
1 
 

Implementation-as: From Art & Science to Computing [Draft] 

Nick Wiggershaus 

 

__________________________________________________________ 

 

Abstract. This paper vindicates interpretational accounts of physical computation. Specifically, 
recent agential approaches that couch implementation in terms of scientific representation are 
corroborated. Such accounts are strengthened by the introduction of a novel notion: Implementation-
as. Implementation-as is theoretically underpinned by the DEKI-account (Frigg&Nguyen 2018), a 
formalized account of scientific representation relying on Goodman’s and Elgin’s notion of 
representation-as. The ensuing result is a philosophically robust account, satisfying the most 
important desiderata for accounts of computation in physical systems.  The upshot is that physical 
computation occurs when agents use material systems as epistemic tools to compute a function. 
Application of this new framework is illustrated for the case of the MONIAC (an analog device) 
and the IAS-machine (a digital computer). 
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1 Introduction 

Computability theory allows us to formally engage with computation in mathematical terms. 

Studying computation merely in the abstract though, does not provide any details about its physical 

implementation. The basic problems that any account of physical computation must answer are 

(Sprevak 2018; Ritchie & Piccinini 2018): 

COMP The conditions under which a physical system is computing.  

IDENT The conditions that specify that a computational system implements one computation 

rather than another.   

Solving this so-called Problem of Implementation is important for disciplines such as the foundation of 

computer science, AI, robotics, and cognitive science. Subsequently, a huge literature of potential 

candidate frameworks has been presented. Virtually all accounts propagate that there is an 

equivalence relation between the computational formalisms of the mathematical theory of 

computation with the putative computing system. Formally, the idea is to establish a mapping 

between the sequence of states of an abstract model of computation and the state transitions of a 

physical system.  

However, mappings are (too) cheap to come by. Putnam’s (1988) and Searle’s (1992) 

characterizations of physical computation for instance, merely call for a physical state to 

computational state correspondence. While simple and straightforward, such simple mapping accounts 

(SMA)1 render both COMP and IDENT trivial. Accordingly, every (sufficiently complex) 

macroscopic object simultaneously computes all kinds of functions.  As a reaction to the threat of 

pancomputationalism, a plethora of constraints were added to the SMA, resulting in what may be 

called extended mapping accounts (EMA):  

 
1 Baptized by Godfrey-Smith (2009) and arguably popularized by Piccinini (2015), such types of accounts are 
commonly called simple mapping accounts. I follow suit with that terminology.  
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  Extended Mapping Account (EMA) 

1. There is a function f mapping the states sj of SC to states of MC, such that 

2. Under f, the physical evolution/state transitions sj→  sj+1 are morphic to the formal state 

transitions mi→  mi+1 of MC (specified by δ), where f(sj)= mi. 

3. f is constrained by extra conditions.  

Many philosophers concerned with computation argued that the material implication of physical 

state transitions is too permissive, allowing for too many computational structures. In due course, 

many argued that physical computation needs to obey counterfactual state transitions (see e.g., 

Copeland (1996)). In other words, if the system SC had been in a physical state that maps onto mi, 

it would have evolved into a state that maps onto mi+1. Others formulated similar requirements in 

terms of a suited causal structure (Chalmers (1996), Scheutz (1999)) or dispositional theories (Klein 

2008). Additionally, widely embraced refinements of the SMA have been formulated in mechanistic 

terms (e.g., Milkowski (2013), Fresco (2014), Piccinini (2007, 2015)).  In so far as mechanisms have 

a causal structure/are said to have counterfactual state transitions, the mechanistic account can be 

interpreted to follow the strategy of constraining the SMA. Accordingly, computation must be 

implemented in specific computational mechanisms. 

In order to judge such competing accounts of computation, Piccinini (2007; 2015) presented a 

convenient heuristic to evaluate them. Five desiderata were advanced:2   

Desiderata of Physical Computation  

(1) Objectivity: An account of physical computation should make it, at least in part, a matter of 

fact whether a system is implementing a computational function. The intention is to align 

computation with scientific practice and scientific objectivity. 

(2) Extensional Adequacy: An account of computation should avoid triviality (the main 

shortcoming of the SMA); in slogan form, it should proclaim that the right things compute 

(laptops and perhaps brains) and the wrong things do not compute.  

(3) Explanation: The computations performed by a material system should, at least partly, 

explain its behavior and capacities 

(4) Miscomputation: Sometimes, computation goes wrong. An account of physical computation 

should account for faulty behavior.  

(5) Taxonomy: An account of computation should be able to untangle the different 

computational capacities of different systems (e.g., general purpose or fixed purpose; 

analog, digital, or quantum). 

To date, arguably no account of physical computation has championed all the others.3 In fact, 

recent scholarship has seen the emergence of yet another new way to characterize concrete 

computation. The common denominator of this cluster of literature is to couch the implementation 

relation between MC and SC in terms of scientific representation and modeling. Importantly, these 

views do not suggest that computation comes about when an abstract computational model 

describes or represents a physical system – instead, it is the other way around! Simply put, the idea 

 
2 I follow a slightly adjusted version of Duwell (2021) which merged “the right things compute” and “the wrong 
things don’t compute” under ‘extensional adequacy’.  
3 Of course, it is a viable option to take a pluralistic stance with respect to accounts of computation.  
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is that concrete computing systems implement their ‘target’ (a model of computation) analogous 

to how material models represent their target. For instance, when developing a model of 

computation called L-machines, Ladymen (2009) suggests that physical computation might be 

contingent on (scientific) representation. Another case in point is Care’s (2010) historical study 

shedding light on the use-centric history of analog computing as modeling. Likewise, but from a 

philosophical angle, Papayannopoulos (2020) highlighted the conceptual commonalities between 

analog computers and analog models (when developing a notion of analog computation).  Arguably 

the technically most detailed account in that vein today is the Abstraction/Representation (AR) Theory 

introduced by Horsman, Stepney, Wagner, and Kendon (2014) and developed further in several 

publications.4 Horsman and collaborators provide sophisticated ‘commuting diagrams’ in virtue of 

the representational triple 〈𝑚𝑖, 𝑓, 𝑠𝑗〉, where f is perceived as scientific representation, and mi and sj 

corresponding computational and physical states, respectively. Subsequently, Fletcher (2018), 

Szangolies (2020), and Duwell (2021) critically assessed (AR) Theory under philosophical 

considerations and concluded that the approach is a viable contender when formulated in agential 

terms. And more recently Wiggershaus (2023) argued that such agential accounts offer an avenue 

to unify different notions of implementation in computer science. 

I believe that the development to philosophically characterize computation in virtue of 

scientific representation is worthwhile pursuing because it offers acumens of an already established 

discourse on how to render an equivalence relation between mathematical entities and physical 

objects. However, so far, there remains a lacuna with such views: The range of accounts of scientific 

representation has mushroomed in recent decades and is at least as nuanced as the field of physical 

computation. Accordingly, we need to answer ‘Which account of scientific representation should 

one rely on?’ – else this novel approach remains uninformative or even disputable.5 This paper sets 

out to respond to such issues by developing the novel notion of implementation-as. Implementation 

as specifically builds upon the DEKI account of scientific representation (which was devised by 

the notion of representation-as from the philosophy of art).  

