of electron, and S(z,t) is
the phase of the wave function of the corresponding electron. Suppose the
velocities of the two Bohmian particles at the initial instant are the same,
namely v4(za(to),t0) = vp(zp(to),to), where z4(t9) and z5(to) are the ini-
tial positions of the two Bohmian particles, respectively. Then we will have
two Bohmian particles which have the same state of motion at an initial in-
stant (by space translation invariance)ﬂ According to the guiding equation,
when VS4(za(t),t) # VSp(xp(t),t) at a later instant ¢, which is permitted
when the two electrons have different initial wave functions, the velocities of
the two Bohmian particles will be different at the instantﬂ This means that
the Bohmian particles of two free electrons initially have the same state of
motion, but laterly have different states of motion.

This is an impossible situation. Since the two Bohmian particles have
exactly the same properties, the law of motion cannot distinguish them,
and thus it must be the same for them, which means that when they have
the same state of motion initially, they must have the same state of motion
laterly. Note that the two free electrons and the environment are initially in
a product state and their interactions can be ignored, and thus the Bohmian
particles in the environment have no influences on the Bohmian particles of
the two electrons, and the Bohmian particle of each electron has no influences
on the Bohmian particle of the other electron eitherﬁ

4 A general case

The general universal wave function is not a product state but an entan-
gled state. In this case, we need to analyze the effective wave functions of
subsystems of the universe.

Suppose there are two free electrons A and B whose effective wave func-
tion is a product state ©(xa,to)e(xp,tp) at an initial instant ty, where
Y(xa,to) and @(xp,ty) are two spatially separated wavepackets. Moreover,
the interactions between these two electrons and the interactions between
each of them and the environmental particles are so weak that they can be
ignored, and thus the two electrons will keep being in an effective product

2If the two Bohmian particles are in the same initial position, which is permitted by
Bohmian mechanics, then space translation invariance is not needed. In this case, the
wavepackets of the two electrons can still be spatially well-separated.

3Even when the two electrons have the same initial wavepacket centered at different
positions, the velocities of their Bohmian particles may be also different at a certain instant
if the wavepacket assumes a particular form and the two Bohmian particles are in different
positions within the support of their wavepackets at the instant.

41 will analyze the influences of the interactions in more detail later.



state for a long time. In this case, the universal wave function at ty can be
written as

V(za,2B,y,t0) = Y(wa,to)p(zB,t0)0(y, to) + O(zA, 2B,y t0),  (5)

where y is the position variables of all other environmental particles not be-
longing to A and B, ¢(y,t9) and ©(z4,zp,y,to) are functions with macro-
scopically disjoint supports, and the positions of the environmental particles
at time to, Y'(to), lies within the support of ¢(y, to).

As argued before, there are situations in which the Bohmian particles
of the two free electrons initially have the same velocity, but laterly have
different velocities. The key for the general case is to argue that the later
difference of the velocities of the Bohmian particles of the two free electrons
does not completely result from the influences of the environmental parti-
cles. This can be done with two steps. First, when the positions of the
environmental particles, Y (¢), keeps being within the support of ¢(y,t), the
change of the effective wave function of the two free electrons results not
from the influences of the environmental particles, but from its own free
Schrodinger evolution. Next, the change of the effective wave function of
the two free electrons can result in the difference of the velocities of their
Bohmian particles.

In fact, one can even argue that the difference of the velocities of the
Bohmian particles of the two free electrons completely results from the
change of their effective wave function (at least in one inertial frame). In
order to see this, consider an inertial frame in which the Bohmian parti-
cles of the two free electrons have the same zero velocity initially. In this
case, after the initial instant tg, if the effective wave function of the two free
electrons did not change, then their Bohmian particles would still have the
same zero velocity, no matter how the environmental particles move. Only
the effective wave function of the two free electrons changes (due to its free
Schrodinger evolution), can their Bohmian particles have different velocities.

Certainly, after the initial instant ¢y, even if the effective wave function
of the two free electrons does not change in an inertial frame, their Bohmian
particles may also have different velocities lately when these particles have
the same nonzero velocity initially in this inertial frame. The difference of
the velocities of these Bohmian particles may result from the spatial differ-
ence of the effective wave functions of the two free electrons. Moreover, it
can be argued that the difference of the velocities of these Bohmian par-
ticles does not result from the influences of the environmental particles by
considering an extreme case. Suppose the function ¢(y,t) has nodes and the
environmental particles are in one of these nodes before the initial instant
to. Then, the difference of the velocities of these Bohmian particles cannot
result from the influences of the environmental particles, since these envi-



ronmental particles already disappear and no longer exist after the initial
instant toﬂ

Therefore, we also have the impossible situation in the general case.
If there are only particles in the ontology of Bohmian mechanics, then it
is impossible to explain why the Bohmian particles of two free electrons
initially have the same state of motion but laterly have different states of
motion when the influences of the environmental particles can be excluded.
Since the two free Bohmian particles have exactly the same properties and
their motion is not influenced by the environmental particles, the law of
motion must be the same for them, which means that when they have the
same state of motion initially, they must have the same state of motion
laterly.

