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Abstract

I give six different first-order mathematicized axiomatic systems, expressing that
physical space is Euclidean, and prove their equivalence.
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1 Axiomatic Euclidean Geometry

There are multiple equivalent axiomatizations, or formulations, of the claim that ordinary
physical space is three dimensional and Euclidean.

In order to make this claim precise, we need to be clear about the primitive notions
used. This means that, at the very start, we need to specify certain physical primitives—
a signature. Here, we shall begin with the physical synthetic signature for Euclidean
geometry:
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σphys = {point,B,≡} (1)

with the following physical meanings:

Physical Primitives

point point(p) means “p is a point”.
B B(p, q, r) means “the point q lies between points p and r”.
≡ pq ≡ rs means “the segment pq has the same length as (is

congruent to) the segment rs”.

Notice that we do not assume any sort of metric or distance function (rather, we shall
prove that these exist). We then introduce a system of axioms about betweenness and
congruence expressing what seem to us to be basic physical properties of these relations.
These axioms are, of course, descendants of Euclid’s axioms (Euclid (1956)), and are
more directly descended from Hilbert’s axioms for Euclidean geometry, given in Hilbert
(1899). They were then more concisely formulated and simplifed by Alfred Tarski:

Definition 1.1. The non-logical axioms of EG(3) in L(σ) are the following eleven:

Synthetic Euclidean geometry (three dimensions)

E1. B-Identity B(p, q, p) → p = q.
E2. ≡-Identity pq ≡ rr → p = q.
E3. ≡-Transitivity pq ≡ rs ∧ pq ≡ tu → rs ≡ tu.
E4. ≡-Reflexivity pq ≡ qp.
E5. ≡-Extension ∃r (B(p, q, r) ∧ qr ≡ su).
E6. Pasch B(p, q, r) ∧ B(s, u, r) → ∃x (B(q, x, s) ∧ B(u, x, p)).
E7. Euclid B(a, d, t) ∧ B(b, d, c) ∧ a ̸= d → ∃x ∃y (B(a, b, x) ∧ B(a, c, y) ∧ B(x, t, y))
E8. 5-Segment p ̸= q ∧ B(p, q, r) ∧ B(p′, q′, r′) ∧ pq ≡ p′q′ ∧ qr ≡ q′r′ ∧ ps ≡ p′s′ ∧ qs ≡ q′s′

→ rs ≡ r′s′.
E9. Lower Dimension There exist four points which are not coplanar.
E10. Upper Dimension Any five points are in the same 3-dimensional space.
E11. Continuity Axiom [∃r (∀p ∈ X1) (∀q ∈ X2)B(r, p, q)] → ∃s (∀p ∈ X1) (∀q ∈ X2)B(p, s, q)

The original source of this axiomatization is Tarski (1959) and Tarski & Givant (1999).
See Tarski (1959), pp. 19–20, for a formulation of the first-order two-dimensional theory,
with twelve axioms and one axiom scheme (for continuity); and Tarski & Givant (1999)
for a simplification down to ten axioms and one axiom scheme (for continuity). (The
axioms E9 and E10 are called the “lower dimension” and “upper dimension” axioms, and
can be formulated solely using the B predicate.)

Tarski’s system in Tarski (1959) is denoted E2. This is first-order (“elementary”) and
is the two-dimensional theory. On the other hand, our EG(3) is second-order in the sense
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that it has quantifiers over points and sets of points. This may, of course, be considered
a first-order theory, with separate sorts for points and sets. Indeed, that is how it is
treated below.

The sole second-order axiom of EG(3) is the second-order Continuity Axiom, axiom
E11. This is, more or less, a geometrical rephrasing of the Cut axiom for real numbers.
If one replaces the Continuity Axiom by the Continuity Axiom Scheme, one obtains a
first-order theory that I call EG0(3), and which in Tarski’s terminology is E3. Modifying
the upper and lower dimension axioms (to those for two dimensions) yields E2.

Tarski proves two important meta-theorems about the axiom system E2:1

Theorem 1 (Tarski (1959)) A structure M is a model of E2 if and only if it is isomorphic to
(F 2, BF 2 ,≡F 2), where F is a real-closed field.

Theorem 2 (Tarski (1959)) E2 is complete.

The first of these is called “the representation theorem” for E2. But, as noted, we
are interested in the second-order axiom system, EG(3), which is the one relevant to
physics. The meta-theorem Theorem 1 (Tarski (1959)) then, under suitable modifications
(replacing the continuity scheme with the continuity axiom; modifying the upper and
lower dimension axioms), yields the following representation theorem for EG(3):

Theorem 1.1. A structure M is a full model of EG(3) if and only if it is isomorphic to
(R3, BR3 ,≡R3).

It is clear that Theorem 1 (Tarski (1959)) and Theorem 1.1 are, in fact, provable
inside a suitable ambient meta-theory, such as ZF set theory, and we shall exploit this fact
below, in proving the equivalence of the synthetic theory EG(3) and the “representational
equivalent” (listed (3) in Theorem 5.1).