In what follows, the paper is organized as follows: Section 2 introduces the notion of 

representation-as by Elgin and Goodman, based on which the DEKI account was devised. To 

facilitate discussion, I follow Frigg and Nguyen in introducing their account in terms of the 

MONIAC (a hydraulic analog computer). Subsequently, in section 3, I transpose the features of 

the DEKI account to the realm of computing. Thereafter, section 4 demonstrates how 

implementation-as applies to a proper digital computing device – the historical example of the very 

influential IAS-machine. Finally, before concluding, I briefly evaluate the here newly introduced 

agential notion of implementation along the five desiderata of physical computation. 

 

 

 

 
4 Horsman (2015, 2017), Horsman Kendon, Stepney, (2017, 2018) and Horsman et al. (2017). 
5 Utilizing different notions of scientific representation may result in significantly different accounts of concrete 
computation. For instance, if one were to subscribe to a view like Suppes’ (2002), i.e., scientific representation is a 
relation merely reducing to isomorphisms between structures, then computation would be too (nowadays, the 
‘isomorphism-view’ is considered questionable though Suárez (2003)). If, on the other hand, one were to follow  
Cohen & Callender (2006), according to whom anything may represent anything else, then scientific representation-
based computation would be in danger of collapsing into pancomputationalism. 



4 
 

2. Scientific Representation, Representation-as, & DEKI 

2.1 From Art to Science  

Scientific representations concern a wide array of phenomena. One may use diagrams, 

mathematical equations, or material objects for representations in science. Most generally, any 

representation that is the result of scientific practice may be deemed a scientific representation. In 

this paper, we are primarily interested in the case of (material) scientific models and how they 

represent.    

According to the representational conception by Giere (1999), scientific models are used by scientists 

to represent some (real-world) system. Scientists use models and their representational capacities 

as a surrogate to reason about target systems (e.g., explanation, prediction, confirmation) (Swoyer 

1991). Scientific representation then may be characterized as the relation f between a model M and 

its dedicated target system T, such that 𝑓: 𝑇 → 𝑀. One may use material or theoretical models and 

either concrete or hypothetical target systems (Weisberg 2013). Despite this seemingly simple 

conception, philosophers of science identified many problems and questions associated with 

scientific representation in recent decades (Frigg&Nguyen 2020a).  

One successful problem-solving strategy has been to seek answers in the study of art and 

languages. A case in point is the notion of representation-as, introduced by Nelson Goodman and 

Catherine Elgin (Goodman 1976; Elgin 1983). According to their theory of symbols, there are three 

fundamental ‘modes of reference’: (i) representation-of; (ii) Z-representation; and (iii) 

representation-as. This tripartite distinction stems from the observation that many representations 

represent an object as something else. A common pictorial example is caricatures. Take for instance 

the depiction of Winston Churchill as a bulldog.  Letting ‘X’ stand for the representing thing (a 

caricature); ‘Y’ for the thing represented (Winston Churchill); ‘Z’ stands for the kind of 

representation (a bulldog). The caricature features all the relevant distinctions of representation at 

once. First, the caricature is a representation-of Churchill, because it denotes the former English 

Prime minister. Secondly, the caricature is also a Z-representation, where here ‘Z=bulldog’ since it 

exemplifies the features of a bulldog. Thirdly, the caricature represents Churchill as a bulldog, 

because the bulldog features (such as being stubborn or resilient) are imputed to him. In the 

remainder of the paper, such XYZ-triplets with their corresponding notions of denotation, 

exemplification and imputation will be chief for understanding the notions of representation-as 

and implementation-as, respectively.  

Subsequently, philosophers such as Hughes (1997), Elgin (2010, 2017), and van Fraassen (2008) 

appropriated the representation-as conception to the scientific realm. In what follows, I introduce 

what arguably is the most sophisticated of such accounts: Frigg and Nguyen’s DEKI account.  

 

2.2 The DEKI account 

In a recent number of publications, Frigg & Nguyen (2017 2018, 2020a, 2020b) introduced their 

so-called DEKI account, providing a full-fledged and systematized account of scientific 

representation based on representation-as.  The DEKI account applies both to material models 

and non-concrete models.  I follow suit with the authors to discuss the account based on a material 
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model – the Philips-Newlyn machine (also known as MONIAC).6 As we will see, under different 

assumptions, the very same device may be regarded as a special purpose hydraulic analog computer 

instead of a scientific model. It thus serves as an ideal gateway for establishing a link between 

scientific representation and implementation.  

Before introducing the DEKI account’s most salient features, I first acquaint ourselves with 

the MONIAC to have a more demonstrative discussion.7 Standing about 2m tall, more than 1m 

wide and almost 1m deep, the device comprises several see-through plastic tanks and tubes filled 

with colored water. Attached to the tanks are pulleys, sluices, gauges, and pens (used to plot graphs). 

The design of the machine uses pumps and gravity to let water accumulate in different reservoirs 

containing floats that drive the different components in the mechanism depending on the water 

level. Qua scientific model, the purpose of the machine is to model a national economy by the 

circular flow of water – the flow of the water stands for the exchange of commodities. Each of the 

machine’s tanks corresponds to different features of an economy (national income, governmental 

spending, etc.).  Depending on the configuration of the mechanical components of the MONIAC, 

different amounts of water accumulate in the different tanks, allowing to model various economic 

scenarios. Fig. 1 shows a simplified scheme of these components and how they enable the device 

to work in connection with the notion of representation-as.  

 

 

Fig. 1: Schematic depiction of the MONIAC at work, representing an economy through the flow 

of water. Applying the XYZ-triplet and the corresponding notions of denotation, exemplification, 

and imputation to a scientific context results in the notion of representation-as. Roughly put, X 

takes on the role of the (material) model (e.g., a tank filled with water); Y takes on the role of the 

target (e.g., an economy); Z takes on the role of the exemplified features of the representing object.  

 

 

 
6 The name MONIAC (standing for ‘Monetary National Income Analog Computer’) is more common in the US, 
where the coinage of the term was due to economist Abba Lerner “to suggest money, the ENIAC, and something 
mechanical.” (Fortune 1952, 101).  
7 Multiple authors have provided technical descriptions of the machine, its underlying economic theory, and its 
history (see e.g., Phillips 1950; Newlyn 1950; Barr 1988; Bissel 2007; Morgan 2012, 172-216).    
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However, there is an important difference when applying the XYZ-triplet to models like the 

MONIAC as opposed to caricatures. Whereas the latter can rather straightforwardly be identified 

as e.g., a bulldog-representation, it is much less obvious how the MONIACs water-filled pipes and 

tanks are supposedly an economy-representation. The problem is that the machine does not 

instantiate actual economic features. For the sake of modeling, scientists hence need to translate the 

flow of water into the ‘flow’ of commodities under an agreed-upon interpretation. As Morgan and 

Boumans (2004) explain, there is a long tradition in economics of relying on the metaphor that certain 

economic things behave like water. For such metaphors to be useful, scientists may only use the 

MONIAC as an economy-representation under a specific, highly non-trivial interpretation. “When 

we come to build a model based on the metaphor, we have to make commitments about exactly 

what we mean.” (Morgan and Boumans 2004, 8). As I will explain further down below, similar 

commitments about specific interpretations are paramount for computation, too. 