5 An analysis of subsystems with interactions

The above analysis assumes that the interactions between the two electrons
and the interactions between each electron and the environmental particles
are so weak that they can be ignored. In this section, I will consider the
influences of the interactions and clarify in what sense they can be ignored
in deriving the impossibility result.

As argued above, if there are only particles in the ontology of Bohmian
mechanics, then for two free electrons, the situation that their Bohmian
particles initially have the same velocity but laterly have different velocities
will be an impossible situation. However, for two interacting electrons, the
situation that their Bohmian particles initially have the same velocity and
laterly have different velocities may be not an impossible situation, since
the later difference of the velocities of the two Bohmian particles may result
from the interactions between the two electrons. Thus we need to analyze
how the interactions between the two electrons influence the difference of
the velocities of their Bohmian particles.

According to the Schrodinger equation, there are two evolution terms
that determine the time evolution of the wave function: one is the free
Hamiltonian, and the other is the interactive Hamiltonian. When the inter-
actions between the two electrons and the interactions between each electron
and the environmental particles are very weak, the interactive Hamiltonian
can be ignored when compared with the free Hamiltonian for the time evo-
lution of the wave function of the two electrons. Then, the change of the

5In the final analysis, although the effective wave function of a subsystem is determined
by both the universal wave function and the positions of all other Bohmian particles not
belonging to this subsystem, the role played by these Bohmian particles is only selecting
which function the effective wave function of the subsystem is, while each selected function
is independent of these Bohmian particles and completely determined by the universal
wave function. This conclusion can be reached by a careful analysis of the definition of
the effective wave function, namely Eq..



wave function of the two electrons over time mainly results from its free
evolution, not from the influences of the interactions.

Furthermore, according to the guiding equation, the change of the wave
function of the two electrons over time results in the difference of the veloc-
ities of their Bohmian particles. Then, it is the free evolution of the wave
function of the two electrons, not the interactions between the two electrons
or the interactions between each electron and the environmental particles,
that results in the most of the difference of the velocities of the Bohmian
particles of the two electrons. In other words, the interactions alone can-
not explain the later difference of the velocities of these Bohmian particles.
Therefore, for two interacting electrons, the situation that their Bohmian
particles initially have the same velocity and laterly have different velocities
is still an impossible situation.

6 Can a stochastic law of motion avoid the result?

The above analysis is based on the deterministic law of motion of Bohmian
mechanics. An interesting question is: can a stochastic law of motion avoid
the impossibility result? It can be expected that the answer depends on
the specific stochastic law of motion. As we know, there are stochastic
variants of Bohmian mechanics, a typical one of which is the Bohm-Bell-
Vink dynamics or Vink’s dynamics (Bell, 1984; Vink, 1993; Barrett, 1999,
p.203). In this section, I will analyze this stochastic theory.

The continuity equation in the discrete position representation |z,) for
a one-particle system is:

where

Pu(t) = [{zn [0 (1)) 1%, (7)

Jnm (t) = 2Im(((t) [2n) (@n|H [2m) (xm [ (1)), (8)

where [¢(t)) is the wave function of the system, and H is the Hamiltonian
of the system.

In Vink’s dynamics, the position jumps of the Bohmian particle of the
system are governed by a transition probability T},,dt which gives the prob-
ability to go from position z,, to z,,. The transition matrix 71" gives rise to
a time-dependent probability distribution x,, (for an ensemble of identically
prepared systems), P, (t), which has to satisfy the master equation:

OPn(t)/0t = > (Tum P — Trnn P). (9)

m



Then when the transition matrix 71" satisfies the following equation:

Tnm /B ="> " (TrimPrm — Trun Pr). (10)
m
the above continuity equation can be satisfied.
Vink (1993) showed that when choosing Bell’s simple solution where for

n #
nm hva nm Z
Tom = nm/ J 0 (11)
0, Jum < 0,

the dynamics reduces to the guiding equation of Bohmian mechanics in the
continuum limit.

In this stochastic theory, the velocity of a Bohmian particle in Bohmian
mechanics is replaced by the transition probability of a Bohmian particle,
which gives the probability for the Bohmian particle to go from its current
position to another future position. Thus, the state of motion of a Bohmian
particle includes both its position and its transition probability. Since the
law of motion for the transition probability is deterministic and different
wave functions will lead to different evolution of the transition probabil-
ity, we will have the similar impossible situations as in Bohmian mechanics
(when assuming that the ontology of the theory includes only particles);
two free Bohmian particles, which have exactly the same properties and the
same transition probability initially, have different transition probabilities
later.