2 Ambient Set Theory

In addition to EG(3), I wish to give five further axiomatizations and prove that these
are equivalent, modulo “ambient set theory”. In other words, each equivalence is proved
assuming a background “base theory”.

This base theory is “presupposed”, in the sense explained in the 1960 monograph
Foundations of Geometry, by Karol Borsuk and Wanda Szmielew:

1 Tarski’s work on this area took place at The University of Warsaw in the 1920s. Due to serious
personal difficulties Tarski encountered—including getting a job in an increasingly antisemitic envi-
ronment, and the Holocaust, in which almost all of Tarski’s family were murdered at Auschwitz (by a
stroke of luck, Tarski escaped from Poland in August 1939, thanks to an invitation to visit Harvard,
from W.V. Quine)—it did not, however, get published until much later. The details of these events
are described in the biography Feferman & Feferman (2004) by Tarski’s student Solomon Feferman
and Anita Feferman.
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In constructing an axiomatic theory T , we usually make use of other axiomatic
theories which are presupposed in the following sense: all the primitive notions
in the presupposed theory are included in the system of primitive notions of
T , and all the axioms of those theories are included in the axiom system of
T . Mathematical theories presuppose as a rule mathematical logic and usually
also set theory (to a larger or smaller extent). In developing geometry in this
book we presuppose mathematical logic, set theory and the arithmetic of the
real numbers (which can either be treated as an independent theory or can
be constructed as a portion of set theory). An axiomatic treatment of these
theories can be found in various special works. (Borsuk & Szmielew (1960):
6–7)

The set theorist Andreas Blass has commented on the general situation as follows:2

Mathematicians generally reason in a theory T which (up to possible minor
variations between individual mathematicians) can be described as follows. It
is a many-sorted first-order theory. The sorts include numbers (natural, real,
complex), sets, ordered pairs and other tuples, functions, manifolds, projective
spaces, Hilbert spaces, and whatnot. There are axioms asserting the basic
properties of these and the relations between them. . . . This theory T, large
and unwieldy though it is, can be interpreted in far simpler-looking theories.
ZFC, with its single sort and single primitive predicate, is the main example
of such a simpler theory. (I’ve left large categories out of T in order to make
this literally true, but Feferman has shown how to interpret most of category
theory, including large categories, in a conservative extension of ZFC.) (Blass
(2012))

As Blass notes, “this theory T . . . can be interpreted in far simpler-looking theories.
ZFC, with its single sort and single primitive predicate, is the main example of such a
simpler theory”.

Here, I explicitly give this ambient set theory: it is denoted AM.

Definition 2.1. The syntax of AM is given as follows:

Syntax

Sorts Σ = {atom, class, global}
Signature σ = {point,B,≡,∈}
point atom ⇒ bool
B atom ⇒ atom ⇒ atom ⇒ bool
≡ atom ⇒ atom ⇒ atom ⇒ atom ⇒ bool
∈ global ⇒ global ⇒ bool

Here, I have specified three sorts, atom, class, global, and if we are very precise, we
would assign definitive variables to each sort. We have four basic predicates, as listed.

2 Blass’s comment is by no means off-beat. It is endorsed by the world’s most talented mathematician,
the Fields Medallist Terence Tao, and linked to at Professor Tao’s famous web-blog.
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Each predicate has a “sort declaration”, which tells you the predicate’s arity, and how
its argument places are completed. I use a simple but very effective means of declaring
these, by copying the type-theoretic terminology of the theorem prover Isabelle. This
uses a “pretend sort”, bool, to express the predicate’s arity. Note that the membership
predicate ∈ is assumed, and its sort declaration is: global ⇒ global ⇒ bool.

Our language is L(σ). The first-order three-sorted language over the signature σ and
sorts Σ.

Definition 2.2. The axioms of AM, in the language L(σ), are:3

Base theory for applied mathematics: AM

Theory AM

Partition atom(x) ↔ ¬class(x)
Atoms atom(x) → (empty(x) ∧ El(x))
Extensionality ∀x (x ∈ X ↔ x ∈ Y ) → X = Y
Comprehension ∃X ∀x (x ∈ X ↔ (El(x) ∧ φ(x)))

Empty set ∅ ∈ U .
Pairing x, y ∈ U → {x, y} ∈ U
Union X ∈ U →

⋃
X ∈ U

Power X ∈ U → P(X) ∈ U
Infinity (∃X ∈ U) Inductive(X)
Replacement Fun(F ) ∧ Dom(F ) ∈ U → Ran(F ) ∈ U
Choice (∀y ∈ X) (set(y) ∧ y ̸= ∅) → (∃F : X →

⋃
X) (∀y ∈ X) (F (y) ∈ y)

Foundation ∀A (A ̸= ∅ → (∃B ∈ A)(B ∩A = ∅)).