Frigg and Nguyen suggest formalizing these considerations through Elgin’s and Goodman’s 

analysis of representation in the art world. In case of the MONIAC,  

“[…] the idea behind the machine is that hydraulic concepts are made to correspond to economic 
concepts. This means that we turn system of pipes and reservoirs into an economy-representation 
by interpreting certain selected X-features as Z-features. The water in a certain reservoir is 
interpreted as money being saved; the level of water in the reservoir is interpreted as a quantity of 

money; and so on.” (Frigg & Nguyen 2020a, 166) 

Denotation, exemplification, and imputation thus constitute the core of representation-as and find 

application in their full-fledged account of scientific representation. To be informative in the 

scientific arena though, a fourth element – the notion of a ‘key’ – is introduced. Keys are meant to 

adjust model features to target features, because typically model features can rarely be transferred 

unaltered to a target (e.g., one may need a scale factor or a conversion of units). Together these 

four salient features form the acronym DEKI. In sum, the following picture emerges:  

 

DEKI-account 

A model is defined as an ordered pair 𝑀 = 〈𝑋, 𝐼〉, where X is an object and I is an interpretation. 

I is what turns a selected object X into a model. M represents Y as such and so iff conditions (1)-

(4) are met: 

(1) An interpreted object X (the model M), like the MONIAC, denotes a target Y (e.g., the British 

economy).  

(2) M exemplifies Z-features. For instance, to be an economy representation, the MONIAC 

needs to exemplify economy-features (Z-features). However, often scientific models do not 

directly exemplify the required Z-features. The MONIAC e.g., is nothing but a 

sophisticated collection of pipes and tanks filled with water; it only has such-and-such 

dimensions, weighs so and so many kg, has n-number of components, etc. It merely 

instantiates the flow of water; it does not realize economic features such as the exchange 

of commodities. To turn such a model’s features into the required Z-features, we need to 

resort to the interpretational capacities of the designers and users. Only under a specific 

agreed-upon interpretation I are the scientists licensed to translate features of their model 

into Z-features I :X → Z.  
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(3) There is a key K that systematically translates the exemplified Z-features {Z1,…, Zn} of the 

model,  into another set of Y-features (the features of the target). In the case of the 

MONIAC, units of volumes of water (that are interpreted as the flow of commodities) 

must be translated into units of a specific currency. Furthermore, the time of the machine 

operating must be translated into the time of economic cycles. Depending on the denoted 

target, a key may associate one liter of water with e.g., 1 million pounds or 5 million US 

dollars.  

(4) M imputes at least one of the ‘keyed-up’ features to the target. If the users of the MONIAC 

are interested in say, only tax revenue, they might only impute one single feature 

(corresponding to tax revenue) to the target.  

In sum, the result is an intentional conception of scientific representation, as all its features (1)-(4) 

require different interpretations in the form of intersubjective agreements of the scientists using 

them. Through the selection of an appropriate material system, target phenomena are represented 

as something else. The MONIAC for instance represents the flow of money as the flow of water.   

 

3. From Science to Computing: Implementation-as 

Transposing the just introduced DEKI framework to the notion of implementation in computer 

science results in the introduction of the novel notion of implementation-as. The successful 

transposition requires an adaptation of the original DEKI account to the computing context. In 

the following four subsections, I illustrate how the adjustment from the scientific arena to 

computing plays out. The discussion unfolds along the most salient features of the DEKI account, 

viz., denotation, exemplification, keying-up, and imputation.  

 

3.1 Denotation  

Generally, we need to think of denotation as the dyadic relation of a name (or label) and a bearer 

it applies to. The relation is established by an interpretive act. Elgin, for instance, states that 

“[r]epresentation- of— that is, denotation— can be achieved by fiat. We simply stipulate: let x 

represent y and x thereby becomes a representation of y.”, (Elgin 2017, 253). Whilst originally a 

linguistic concept, she argues that there is nothing intrinsic in the notion of denotation that would 

restrict it to language only. Both symbols and what they denote can be of many different types. 

Consequently, Goodman and Elgin both apply denotation to other instances: 

“Pictures, equations, graphs, charts, and maps represent their subjects by denoting them. They are 
representations of the things that they denote. [...] It is in this sense that scientific models represent 

their target systems: they denote them.” Elgin (2010, 2; own italics) 

In the scientific context, denotation is taken to establish a connection between a model X and its 

intended target Y. Put differently, denotation establishes which target is supposed to be 

represented. Now, I submit that denotation applies mutatis mutandis to physical computation.  

At first, this one may not strike as surprising for denotation is also not an unfamiliar notion in 

computing. For instance, the notion of denotational semantics is paramount for computer 

scientists to formally determine the meanings of programming languages. Likewise, when following 

popular interpretations that computers are symbol manipulators, one may subscribe to the view 

that the manipulated symbol structures denote information, data, etc. In the literature of physical 

computation, the so-called semantic accounts turn such a reading into a philosophical approach: as 
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Fodor (in)famously proclaimed, there is “no computation without representation.”, (Fodor 1981, 

180). The slogan especially embraces the metaphysical assumptions underpinning those branches 

of cognitive science that maintain that the brain computes. Exemplary of the ‘aboutness’ of neural 

computation is Marr’s hypothetical case of the apocryphal grandmother cell (a cell that fires only 

when one’s grandmother is in sight) (2010, 15). Today, semantic accounts may come in vastly 

varying degrees of commitment to what kind of processing of representations is essential for 

computation. More recent versions, for instance, may share the most salient constraints of some 

of the EMAs (e.g., causal, counterfactual, or disposition) but call for the additional condition that 

computational states must be representational (see Shagrir (2020) for an overview). 

However, implementation-as should not be characterized as just another semantic account. 

Importantly, when it comes to implementation-as the choice of the potentially denoted target is 

restricted to the to-be-implemented sequence of computations. So, in contrast to Marr’s example, 

denotation may not be used to establish a dyadic relation to one’s grandmother or any other 

external events, etc. Here the notion is exclusively reserved for the relation between a material system 

and a computational formalism P which specifies a sequence of computations.  

Denotation: Establishing which computational formalism P is supposed to be implemented in 

the putative material computing system.  

As such, one of the key features of denotation (as a stipulative act) is that it enables the 

programmers and users to specify which sequence of computations ought to be implemented. 

Without denotation, we were not able to determine which computational formalism or program P 

(instead of Q, R, S, …) is originally intended to be run by the material device.  What’s correct 

behavior in the execution of P, may count as malfunctioning (miscomputation) of Q. And without 

knowing what is supposed to be computed, we would be unable to judge correct implementations 

from faulty ones. A prominent case from the philosophical literature is captured by Kripke’s remark 

about Wittgenstein’s hypothetical rule-following machines:  

“How is it determined when a malfunction occurs? By reference to the program of the machine, as 
intended by its designer, not simply by reference to the machine itself. […] Whether a machine ever 
malfunctions and, if so, when, is not a property of the machine itself as physical object but is well 

defined only in terms of its program, as stipulated by its designer.”, (Kripke 1982, 34f)  

Assigning a physical system or device with performing a certain task rather than another is not 

exclusively limited to computation, but rather ubiquitous to technology. In computing specifically 

though, we then assign the teleological function to compute a specific mathematical/computational 

function P to a material system; denotation is chief for specifying which computational function P 

is supposed to be implemented. What makes function ascription (in the teleological sense) a special 

case when it comes to computing is that we exclusively assign the execution of a rule or 

mathematical/computational function to a system. When assigning teleological functions like brewing 

coffee to a coffee machine, driving screws into a wall to screwdrivers, etc., the assigned functions 

concern physical properties and activities (e.g., pouring hot water onto ground coffee) and not 

formal, mathematical, or computational ones. This raises the question, how can concrete material 

systems exemplify computation?  
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3.2 Exemplification  

In principle, all different kinds of physical properties can be used as computational vehicles. 