7 Conclusion

In this paper, I have argued that the view that the ontology of Bohmian
mechanics includes only particles will lead to certain impossible situations,
such as that two free Bohmian particles, which have exactly the same prop-
erties and the same state of motion initially, have different states of motion
later. There are two possible ways to avoid this impossibility result. One
way is to find a stochastic variant of Bohmian mechanics. Although the
Vink dynamics fails, maybe another stochastic theory may succeed. The
other way is to include the wave function in the ontology of Bohmian me-
chanics. If the wave function is in the ontology, then why the Bohmian
particles of two free electrons, which initially have the same state of motion,
have different states of motion later is because they are not really free but
affected by different wave functions. It remains to be seen which way is a
better way to avoid the impossibility result.

5The probability Ty, dt follows from the normalization relation Zm Trmdt = 1.



References

1]

Allori, V., S. Goldstein, R. Tumulka, and N. Zanghi (2008). On the
common structure of Bohmian mechanics and the Ghirardi-Rimini-
Weber theory, British Journal for the Philosophy of Science 59 (3),
353-389.

Barrett, J. A. (1999). The Quantum Mechanics of Minds and Worlds.
Oxford: Oxford University Press.

Bell, J. S. (1984). Beables for quantum field theory. In Bell, J. S.
(1987). Speakable and Unspeakable in Quantum Mechanics. Cam-
bridge: Cambridge University Press. pp.173-180.

Bohm, D. (1952). A suggested interpretation of quantum theory in
terms of “hidden” variables, I and II. Physical Review 85, 166-193.

Bohm, D. and B. J. Hiley (1993). The Undivided Universe: An Onto-
logical Interpretation of Quantum Theory. London: Routledge.

de Broglie, L. (1928). La nouvelle dynamique des Fields Quanta. In
J. Bordet (eds.), Electrons et photons: Rapports et discussions du
cinquime Conseil de Physique. Paris: Gauthier-Villars. pp.105-132.
English translation: The new dynamics of quanta, in Bacciagaluppi
and Valentini (2009), pp.341-371.

Dorato, M. (2015) Laws of nature and the reality of the wave function.
Synthese, 192, 3179-3201.

Dorato, M. and M. Esfeld (2015). The metaphysics of laws: disposi-
tionalism vs. primitivism. In: Tomasz Bigaj and Christian Wthrich
(eds.), Metaphysics in Contemporary Physics Pozna Studies in the
Philosophy of the Sciences and the Humanities, vol. 104), pp. 403-
424. Amsterdam/New York, NY: Rodopi, Brill.

Diirr, D., S. Goldstein, and N. Zanghi (1992). Quantum equilibrium
and the origin of absolute uncertainty. Journal of Statistical Physics
67, 843-907.

Esfeld, M., Lazarovici, D., Hubert, M. and Diirr, D. (2014). The
ontology of Bohmian mechanics. British Journal for the Philosophy of
Science. 65 (4), 773-796.

Gao, S. (2017). The Meaning of the Wave Function: In Search of the
Ontology of Quantum Mechanics. Cambridge: Cambridge University
Press. pp. 26-28.



[12]

Goldstein, S. (2021). Bohmian Mechanics, The Stanford Encyclopedia
of Philosophy (Fall 2021 Edition), Edward N. Zalta (ed.), https://plato.
stanford.edu/archives/fall2021 /entries/qm-bohm/.

Goldstein, S. and N. Zanghi (2013). Reality and the Role of the Wave
Function in Quantum Theory. In Quantum Physics Without Quantum
Philosophy, pp. 263-278. Berlin, Springer.

Holland, P. R. (1993). The Quantum Theory of Motion: An Account
of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics.
Cambridge: Cambridge University Press.

Hubert, M. and Romano, D. (2018). The wave-function as a multi-
field. European Journal for Philosophy of Science 8, 521-537.

Maudlin, T. (2007). The Metaphysics within Physics. Oxford: Oxford
University Press.

Valentini, A. (2020). Foundations of statistical mechanics and the sta-
tus of the Born rule in de Broglie-Bohm pilot-wave theory. In V. Allori
(ed.), Statistical Mechanics and Scientific Explanation: Determinism,
Indeterminism and Laws of Nature. World Scientific. pp. 423-477.

Vink, J. C. (1993). Quantum mechanics in terms of discrete beables.
Physical Review A 48, 1808.

10



	Introduction
	Bohmian mechanics
	A special case
	A general case
	An analysis of subsystems with interactions
	Can a stochastic law of motion avoid the result?
	Conclusion