There are eleven axioms, and one axiom scheme. All known mathematics, and all
mathematics needed for theoretical physics, can be developed from AM. There are a
couple of redundancies here, as set theory aficionados will note. Replacement implies
Separation, which implies Empty Set. Also, Replacement with Power set implies Pairing.

I shall next assume that all the standard definitions of mathematical notions are
already given, as may be found in any set theory textbook.4

3 This system AM (for “applied mathematics”) is a small variation of that given in Jean Rubin’s mono-
graph Rubin (1967). It is, more or less, Morse-Kelley class theory with urelements. It proves all
the theorems of ZFC, and a bit more, because its class comprehension axiom is impredicative. In
an earlier paper Ketland (2021), I gave a system called ZFCA (for “ZFC with atoms (urelements)”).
Being a class theory, AM is simpler to formulate and proves all the theorems of ZFCA.

4 I mean, e.g.: “x ⊆ y”, “x∪ y”, “x∩ y”, “the ordered pair (x, y)”, “P(A)”, “
⋃

A”, “R is a relation”, “F is
a function from A to B”, “x ∈ N”, “x ∈ Z”, “x ∈ Q”, “x ∈ R”, etc. Definitions for these are given in,
e.g., Halmos (1974), Enderton (1977), Drake & Singh (1996) (in particular, “Appendix: Chapter 10:
Some Basic Definitions”), Hrbacek & Jech (1999). A fairly formal list may be found in Quine (1940):
323–324. Also Quine (1969): 333–341. Usually, the definition of N is simply ω (the finite ordinals),
with + and × defined on ω using The Recursion Theorem. The definitions for “x ∈ Z”, “x ∈ Q”,
“x ∈ R”, and their operations and relations, are summarized in Enderton (1977): 121.
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3 Example: The Axiom of Choice and Equivalents

Before getting on to the formulation of the physical equivalents, I mention briefly a series
of equivalences well-known to all mathematicians. These concern Zermelo’s Axiom of
Choice. Here I shall follow the very nice presentation in Chapter 5 (“The Axiom of
Choice”) from Machover (1996).

Theorem 3.1. The following five statements are equivalent modulo ZF set theory:

(1) Choice For each family of non-empty sets there is a choice function F .
(2) WOT Every set can be well-ordered.
(3) Tukey-Teichmuller Let F be a family of sets. Let F be of finite character. Then,

for each A ∈ F , there exists some B ∈ F , with A ⊆ B, and B is
maximal in F with respect to ⊆.

(4) Hausdorff Maximality Let P partial order and let Chain(P ) be the set of chains in P .
Then, for every C ∈ Chain(P ), there is a C ′ ∈ Chain(P ) which is
maximal in Chain(P ) with respect to inclusion.

(5) Kuratowski-Zorn Let P be a partial order. Suppose each chain in P has an upper
bound. Then P has a maximal element.

Proof. I direct the reader to Machover (1996), Chapter 5.

These five examples by no means exhaust the list of equivalents of the Axiom of
Choice. There is a vast number of equivalents of Choice which have many applications
throughout analysis, algebra and topology. See, for example, Drake & Singh (1996),
Chapter 5, or Hrbacek & Jech (1999), Chapter 10. There are whole books devoted to the
topic: e.g., Rubin & Rubin (1985). Equivalents of Choice are the tip of a huge iceberg
in mathematical logic.

4 Definitions

We now return to the physics case.
We shall begin with the synthetic (but second-order) axiom system EG(3), with its the

physical primitives “point”, “between” and “congruent”. And we shall exhibit five further
equivalents of EG(3). That is, statements which are inter-derivable with each other, and
with EG(3), modulo the base AM. These statements introduce further mathematical
machinery (by explicit definition). But note that this is no different from what happens
with the equivalents of Choice listed above. These equivalences for Euclidean are proven
modulo the fixed base theory, AM. But this is no different from what happens with the
equivalents of Choice listed above.

For example, one of the equivalents states:

(3) There is a Cartesian chart on (P, B,≡).

Another states:

(6) There is a Riemannian manifold (M, g) isometric to standard Eu-
clidean space on R3 and which, in a suitable sense, “represents”
(P, B,≡).
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The equivalent theories given below are theories in L(σ). To stress, this is a first-order
language. It has the usual Boolean connectives, some basic predicates (including = and
∈, and the physical ones in σphys), along with variables and quantifiers. The underlying
logical axiom system is simply the usual one for first-order logic with identity, amended
slightly because it has sorts.5 From time to time, I will use “dedicated variables”, which
simulate sorts. This is standard mathematical practice.

Definition 4.1. We explicitly define:

P := {p | point(p)} (2)
B := {(p, q, r) ∈ P3 | B(p, q, r)} (3)
≡ := {(p, q, r, s) ∈ P4 | pq ≡ rs} (4)

So, P is the set of physical points, B is the physical betweenness relation on P, and
≡ is the physical congruence relation on P. (We conflate the name of the relation with
the predicate itself. This conflation is harmless.)