Computing systems may work based on the change of mechanical components, electronic 

components, biological components, and so on. Accordingly, computations are commonly held to 

be multiply realizable. It is this multitude that raises the vexing issue of COMP – given that, almost 

anything can be used for implementation, how can one determine its extensional adequacy?8 While 

previous accounts of physical computation came up with various ingenious conditions and 

constraints to the SMA to answer which systems compute (and which ones don’t), the current 

contribution frames the problem in terms of exemplification.  

As we have seen, different objects and systems exemplify different properties in different 

manners. Caricatures may exemplify bulldogs by pictorial means. And beyond the art world, 

properly working coffee machines, for instance, exemplify some concrete mechanism allowing 

them to brew coffee.  In the scientific context, we established that models like the MONIAC 

additionally require an interpretative component, for the hydraulic device does not literally 

exemplify economic properties on its own.  

Now, I maintain that physical systems exemplify computational properties in virtually the same 

way as interpreted models exemplify their features – through interpretational exemplification. Put 

differently, interpretational exemplification allows physical systems (the putative computing device) 

that would otherwise simply count as mechanical, hydraulic, or electronic, to be turned into 

computing systems. 

Interpretational Exemplification: I: X → ZC. Turning selected X-features into 

computational states ZC through an interpretation.  

Importantly, two components are necessary for interpretational exemplification to be fruitful. On 

the one hand, a suitable kind of interpretation. On the other hand, we also require a suited physical 

substrate (X-feature) as well. As I will explain below, not every arbitrary object is suited to be a 

computational vehicle. Only when these two combined elements act in concert, does this novel 

hybrid approach avoid the pitfalls of interpretational pancomputationalism.  

To elaborate on how this works, we need to have a closer look at how ‘interpretation’ is 

employed.  In the philosophical literature, interpretational accounts of computation have often 

been shunned for being overly flexible. Without any constraints on the interpretational freedom, 

potentially every material object could be trivially turned into a computer by mere stipulation. The 

trick to overcoming these worries is to remember that we already solved a similar issue when using 

the MONIAC and its flow of water as a metaphor to represent the exchange of goods in an 

economy. For instance, when presenting the DEKI account the authors remind us that 

“[w]hile one is initially free to choose [X]-properties and Z-properties freely, once a choice is made, 
representational content is constrained. […]  Free choices, once made, are highly constraining. This 

is why models are epistemically useful.” (Frigg & Nguyen 2018, 214) 

In the same vein, it is a necessary condition that the selected X-features (and their interpretation 

as computational states) of the computing system need to be held fixed. In other words, the 

interpretation needs to turn selected features of the material device into computational states under 

a one-to-one relation. Choosing a different set of states X = {X1,…, Xn} and turning them into 

 
8 I.e., what counts as proper computation and what doesn’t; cf. (2) of the adequacy criteria. 
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computational states requires a new interpretational process for every new candidate set of 

computational vehicles. Whilst this fixation is necessary to employ objects like the MONIAC as a 

computational device, they do not suffice though. Taking a rock or wall, arbitrarily picking out 

some of their properties as X-features and holding these fixed, still does not turn them into useful 

computers 

That’s where the second crucial element of exemplification comes into play. Importantly, 

appropriate interpretations should only be applied to physical features or carriers that demonstrate 

a sufficient degree of counterfactual state transitions.  This demand finds its way into the current account 

since it is both in line with the literature of scientific representation and an overwhelming consensus 

in physical computation discourse. Consequently, agents need to choose (and oftentimes build) 

potential computational vehicles that exhibit a reliable degree of counterfactual dependence. Such 

counterfactual support is chief for using both scientific models for surrogate reasoning and turning 

computational devices into epistemically fruitful instruments. Compare the following two quotes. 

Concerning scientific models, Bokulich for instance reminds us that  

“[…] in order for a model M to explain a given phenomenon P, we require that the counterfactual 
structure of M be isomorphic in the relevant respects to the counterfactual structure P. That is, the 
elements of the model can, in a very loose sense, be said to “reproduce” the relevant features of 
explanandum phenomenon.” (Bokulich 2011, 39) 

In the same vein, Piccinini provides a summary in his (2015, 19-25), showing that it is wide 

consensus that the microphysical state transitions of a material system that is deemed computing, 

requires counterfactual support: 

“In other words, the pure counterfactual account requires the mapping between computational and 
microphysical descriptions to be such that the counterfactual relations between the microphysical 
states are isomorphic to the counterfactual relations between the computational states.” (Piccinini 
2015, 19) 

What this means in the case of the MONIAC is that different calibrations of the knobs, valves and 

tanks filled with water need to bring out reliable changes in behavior. ‘If the input/initial conditions 

had been different’ the output must be different accordingly. Such counterfactual support is crucial 

for the implementation of a computational function. Only if the X-features are chosen in such a 

way that different set-ups yield different interpretable outputs can material models/computers such 

as the MONIAC be used to model target systems like an economy or a computational formalism.9 

Controlling these counterfactual dependencies of computational devices is what enables to 

physically program these machines and use them to compute functions.   

 

3.3 Encoding a Labeling Scheme 

To recap, while denotation specified which computational formalism is supposed to be 

implemented, interpretational-exemplification imposes which properties of a putative computing 

system are taken to be as computational states. So far, these two steps are insufficient for the 

implementation of computations, for we only determined that something may act as a computer 

(not what it actually computes). Scholars of physical computation widely agree though that one 

 
9 These computational states correspond to a model of computation; in the case of the MONIAC, the model of 
computation is characterized by a set of differential equations. Often, the seminal paper by Pour-El (1974) is taken as 
the theoretical basis for models of analog computation. For a survey of such different models see Bournez & Pouley 
(2021).  
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needs to specify the conditions that a computational system implements one computation rather 

than another (IDENT). Now, in order to relate exemplified computational states to a specific 

model of computation, we need to define for what kind of computations they are employed.  

One crucial aspect for determining such a computational profile is to allude to the notion of a 

key. According to DEKI, exemplified properties are ‘keyed up’ with properties that are supposed 

to be imputed to the target. While the name ‘keying-up’ is inherited from the DEKI account, I 

suggest resorting to the more common terminology used in computing, where the discussion is 

usually framed under the label of encoding or fixing a labeling scheme (cf. Copeland (1996)).  

Encoding a labeling scheme: Relating the set of interpreted computational vehicles ZC with 

a set P={P1,…, Pj} of states that are presumed to be imputed to the targeted computational 

formalism. 

In what follows, I introduce the arguably two most relevant types of encodings for computing.10 

The two types roughly correspond to analog and digital computers respectively.11  

The first type of encoding essentially hinges on the same idea as the keys employed in material 

(scale) models. Certain physical magnitudes of the material model are selected (through 

exemplification) to scale with some chosen features of a target system. Weisberg (2013) for 

instance, discusses this at length based on the San Francisco Bay–Delta model and more recently 

Pincock (2022) based on a scale model of Lituya Bay for modeling giant rockslides generated 

impulse waves (a tsunami). Importantly, in the majority of cases, one cannot simply take the chosen 

X-features and directly impute them to the chosen target Y. In the case of the just mentioned scale 

models e.g., the key is not simply equivalent to the scale factor, because one must take into account 

that the fluid dynamics doesn’t scale completely proportional.12 Very similar keys are necessary for 

scaling in analog computers in general. Ulman, for instance, describes that machine units of a given 

analog machine must be adjusted to the denoted computational problem (cf. Ulman (2013, 55 and 

123-14) and Ulman (2020, §2.1 and 58)).  