Definition 4.2. The applied mathematics base theory AM is extended with two axioms:

AM∗ := AM+ (P ⊆ Atom) + set(P). (5)

In other words, the points are atoms (i.e., physical urelements), and the class of
points is a set. We need the second axiom to ensure that we can define satisfaction for
the restricted sublanguage with quantifiers over points, and sets of points.

In order to formulate our (equivalent) physical axioms, we need a long series of explicit
definitions. I must stress that these are definitions, not axioms. We have already given
the axioms. These are AM, and P ⊆ Atom and set(P).

Definition 4.3. We explicitly define, for x, y, z, u ∈ R3:

BR3(x, y, z) := (∃λ ∈ [0, 1]) ((y − x) = λ(z − x)) (6)

∆R3(x, y) :=

√√√√ 3∑
i=1

(xi − yi)2 (7)

xy ≡R3 zu := ∆R3(x, y) = ∆R3(z, u) (8)

BR3 is the coordinate betweenness relation: BR3(x, y, z) holds exactly if the point y
lies between the points x and z. ∆R3 is the coordinate distance function. And ≡R3 is

5 See, for example, Machover (1996), p. 114 for the propositional logic sector, and pp. 176–177 for the
first-order logic sector. Or Drake & Singh (1996), Chapter 2. See Manzano (1996) for the smallish
changes to accommodate sorts.
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the coordinate congruence relation: xy ≡R3 zu holds exactly if the segment xy has the
same length as the segment xu.

The standard standard coordinate structure for Euclidean space is then:

EG(3) := (R3, BR3 ,≡R3) (9)

Definition 4.4. We explicitly define:

EucTranMap(h, α, d,R) := R3
h∼= R3 ∧ α ∈ R ∧ α > 0 ∧ d ∈ R3 ∧R ∈ O(3)

∧ (∀x ∈ R3) (h(x) = αR(x) + d) (10)

This can be read:

“h : R3 → R3 is a Euclidean transition map, with parameters α, d,R”

Its definition states that h is a bijection from R3 to R3, that α is a positive real,
that d is a vector in R3 and R is a rotation matrix in O(3). In particular, if h is such a
transition map with parameters α, d,R, then, for any point x ∈ R3:

h(x) = αR(x) + d (11)

We next define the set of these transition maps:

E(3) := {h | ∃α ∃d ∃R EucTranMap(h, α, d,R)} (12)

It is clear that E(3) is a Lie group. The following is the automorphism theorem for
the coordinate structure (R3, BR3 ,≡R3).

Theorem 4.1. Aut((R3, BR3 ,≡R3)) = E(3).

Proof. First, we show: E(3) ⊆ Aut((R3, BR3 ,≡R3)). Let h ∈ E(3). So, there exists
α > 0, R ∈ O(3), d ∈ R3 such that, for all x ∈ R3:

h(x) = αR(x) + d (13)

We claim:

BR3(h(x), h(y), h(z)) ↔ BR3(x, y, z) (14)
h(x)h(y) ≡R3 h(z)h(u) ↔ xy ≡R3 zu (15)

Both are these are fairly straightforward to verify.
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Next, we need to show Aut((R3, BR3 ,≡R3)) ⊆ E(3). This is more difficult. Let
h ∈ Aut((R3, BR3 ,≡R3)). So, h is a bijection R3 → R3 and,

BR3(h(x), h(y), h(z)) ↔ BR3(x, y, z) (16)
h(x)h(y) ≡R3 h(z)h(u) ↔ xy ≡R3 zu (17)

The first condition (16) implies that h preserves straight lines, collinearity and paral-
lelism. From this, we obtain that there exists a GL(3) matrix A and a displacement d
such that:

h(x) = A(x) + d (18)

In other words, h is an affine map (h ∈ Aff(3)). The hard part is to show that A = αR,
for some dilation α > 0 and some rotation R ∈ O(3). This conclusion is obtained by
studying four basic points in R3: O = (0, 0, 0); X = (1, 0, 0); Y = (0, 1, 0); Z = (0, 0, 1);
and examining what the condition (17) implies for these.

Definition 4.5. Let Φ : P → R3 be a function. We say that Φ is a Cartesian chart if and
only if Φ is an isomorphism from (P, B,≡) to (R3, BR3 ,≡R3). We define a simplifying
formula Cart(Φ,P, B,≡) to express this:

Cart(Φ,P, B,≡) := (P, B,≡)
Φ∼= (R3, BR3 ,≡R3) (19)

Definition 4.6. We next define four formulas to simplify the axioms:

Def1(P,B, δ) := (∀p, q, r ∈ P) (B(p, q, r) ↔ δ(p, r) = δ(p, q) + δ(q, r)) (20)
Def2(P,≡, δ) := (∀p, q, r, s ∈ P) (pq ≡ rs ↔ δ(p, q) = δ(r, s)) (21)

Rep(B,BR3 , C) := (∀f ∈ C) [f(B) = BR3 ] (22)
Rep(≡,≡R3 , C) := (∀f ∈ C) [f(≡) =≡R3 ] (23)

For example, the formula Def2(P,≡, δ) states that, for any elements p, q, r, s of P, the
relation ≡ holds for p, q, r, s just if the value δ(p, q) is equal to the value δ(r, s). Roughly
speaking, Def2(P,≡, δ) says that ≡ is definable using δ. And, roughly speaking, the
formula Rep(B,BR3 , C) says that if we take the image f(B) of the physical betweenness
relation B, under any chart f ∈ C, we get BR3 .

Next, we express David Wallace’s “Kleinian” notion of a “G-structured space”:

Suppose that G is a group of bijections of RN . Then a G-structured space is
a set P together with a nonempty collection C of bijections from P to RN (the
‘coordinatisations’ of P), such that if f ∈ C , then f ′ ∈ C iff f ◦ (f ′)−1 ∈ G.
This is, in effect, a form of the definition of geometry in Klein’s famous Erlangen
program (Klein (1892)). (Wallace (2019): 127)
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Definition 4.7. (X, C) is a G-structured space if and only if:

(i) G is a group of bijections R3 → R3.
(ii) C is a non-empty collection of bijections X → R3.
(iii) for any f ∈ C, we have f ′ ∈ C ↔ f ′ ◦ f−1 ∈ G.

Definition 4.8. The definition of KleinE(3)(P, C) is:

KleinE(3)(P, C) := C ̸= ∅ ∧ (∀f ∈ C) [P
f∼= R3 ∧ ∀f ′(f ′ ∈ C ↔ f ′ ◦ f−1 ∈ E(3))] (24)

Finally, we shall mention an equivalent using differential geometry. In general, mod-
ern discussions of spacetime geometry generally develop the mathematics using the ma-
chinery of differential geometry.6 The basic notions are that of a topological manifold
M , a differentiable manifold M , and the notion of vector fields and tensor fields on M .
To save space, I assume it is known what an atlas C is, what a smooth 3-dimensional
manifold (M, C) is, what a flat Riemannian tensor field g on M is, and also what a what
a torsion-free connection ∇ is.

Definition 4.9. The canonical Euclidean space on the manifold R3 is (R3, geuc), where

geuc(∂i, ∂j) = δij , (25)

wrt coordinates given by the standard identity chart on R3.

Definition 4.10. A Euclidean space is a Riemannian manifold (M, g) isometric to the
canonical Euclidean space (R3, geuc).

Definition 4.11. We first define the formula:

EuclSpace(M, g) := Diff(M,R3) ∧ Euc(M, g) (26)

where Diff(M,R3) expresses that M is diffeomorphic to R4, and Euc(M, g) expresses
the isometry condition.

This is nothing more than a transcription of the usual semi-formal Definition 4.10.

Definition 4.12. We next define four formulas expressing how a Euclidean space (M, g)
“represents” a synthetic Euclidean model (P, B,≡). The first is:

Ψ1(C0, C,M,P, B,≡) := [C0 = {Φ : P → R3 | (P, B,≡)
Φ∼= (R3, BR3 ,≡R3)}

∧ C0 ̸= ∅ ∧ MaxExt(C, C0) ∧M = (P, C)] (27)

6 See Schutz (1980). See Malament (2009) and Malament (2012) for very clear and detailed expositions.
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Here MaxExt(C, C0) is an abbreviation for “C is the maximal atlas extending C0”.
The second and third formulas are as follows:

Ψ2(M,∇,P, B) := TFC(∇,M) ∧ LP,B = {ran γ | γ ∈ Geod(∇)} (28)
Ψ3(M, g,P,≡) := (∀p, q, r, s ∈ P) (pq ≡ rs ↔ Lg(p, q) = Lg(r, s)) (29)

Here, TFC(∇,M) is a formula saying “∇ is a torsion-free connection on M ”. LP,B is
defined as “the set of straight lines in P, according to the physical betweenness relation
B”. Geod(∇) is defined as “the set of curves which are geodesics of ∇”. And Lg(p, q) is
defined as “the length, relative to the tensor g, of some geodesic γ from p to q”.

So, Ψ2(M,∇,P, B) expresses how the connection ∇ is determined by the system of
straight lines given by B; and Ψ3(M, g,P,≡) expresses how the metric g is determined
by the requirement that lengths determined by g correspond to the physical congruence
relation ≡. (In fact, it is not uniquely determined.)