Based on the work of Lewis (1971), Maley formalized this idea, developing the so-called Maley-

Lewis account that’s supposed to cover the case of analog computation. Simply put the Maley-Lewis 

account captures the idea of scaling, i.e., the more the representing physical magnitude ZC increases 

or decreases (in a systematic way), the more the property that’s denoted in- or decreases. These 

insights yield the formulation of the first type of encoding (cf. Maley (2011, 124)): 

Type 1: Encoding (Scaling) by magnitude. As Z increases (or decreases) by a margin d, 

Q increases as a linear function of X+d (or X-d); E:Z →P. 

When it comes to the implementation of digital computation though, a digital labeling- scheme is 

needed. As Maley explains, numbers are typically represented by (i) a series of digits (numerals) and 

 
10 Whether the two types of keys are exhaustive or not, such that there might be other kinds of keys relevant for 
computing – for instance, in the case of quantum computing – is the subject of future research. 
11 In the context of computing, the digital/analog distinction is a vexed issue; simply put there are two major camps: 
According to one view, analog computation is understood as an analogy (the behavior of a damped spring-mass might 
be modeled by electronic components that analogously showcase similar behavior); according to the second view, 
the operation of an analog computer should be understood based on the manipulation of continuous values.  An in-
depth exorcism of the analog/digital distinction lies beyond the scope of this paper.  
12 And in the case of the MONIAC, we don’t even have a scale model of a Keynesian economy at all, but an object 
where certain features are selected (X-features) such that their covariation tells us something about the denoted 
target Y. Remember, physical quantities like ‘flow of water’ must be related to ‘flow of money’ via a system of units. 
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(ii) a base.13 A digit series is then interpreted as the relative value of the digits.  Translating this idea 

into a digital version of a key, the second type of encoding is defined as:  

Type 2: Encoding digitally (labeling scheme). A digital encoding E: Z →P represents 

a number/symbol via its digits, where ‘digit’ means a numeral in a specific place. In addition, 

we require a base, which is used to interpret the relative value of digits.14  

Having elucidated how to determine a computational profile, implementation-as requires a final 

step.  

 

3.4 Imputation  

Lastly, imputation is the final necessary component of the implementation-as framework. As a first 

stab, “imputation can be analyzed in terms of property ascription”, (Frigg and Ngyuen 2018, 217). 

Let me briefly return to the scientific modeling context for the sake of clarifying what kind of 

properties are ascribed to what. When scientists use a scientific model to reason about a target 

system, they must be able to ascribe features of the former to the latter 𝑓: 𝑇 → 𝑀. Put differently, 

we may thus say that the model imputes features to the target. The MONIAC, a material model, 

imputes its exemplified (under an interpretation) economic features to the dedicated target. I 

propose to appropriate this practice to computing, such that material systems implement a 

computational formalism (the analog to the target) by relying on imputation. 

The reason why we appropriate imputation from representation-as to computing is that we 

want to systematically relate the interpreted and encoded computational vehicles of a material 

system to the denoted computational formalism (cf. steps (1)-(3)). As such, imputation has a 

comparable function to the mathematical notion of a morphism (relating physical states and 

abstract computational states) evoked by the EMA.  

Imputation: Ascribing encoded computational states to a computational formalism.  

But what are the ramifications of referring to the relation as an ‘imputation’ instead of a mapping? 

The philosophically relevant message is that the mapping is stipulated by human agents: As an agential 

theory of implementation, implementation-as relies on a, at least partly, mind-dependent notion of 

computation – we use devices as an aid for our computational goals which otherwise would need 

to be carried out by hand or in one’s head. Imputation can be understood as the notion that relates 

the interpreted and encoded computational vehicles of the surrogate system we use for 

computation with the computational problem we wish to be solved. Implementation-as advocates 

for a stipulated implementation-relation. Such a relation has two principal advantages.  

First, the advantage of a stipulated implementation relation is that it does not stand at odds 

with the state-of-the-art insights of applied mathematics. Called the application- or bridging problem, 

philosophers of applied mathematics seek to address the notorious issue of how the mathematical 

relates (or bridges) to the physical. In a nutshell, the problem is that mere morphisms between 

physical states and mathematical/states do not obtain, because strictly speaking functions only 

obtain between set-theoretic structures (and physical substrates do not offer such a unique 

 
13 By understanding ‘numbers’ in a loose sense, the method can be applied to symbols that are part of an alphabet.  
14 Formally, the digital representation of a number ‘𝑑𝑛 𝑑𝑛−1 … 𝑑1 𝑑0′ is captured by the formula (𝑑𝑛 × 𝑏𝑛) +
(𝑑𝑛−1 × 𝑏𝑛−1) + ⋯ + (𝑑1 × 𝑏1) + (𝑑0 × 𝑏0). In base 10 “sixty-five” e.g., is hence represented as “65” 
(6*10)+(5*1).  
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structure (Psillos 2006, van Fraassen 2008)). In response, most recently suggested solutions to the 

bridging problem state that the mappings between the physical and mathematical are mind-

dependent (Pincock 2004, Batterman 2010, Bueno&Colyvan 2011, Nguyen&Frigg 2017). Put 

differently, at least some stipulations of agents are needed to create a structure and hence bridge the 

gap between abstract mathematical objects and concrete physical states.  

Now, in so far as theories of implementation need to spell out how logico-mathematical models 

of computation relate to the physical, the problem of implementation is a special instance of the 

application/bridging problem (Wiggershaus 2023). Therefore, if not specified otherwise, accounts 

of physical computation should preferably be in line with the insights of the philosophy of applied 

mathematics. Imputation (a mind-dependent notion) is explicitly compatible with this demand. 

Accordingly, computational vehicles are associated with the logico-mathematical states of the 

implemented computational formalism.15 

The second advantage and essential feature of imputation is that it bears a normative 

component – the pairing of exemplified features with features of the computational formalism can 

be right or wrong, hence explaining miscomputation. What’s right is determined by the denoted 

computational formalism. Again, mere morphisms seem to fail the miscomputation-desideratum.16 

While the denotation-relation constitutes what is supposed to be implemented, imputation is the 

relation that pairs exemplified computational states and formal computational states (of the target). 

Only when imputation matches all the elements of the physical computational states required for 

a series of computations, then the denoted program P might be implemented correctly. Strictly 

speaking, if there is a mismatch, the system may compute in a way it should not; it is said to 

miscompute.17  

 

3.5 Taking Stock 

Subsuming the various elements appropriated from the scientific representation discourse results 

in a novel agential theory of implementation: 

Implementation-as 

Let the ordered pair C=⟨X, I⟩ be a computational device, where X is a material system and I 

an interpretation. Let P be the computational formalism/program. C implements P as ZC iff all 

the following conditions are satisfied: 

(1) C denotes P.  

(2) C exemplifies Z-properties Z1,…,Zn under and interpretation I :X → ZC.  

(3) C comes with a computational encoding associating the set {Z1,…, Zn} with a (possibly 

identical) set of properties {P1,…, Pm}. E{Zi}={Pj} 

(4) C imputes at least one of the properties P1,…, P m to P. 