Finally, the overall representation condition is given as follows:

Rep(M, g,P, B,≡) := ∃C0 ∃C ∃∇ [Ψ1(C0, C,M,P, B,≡)

∧Ψ2(M,∇,P, B) ∧Ψ3(M, g,P, B,≡)] (30)

5 Main Theorem

Theorem 5.1. The following six statements are equivalent modulo the base theory AM∗:

(1) Synthetic EG(3)
(2) Semantical (P, B,≡) |=2 ⌜EG(3)⌝

(3) Representational (∃Φ : P → R3) [(P, B,≡)
Φ∼= (R3, BR3 ,≡R3)]

(4) Metrical (∃δ : P2 → R+
0 ) [(P, δ) ∼= (R3,∆R3) ∧ Def1(P,B, δ) ∧ Def2(P,≡, δ)]

(5) Kleinian ∃C [KleinE(3)(P, C) ∧ Rep(B,BR3 , C) ∧ Rep(≡,≡R3 , C)]
(6) Diff Geometrical ∃M ∃g [EuclSpace(M, g) ∧ Rep(M, g,P, B,≡)]

Proof. (1) ⇔ (2). Essentially, this is nothing more than disquotational equivalence:

True(⌜φ⌝) ↔ φ (31)

The details require us to formally define the satisfaction relation for the restricted
sublanguage of EG(3). Call this L(EG(3)). This is a second-order language, and a sub-
language of the much more expressive first-order language L(σ)!7 L(EG(3)) has variables

7 How can a second-order language be a sublanguage of a first-order language? That sounds weird.
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(say p1, p2, . . . ) for points, and variables (say X1,X2, . . . ) for sets of points, and the pred-
icates point, B and ≡. One can define satisfaction |=2 for this sublanguage L(EG(3))
inside the theory AM∗. Then, we obtain, for any sentence φ of L(EG(3)),

AM∗ ⊢ φ ↔ [(P, B,≡) |=2 ⌜φ⌝] (32)

And hence:

AM∗ ⊢ EG(3) ↔ [(P, B,≡) |=2 ⌜EG(3)⌝] (33)

This verifies (1) ⇔ (2).

With a bit of use/mention abuse, this can be expressed:

(E) EG(3) if and only if (P, B,≡) satisfies EG(3)

This is analogous to the equivalence between:

(i) Every even number over 2 is a sum of two primes.
(ii) (N, 0, S,+,×) satisfies (∀n > 1)∃p1 ∃p2 (prime(p1)∧prime(p2)∧2n = p1+p2).

Proof. (1) ⇔ (3). This amounts to the Representation Theorem for EG(3). This theorem
is essentially David Hilbert’s, from Hilbert (1899). Hilbert’s axioms, though, are a bit
complicated, and were significantly simplified by Alfred Tarski and coworkers, leading to
our axiom system EG(3). The main result is our Theorem 1.1 above.

A sketch of proof the theorem for the two-dimensional first-order theory (which I’ll
call EG0(2); Tarski calls it E2) is given in Tarski (1959), Theorem 1. In fact, this theorem
can certainly be proved inside our base theory AM∗ and says:8

(i) M is a model of EG0(2) if and only if M is isomorphic to (F 2, BF 2 ,≡F 2), where
F is a real-closed field.

If one modifies the Continuity Axiom Scheme to the second-order Continuity Axiom,
one gets the theory I call EG(2). Then the Representation Theorem states:

Well, the atomic ∈-formulas of the second-order language are of the form pi ∈ Xj , with that specific
restriction. But the first-order language has x ∈ y, for any variables x, y. To see this in practice,
consider second-order arithmetic PA2. This can be translated into first-order ZFC. In fact, n-order
arithmetic PAn can be translated in Zermelo set theory Z. In fact, the limit

⋃
n PAn can be translated

into Z too. This limit is equivalent to Russell’s Simple Type Theory, STT (simplified by Frank Ramsey,
in Ramsey (1926)). It is also essentially the same as Gödel’s system denoted P in Gödel (1931).

8 The first-order theory EG0(2) has the striking property, discovered by Tarski, that it is (negation)-
complete. The proof of this follows from the fact that one can interpret EG0(2) into the theory RCF
of the real-closed ordered field of real numbers, and Tarski had already obtained a proof that RCF is
complete, using the method known as “quantifier elimination”. See Tarski (1948).
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(ii) M is a full model of EG(2) if and only if M is isomorphic to (R2, BR2 ,≡R2)

If we modify the dimension axioms, we get EG(3), and then obtain Theorem 1.1:

(iii) M is a full model of EG(3) if and only if M is isomorphic to (R3, BR3 ,≡R3)

Hence, for (P, B,≡), we obtain:

(iv) (P, B,≡) is a full model of EG(3) if and only if (P, B,≡) is isomorphic to
(R3, BR3 ,≡R3)

And by the “disquotation” trick above (which is, by the way, also due to Tarski:
Tarski (1936)) this reduces to:

(v) EG(3) if and only if (P, B,≡) is isomorphic to (R3, BR3 ,≡R3)

This verifies (1) ⇔ (3).

So, we can express Euclidean geometry at “the ground level”, as it were, via the
axioms EG(3), or as a semantical claim, “(P, B,≡) satisfies the axioms EG(3)”. These
are equivalent. They can be derived from each other.

Proof. (3) ⇒ (4). Let us assume (Representational) holds, and hence there exists an iso-
morphism from the physical structure (P, B,≡) to the mathematical coordinate structure
(R3, BR3 ,≡R3). Now fix some isomorphism, Φ say. Then, we have the two representation
conditions, for points p, q, r, s ∈ P:

B(p, q, r) ↔ BR3(Φ(p),Φ(q),Φ(r)) (34)
pq ≡ rs ↔ Φ(p)Φ(q) ≡R3 Φ(r)Φ(s) (35)

Let us explicitly define a function:

δ : P2 → R+ (36)

pointwise, by:

δ(p, q) := ∆R3(Φ(p),Φ(q)) (37)

Hence, by construction:

(P, δ)
Φ∼= (R3,∆R3). (38)

What is more, since (R3,∆R3) is the usual metric space on R3, it follows that (P, δ) is
an isomorphic copy, and so also a metric space. Now the coordinate betweenness relation
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BR3 inside R3, and the coordinate congruence relation ≡R3 inside R3, satisfy, for any
points x ∈ R3, y ∈ R3, z ∈ R3, u ∈ R3:

BR3(x, y, z) ↔ ∆R3(x, z) = ∆R3(x, y) + ∆R3(y, z) (39)
xy ≡R3 zu ↔ ∆R3(x, y) = ∆R3(z, u) (40)

We wish to prove the definability formulas Def1(P,B, δ) and Def2(P,≡, δ). That is,
we claim:

(∀p, q, r ∈ P) (B(p, q, r) ↔ (δ(p, r) = δ(p, q) + δ(q, r))) (41)
(∀p, q, r, s ∈ P) (pq ≡ rs ↔ δ(p, q) = δ(r, s)) (42)

So, to prove (41), we reason like this:

B(p, q, r) ⇔ BR3(Φ(p),Φ(q),Φ(r)) (43)
⇔ ∆R3(Φ(p),Φ(r)) = ∆R3(Φ(p),Φ(q)) + ∆R3(Φ(q),Φ(r)) (44)
⇔ δ(p, r) = δ(p, q) + δ(q, r) (45)

Likewise, to prove (42):

pq ≡ rs ⇔ Φ(p)Φ(q) ≡R3 Φ(r)Φ(s) (46)
⇔ ∆R3(Φ(p),Φ(q)) = ∆R3(Φ(r),Φ(s)) (47)
⇔ δ(p, q) = δ(r, s) (48)

This verifies (3) ⇒ (4).

It’s worth noting that the defined metric δ on P is not unique. If α > 0, then αδ does
the trick too. For we have, for any α > 0,

δ(p, q) = δ(r, s) ↔ αδ(p, q) = αδ(r, s) (49)

This is “gauge equivalence”.

Proof. (4) ⇒ (3). We suppose (Metrical) holds. That is,

(∃δ : P2 → R+
0 ) [(P, δ) ∼= (R3,∆R3) ∧ Def1(P,B, δ) ∧ Def2(P,≡, δ)] (50)

So, we have a function δ : P2 → R+
0 such that (P, δ) is isomorphic to the standard

metric space (R3,∆R3). Moreover, Def1(P,B, δ) and Def2(P,≡, δ) hold. These translate
to the following. For points p, q, r, s ∈ P, we have:
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B(p, q, r) ↔ δ(p, r) = δ(p, q) + δ(q, r) (51)
pq ≡ rs ↔ δ(p, q) = δ(r, s) (52)

From these assumptions we can prove the eleven axioms, EG(3), governing the physical
primitives B and ≡. For example, consider the axioms E1 and E2:

(E1) B(p, q, p) → p = q (53)
(E2) pq ≡ rr → p = q (54)

For E1, suppose B(p, q, p). Then, δ(p, p) = δ(p, q) + δ(q, p). But δ(p, p) = 0. And
δ(p, q) = δ(q, p). Hence, 0 = 2δ(p, q). Hence, δ(p, q) = 0. Hence, p = q. Likewise, for
E2, suppose pq ≡ rr. Then δ(p, q) = δ(r, r). But δ(r, r) = 0. Hence, δ(p, q) = 0, and
therefore p = q. The proofs of the other axioms of EG(3) are similar, but the details are
tedious and messy.

But given EG(3), we can now prove the Representation Theorem. We obtain: (∃Φ :

P → R3) [(P, B,≡)
Φ∼= (R3, BR3 ,≡R3)]. This is (3), as claimed.