 
15 The argument may pose a problem for naturalized or mind-independent theories of implementation. The 
seriousness of this threat may be subject to future research.  
16  For essentially the same argument against using morphisms in accounts of scientific representation see (Suárez 
2003). 
17 There are various ways in which this computational norm can be broken. Fresco & Primiero (2013), offer a 
detailed taxonomy of the miscomputation of software, stating that miscomputation can occur at any level of 
abstraction, ranging from faulty specifications, through the algorithmic level, down to the machine. At the abstract 
physical interface, errors might be due to wear and tear or insufficient counterfactual support (Schweizer 2019, 38-
40). 
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The resulting framework is baptized implementation-as for acknowledging the influence of the 

representation-as from the art and science. More explicitly, the account structurally resembles Frigg 

and Nguyen’s DEKI account of scientific representation (of material models). For remember, 

instead of using a material scientific model (based on an interpreted object X) to represent a target 

system Y as thus-and-so, the core idea here is to use a physical system (based on an interpreted 

object X) to implement a series of computations or a program P. Put simply, the computational 

formalism can be regarded as the target that’s supposed to be implemented. Both scientific 

representation and physical implementation are instances of object-based reasoning. In the former 

case, we manipulate and interpret a material model as a surrogate to reason about a target 

system/phenomenon. Concerning the latter, we configure and manipulate (i.e., program) a physical 

computing system to obtain the result of a computational function.  As such, almost the entire 

DEKI-analysis of the MONIAC qua scientific model equally well applies to the machine when 

interpreted as an analog computer. Rather than representing a national economy, the device 

implements a specific model of computation.  

Having spelled out the main features of implementation-as, the remainder of the paper 

demonstrates how implementation-as applies to a case study (sect. 4) before philosophically 

evaluating the novel theory (sect. 5).  

 

4. Case Study: The IAS-machine  

The goal of this section is to briefly illustrate how the notion of implementation-as can be insightful 

beyond theoretical discussion and the peculiar case of a special purpose analog hydraulic computer. 

For so doing, I apply the theoretical framework I have just outlined to a well-known and influential 

device: The IAS-machine.18 It embodied the architectural principles of what’s nowadays still 

commonly used and referred to as von Neumann architecture. I first introduce the device’s basic 

components and how it was programmed in some detail (sect. 4.1), before demonstrating how 

implementation-as sheds light on how it implements physical computation (sect. 4.2). 

 

4.1. Technicalities and Programming 

The IAS-machine was one of the first binary stored-program computers, storing instructions and 

data in the same memory. For enabling these features, different components need to act as different 

computational states. The designers relied on vacuum tubes for the circuitry and Williams tubes 

(cathode ray tubes) for the memory. These components then formed three basic units: 19    

1. The main memory unit (M) 

2. The Central Processing Unit (CPU): Containing Control-Unit (CU) and Arithmetic-Logic 

Unit (ALU)  

 
18Multiple authors have provided technical descriptions of the machine, how it was programmed, and its history 
(Burcks et al. 1946; Estrin 1952; Ware 1953; Bigelow 1980; Burcks 1980; Aspray 1990; Priestley 2018). The device is 
a stored-program digital computer. Constructed over the course of six years by a team of scientists and engineers 
under the leadership of von Neumann at Princeton’s Institute of Advanced Studies (IAS), the machine was finalized 
in 1952. The IAS-machine had a huge influence on future generations of computers in and outside of the industry, 
both in the US and overseas e.g., ILLIAC, MANIAC (in Los Alamos), and the IBM 701 (Aspray 1990, 86-94).  
19 These elements (or “main organs”) were mentioned in different forms by von Neumann (1945), where they were 
called CA (central arithmetical), CC (central control), M (memory), I and O (input and output devices) and R (some 
external recording medium).  
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3. The Input/Output device (I/O)  

Considering the functioning of these units and their underlying components in detail further 

clarifies our understanding of how exemplification and encoding work in the case of a stored 

program digital machine. So, let me briefly look at each of these units in detail, starting with the 

memory.  

The memory was of ‘Williams type’ and composed of 40 standard commercial “off the shelf” 

(Bigelow 1980, 302) 5CP1A cathode ray tubes (relying on the emission properties of cathode-ray-

tube phosphor screens). It had 1024 storage locations or memory addresses, called words. Each 

word is 40 bits long and may contain (1) a number word or (2) an instruction word (see Fig. 2).  

 

Fig. 2. Depiction of the two different types of words.  

 

Instructions occupied two times 20 bits, where the first eight bits are opcode and the remaining 

twelve bits indicate the address of a register. Overall, the instruction set of the IAS machine 

contained 21 different instructions (Burks et al 1946, 42). A line of code of a program written for 

the machine then may look like this 0000000100011111010000000101000111110101. The first 

eight bits (grey font) are opcode and correspond to the instruction “[c]lear accumulator and add 

number located at position x in the Selectron into it.” (Load M(xi)); the following twelve bits 

correspond to a memory address x; the next eight bits (grey font) are opcode and correspond to 

the instruction “[a]dd number located at position x in the Selectrons into the Accumulator” (Add 

M(xj)). 
20  It is sequences of bits like these, composed of the machines’ specific instruction set that 

may comprise a program P.21 As we will see, the reason why these details are relevant for the 

application of implementation-as is that they warrant multiple, distinct instances of interpretational 

exemplification.  

Concerning the second main component, the CPU, the IAS machine has seven different 

registers (Accumulator, Arithmetic Register, Control Counter, Control Register, Function Table 

Register, Memory Address Register, and Selectron Register) of which only the Accumulator and 

the Arithmetic register are ‘visible’ to the programmer (both holding 40 bits).22 These registers 

utilized about 1700 to 2300 commercially available miniature double triodes, 23 where most of them 

 
20 For a more elaborate and detailed example see for instance Priestley (2018). 
21 In the same vein, modern microprocessors are too compatible with specific ISAs (Instruction set architecture), like 
x86, where “[t]he ISA serves as the boundary between the software and hardware.”, (Hennessy & Patterson 2012, 
11).  
22 Today, the ‘Control Counter’ is known as Program Counter (12-bit width); the Control Register holds the 
instruction currently executing (20-bit width). The Function Table Register holds the current opcode and is 8 bits 
wide, whereas the Memory Address Register holds the current memory address and is 12 bits wide. 
23 The precise number of diodes used in the machine diverge among different authors. Whilst Estrin (1952) 
mentions 2300 triodes, Ware (1953) speaks of ca. 1700, and Bigelow (1980) mentions about 2000. 
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where of type 6J6 (other models used where 5670, 5687, and a few 6AL5 scattering diodes). Like 

modern garden variety CPUs, it executes instructions of programs, such as arithmetic (e.g., adding 

integers of above’s example program P), I/O operations and logic controlling.   

Lastly, the selected I/O components are an important element to consider.  They afford the 

interface through which the users can interact and program the device. Without input mechanisms 

like punched cards, teletypewriters or keyboards, programmers and users had virtually no reliable 

means to load instructions or data into memory. In the same vein, the lack of an output medium 

(e.g., some kind of screen) would render the computational system a black box. It is these outputs 

however that ultimately need to be in tune with the denoted computational formalism/program P. 

At first, the engineers of the machine relied on perforated teletype tape which in late 1951 was 

replaced by IBM punched cards (Bigelow 1980, 306).  

What turned the IAS-machine into a digital one is that it was operated under a digital encoding. 

This design choice both appealed to the intended logical nature of the machine (‘being a yes-no 

system’) and facilitated the use of existing electronic components (flip-flops), such that 

“[o]ur fundamental unit of memory is naturally adapted to the binary system since we don’t 
attempt to measure gradations of charge at a particular point in the Selectron but are content 
to distinguish two states. The flip-flop again is truly a binary device.”, (Brucks et al. 1946, 
7).  

In addition, the composition, or architecture, constituted by the three interconnected units M, 

CPU, and I/O enabled the IAS-machine to store instructions (and data) in memory. As such, the 

machine stands in contrast to early digital machines like ENIAC or analog devices like the 

MONIAC that had to be reprogrammed manually similar to plugboards or read instructions from 

external tape.  

 

4.2. Implementation-as at work 

Equipped with some basic understanding of the inner workings of the IAS-machine and how it 

was programmed, let me sketch how the most salient features of implementation-as come to 

fruition. As explained throughout the paper, the core notion of implementation-as is that properties 

of the designated computational vehicle are associated with the abstract computational states of a 

computational formalism {P1, …, Pm} through a set of exemplified computational states {Z1, …, 

Zn}. To implement a specific sequence of computation, subsequently the four steps of denotation, 

interpretational exemplification, encoding, and imputation need to apply to the putative computing 

system. 

Here, we assume that the IAS-machine is our X, i.e., our vehicle of computation. As discussed 

in the previous section, our X is composed of many different components (e.g., cables, 6J6 triodes, 

…), forming three interconnected units (M, CPU, and I/O). As such, it can be considered a 

computing system under a series of fine-tuned interpretations I of some agent (typically the user 

of an epistemic community who share the same conventions regarding a device). Specifically, the 

IAS-machine then implements a computational formalism/program P iff the following four steps 

apply:  

(1) First, the device X denotes P.  In the case of the IAS-machine, a typical program P will look 

like a list of machine-code instructions each of 40-bit length as just introduced in the previous 

section. As such, P acts as the normative yardstick to evaluate executions between correct and 
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faulty ones (miscomputation).  To eventually implement P correctly, different components of the 

IAS-machine need to relate to different sections of the code.  

(2) Second, given our agreed upon interpretation I, we note that the IAS-machine exemplifies 

certain computational features {Z1, …, Zn}. According to the general scheme outlined above, 

exemplification hinges on our interpretational capacities I :X → Z. For instance, the previous 

discussion of the technicalities of the IAS-machine showed that the following components play 

different roles in exemplifying computational features: 5CP1A cathode ray tubes are employed for 

holding data and instructions in memory; the CPU (with its seven registers) relies on miniature 

triodes (mostly of type 6J6); the I/O used punched cards to program the machine in order code. 

(3) Third, one needs to choose an encoding or labeling scheme. Since the IAS-machine was 

constructed as a binary digital computer, parting with the “longstanding tradition of building digital 

machines in the decimal system” (Brucks et al. 1946, 7), it operates as a binary digital computer 

processing both digital data and instructions in a binary format. Accordingly, we adopt a binary 

digital encoding as described in sect. § (3.3). Standardly, one then associates the absence 

(considering a certain threshold) of the flow of charge as ‘0’ and the flow of charge as ‘1’.  

(4) Finally, the just encoded computational states {P1, …, Pm} are imputed to our ‘targeted’ 

program P. Since computer scientists, programmers and users usually opt for the correct 

implementation of computational artifacts, we ideally require that the entire set {P1, …, Pm} is 

related to P. 

To wrap up, the IAS-machine implements computations as the flow of charge. The 

straightforward and successful application of implementation-as to the IAS-machine strongly 

suggests that this novel agential theory of implementation may be equally well applied to other bona 

fide computers. Considerable technical differences withstanding, many modern computing 

machines still incorporate the basic architectural design choices of this influential device. I believe 

that it is sufficiently complex and bears enough similarities to the functioning of contemporary 

computers.  While new technological advancements may induce ever more complexities, there is 

in principle no reason that would undermine the application of implementation-as to those cases.  

 

5. Is Implementation-as a good theory of computation? 

At last, let me briefly evaluate the in this article developed theory of agential implementation. The 

discussion proceeds along the lines of the desiderata of physical computation introduced in the 

introduction (Sect. 1). As I will show, implementation-as accommodates all the desiderata and 

should therefore be considered a viable theory of physical computation. 

(1) Objectivity. Nowadays, philosophers of science commonly agree that there are considerable 

obstacles to cashing out theories of scientific representation in naturalistic terms. That is why most 

approaches are formulated as intentional conceptions (Frigg&Nguyen 2020a, 2020b). The DEKI 

account is a case in point, for all its salient features hinge on scientists’ interpretational capacities. 

As discussed at length, implementation-as inherited many of the key features – and accordingly, it 

may be called an agential theory of implementation. Now, does relying on interpretational features 

undermine the objectivity of implementation-as?  

The answer is nuanced. Reiss & Sprenger (2020) survey various conceptions of scientific 

objectivity – as stated by Fletcher (2018) and Duwell (2021), theories of physical computation based 

on agential notions of scientific representation may only undermine an overly rigid notion of 
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objectivity. Since implementation-as appeals to agents and their stipulations, it may be incompatible 

with what Duwell refers to as strong objectivity (i.e., an account of objectivity according to whether a 

system is representational/computational is completely mind-independent). However, relying on 

agential notions of scientific representation does not undermine weak objectivity (Duwell 2021, 19). 

Accordingly, scientists may reach intersubjective agreements if an object counts as a scientific 

model, which parts of the world it is presumed to represent, and so on. Once such intersubjective 

agreements are held fixed, practitioners may engage in scientific reasoning without their personal 

preferences or any substantial personal biases.  

Implementation-as adheres to standards of objectivity in these latter, less rigid terms. Once the 

combined stipulative elements of denotation, interpretational-exemplification, encoding, and 

imputation are agreed upon and held fixed, computation under the regime of implementation-as is 

as objective as the scientific practice of modeling and free of personal arbitrary beliefs, desires, and 

intentions.  

(2) Extensional Adequacy. A good theory of physical computation should properly systematize 

paradigmatic computing systems (laptops, calculators, smartphones) as computational; it should 

also judge instances of non-computing systems as non-computational. The examples of the 

MONIAC and the successful application to the IAS-machine show that implementation-as does 

not have trouble classifying paradigmatic examples of computing systems as computational. What 

works in the case of the IAS-machine, can then in principle be applied to other machines. In so far 

as the physical system exemplifies computational properties that are keyed-up/encoded and 

imputed to states of a computational formalism (which is denoted by the system), the system may 

implement the formalism as such and so.  

However, frequently intentional conceptions of computation like implementation-as are rather 

deemed unsuccessful with respect to intuitively non-computational systems. So, for instance, 

without any restrictions on interpretational-exemplification, one might worry that every object 

could be turned into a computer by mere stipulation. Therefore, the claim that a system computes 

would be trivially true and hence uninformative. Traditionally, one option has been to simply bite 

the bullet and admit that, despite our intuitive understanding of paradigmatic computing systems, 

every system does indeed implement some computational functions (e.g., Chalmers 1996, Scheutz 

1999).24 While this leads to (at least) a form of limited pancomputationalism, one may still feel 

uneasy about such ubiquity of computation. Implementation-as comes with further restrictions 

though, limiting the extension of which objects may count as computational. Being informed by 

the literature on scientific representation, we draw from the corresponding parallel discussions of 

what may count as a scientific model. Two kinds of restrictions are chief; their combined interplay 

is depicted in Fig. 3. I already introduced them in section 3.2 on exemplification, where I described 

that both the choice of what may plausibly count as a model and analogously, as a computer, is 

constrained by two requirements – (i) exemplification under interpretation needs to be agreed upon 

and held fixed; and (ii) that the representation/computational vehicles need to offer counterfactual 

state transitions. 

 
24 This sort of pancomputationalism is limited, since, although it is postulated that every object computes, it does 
deny the much stronger thesis that these objects also implement every possible computation. 
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Fig. 3: The ‘hybrid approach’ (having to rely on both interpretation and the right degree of 
counterfactual support) ensures that implementation-as considers that the right things compute and 
the wrong things don’t. Figure inspired by a similar graphic in Artiga (2023) in a different context 
(teleological functions). 

 
(3) Explanation. According to the third desideratum, a good account of concrete computation 

should be able to explain (at least some of) a system’s capacities computationally. There are 

different ways to understand this requirement. On the one hand, the computational properties of 

a system may be explained by what it implements. For instance, the IAS-machine implementing 

our exemplary program P explains why it adds integers the way it does, its efficiency, etc. Yet, on 

the other hand, under implementation-as material systems may only exemplify computational states 

if agents bestow them with the task to do so – without the agent’s stipulations, the chosen vehicles 

are not computational. Does this mean that computational explanations then merely reduce to 

agents’ desires to use something as a computer? No, because as I have argued implementation-as 

is a ‘hybrid’-account – the agents also need to choose suitable physical states that may act as 

computational vehicles. That’s why the current framework must additionally resort to the particular 

underlying scientific theories that describe the behavior of the chosen vehicles. As such, the 

explanations offered by implementation-as are no longer distinctively computational but may be 

physical, chemical, or biological (cf. Duwell 2021, 37). In the case of the MONIAC e.g., the flow 

of water is taken as a computational vehicle. To explain the behavior of the machine, we must 

consult hydrodynamics and the scientific theories describing the dynamics of the mechanical 

components. 

(4) Miscomputation. One of the most basic advantages of interpretational accounts of 

computation is the straightforward explanation of judging the (in)correctness of a computational 

process. Unlike their naturalized counterparts that need to defend the vexing issue of natural 

teleology, interpretational accounts do not undermine their own metaphysical approach by 

maintaining that agents bestow the computing system with teleological functions to compute. 

Therefore, the philosophy of computer science accordingly borrowed some of the function 

ascription frameworks from the philosophy of technology (Turner 2018, Anderson 2019). So, as 

such an interpretational account of computation implementation-as can accommodate different 

notions of miscomputation. Let me briefly discuss these notions separately.  
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First, the programmers and users may disagree about which program is supposed to be 

implemented. Admittedly, this disagreement seems like a rather easily avoidable mistake. 

Nevertheless, denotation is still crucial for determining the (in)correct implementations of 

computations. For remember, figuring out the precise (teleological) function of a computing 

system is epistemically inaccessible, because it may not simply be read off. Prominent computer 

scientist Weizenbaum, for instance, brought up this inaccessibility in a thought experiment.  If one 

day in the distant future a highly advanced society would find one of our present-day computers, 

they could never know with certainty to have gotten the alleged program P just right (Weizenbaum 

1976, 132ff.). Albeit, a high degree of understanding might be achievable through observing its 

output patterns, black-box testing and attempts of reverse engineering, reclaiming absolute 

certainty of the computer’s specification might be impossible.25 Likewise, Dennett (1990) comes to 

a similar conclusion with a real-world example of a discovered ‘computer’ – the discovery of the 

Antikythera mechanism. When archaeologists lifted the ancient Greek hand-powered device from a 

shipwreck, the artifact’s (teleological and mathematical) function was (at first) obscure and keeps 

scholars puzzled to the present day.   

Secondly, miscomputation may be caused by faulty imputations. As argued above, faulty 

imputations may occur either through wear and tear or because of insufficient counterfactual 

support. Both conditions lead to a mismatch between the different execution traces of the denoted 

computational formalism MC and the putative computing system. 

(5) Taxonomy. Encoding a labeling scheme is crucial for determining for what kind of 

computations a system may be used for. I described the encodings corresponding to the arguably 

two most widespread instances of computing – digital and analog. Accordingly, the encodings of 

the interpreted computational vehicles enable us to discern two major kinds of computing systems 

and their different capacities.  

Furthermore, implementation-as does not need to allude to the ‘narrow’ notion of program 

execution only. When judging various accounts of physical computation, Piccinini criticized some 

earlier approaches that would equate physical computation with program execution, because this 

may raise trouble for classifying systems that are said to compute by means other than running 

programs.26 Implementation-as does not need to appeal to the notion of program execution in 

order to be applied successfully; nothing in its four salient features hinges on program execution.  

Rather, whether a system can be classified to compute by virtue of program execution depends on 

the denoted computational formalism (and arguably on one’s definition of what a program is).   

In sum, the results of this brief evaluation showed that implementation-as squares well with all 

the desiderata. It has everything what it needs to be called a good theory of implementation. What’s 

more, the view has virtues that go beyond the five desiderata discussed above. Most notably, the 

 
25 Specifications are (formal) descriptions of computing systems. Specifications may be expressed in plain English (or 
any other natural language) or special (formal) specification languages like VDM or Z. In his conceptual analysis of 
specifications, Turner (2011) suggests that specifications are not merely descriptive, but also prescriptive. Typically, 
specifications come prior to the construction/programming of a device, subsequently determining constraints that a 
system must satisfy. In other words, specifications define which computational formalism is supposed to be 
implemented. 
26 For instance, he argues that some neural networks compute by means other than program execution 
(Piccinini2008). Another (potential) case in point is analog computers, where some scholars believe that they 
compute despite not executing a program.  
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account does not remain silent about the bridging problem of applied mathematics and is 

compatible with contemporary solutions of applied mathematics.  

 

6. Conclusion 

In this article, I presented a specific theory of agential implementation. This account extends on 

recent developments in the literature of physical computation, according to which one may 

appropriate the conceptual tools of scientific representation to computing. I corroborated this 

endeavor by in-depth details and providing a constructive perspective. Specifically, I relied on the 

insights of the DEKI account of material models and tweaked into the newly introduced 

conception called implementation-as. Since it is commonly accepted that scientific representation 

(and hence the DEKI account) is (partly) an intentional conception, implementation-as is too. 

Accordingly, the implementation of a computational function is dependent on the interplay of the 

stipulative capacities of users and the physical features of the material system. However, in lieu of 

advocating that concrete computation is the result of describing a physical system in terms of a 

computational model, the situation defended in this paper is reversed: Implementation comes 

about when material objects are utilized to ‘model’ abstract computational formalisms.  

Subsequently, agents may use a material computing system as a computing device if they engage in 

the combined activities of denotation, exemplification, encoding and imputation. While these four 

features need further specifications for each application, they encapsulate the commonalities of 

physical computation (two paradigmatic examples of an analog and a digital machine were 

discussed, viz., the MONIAC and the IAS machine).  

As such, the upshot of the paper is twofold. First (and this was the main motivation for the 

paper), one may regard implementation-as as a vindication of the often-times shunned 

interpretational accounts of physical computation. Although interpretational accounts existed 

before, the here-promoted theory does not collapse into complete relativism/interpretational 

pancomputationalism. On the contrary, my analysis showed that implementation-as makes the 

grade with the standardly evoked desiderata for an adequate account of computation in physical 

systems. For these reasons, I conclude that implementation-as is a promising alternative to existing 

accounts of physical computation. Future research should investigate the framework’s main 

tensions with research programs that demand a naturalized notion of computation, especially for 

the Computational Theory of Mind. 

On a different note, the insights of the paper may serve as a gateway to start further research 

into the apparent conceptual similarities between modeling (especially with material systems) and 

computing.  
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