Proof. (3) ⇒ (5). Suppose that there exists an isomorphism Φ from the synthetic physical
structure (P, B,≡) to the standard coordinate structure (R3, BR3 ,≡R3). Let

C := {f | (P, B,≡)
f∼= (R3, BR3 ,≡R3)} (55)

By our assumption, C ≠ ∅. Because each element of C is indeed an isomorphism,
it follows that Rep(B,BR3 , C) and Rep(≡,≡R3 , C). It remains to prove KleinE(3)(P, C).
This is the claim that C turns P into what Wallace calls “an E(3)-space”. More exactly:

C ̸= ∅ ∧ (∀f ∈ C) [P
f∼= R3 ∧ ∀f ′(f ′ ∈ C ↔ f ′ ◦ f−1 ∈ E(3))] (56)

We already have C ̸= ∅. Moreover, if f ∈ C, then f : P → R3 is a bijection. It
remains to prove that if f ∈ C, then f ′ ∈ C if and only if f ′ ◦f−1 ∈ E(3). Suppose f ∈ C.

First, we recall Theorem 4.1:

Aut((R3, BR3 ,≡R3)) = E(3) (57)

Now suppose f ′ ∈ C. We claim: f ′ ◦ f−1 ∈ E(3). Our assumptions unwind to:

(P, B,≡)
f∼= (R3, BR3 ,≡R3) (58)

(P, B,≡)
f ′
∼= (R3, BR3 ,≡R3) (59)
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Hence, by composition of isomorphisms:

f ′ ◦ f−1 ∈ Aut((R3, BR3 ,≡R3)) (60)

By equation (57), we conclude:

f ′ ◦ f−1 ∈ E(3) (61)

Conversely, suppose f ′◦f−1 ∈ E(3). Let h = f ′◦f−1. Then, h ∈ Aut((R3, BR3 ,≡R3)).
So, f ′ = h ◦ f . Since f ∈ C and h ∈ Aut((R3, BR3 ,≡R3)), we have

(P, B,≡)
f∼= (R3, BR3 ,≡R3) (62)

(R3, BR3 ,≡R3)
h∼= (R3, BR3 ,≡R3) (63)

It follows that

(P, B,≡)
f ′
∼= (R3, BR3 ,≡R3) (64)

(65)

I.e., f ′ ∈ C, as desired.
And hence, KleinE(3)(P, C), as claimed. This is (5).

Proof. (5) ⇒ (3). Suppose (5) Kleinian holds. We have a non-empty chart system C
which is indeed an E(3)-chart system on the physical points P, and also Rep(B,BR3 , C)
and Rep(≡,≡R3 , C) both hold. That is:

(a) The physical betweenness relation B ⊆ P3 is represented by BR3 , for any f ∈ C.
(b) The physical congruence relation ≡⊆ P4 is represented by ≡R3 , for any f ∈ C.

We claim that (Representational) holds. Let Φ ∈ C be any chart. Consequently, Φ is
a bijection P → R3. From (a) and (b), we obtain: for points p, q, r, s ∈ P:

(p, q, r) ∈ B ↔ (Φ(p),Φ(q),Φ(r)) ∈ BR3 (66)
pq ≡ rs ↔ Φ(p),Φ(q),Φ(r),Φ(s)) ∈≡R3 (67)

Hence, Φ is an isomorphism from (P, B,≡) to (R3, BR3 ,≡R3). This is (3).

Finally, we move to the differential geometry formulation (6).
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Proof. (6) ⇒ (3). This is the easy direction, for the statement (3) is pretty much built
into the representation condition Rep(M, g,P, B,≡). So, suppose (6) holds. We have
a Euclidean space (M, g), and we have: Rep(M, g,P, B,≡). So, unwinding, we have
Ψ1(C0, C,M,P, B,≡), and hence:

C0 = {Φ : P → R3 | (P, B,≡)
Φ∼= (R3, BR3 ,≡R3)} ∧ C0 ̸= ∅ (68)

along with MaxExt(C, C0), and M = (P, C). Therefore, there exists some Φ : P → R3,

such that (P, B,≡)
Φ∼= (R3, BR3 ,≡R3). This is (3).

Proof. (3) ⇒ (6). This is harder, but only because we have to keep checking that the
definitions work. It fills up about five pages from here. It can chunked into four main
parts, I, II, III and IV:

(Part I) Given the existence of at least one Cartesian chart (P, B,≡)
Φ∼= (R3, BR3 ,≡R3),

we define C0 := {Φ : P → R3 | (P, B,≡)
Φ∼= (R3, BR3 ,≡R3)}, and prove that this

is a smooth atlas on P. We extend C0 to a maximal atlas, C. Then M = (P, C)
is a manifold diffeomorphic to R3 (as a manifold).

(Part II) Given B, we define the set LP,B of straight lines in (P, B,≡). Thus uniquely
fixes a torsion-free connection ∇ satisfying the condition that, for any smooth
curve γ, its image ran γ is in LP,B if and only if γ ∈ Geod(∇).

(Part III) Fix a Cartesian chart Φ. We define g to be the tensor on M with com-
ponents diag(1, 1, 1) relative to Φ. We define Lg(p, q) to be the “length”∫ 1

0
dλ

√
gµν γ̇µγ̇ν , for some geodesic γ ∈ Geod(∇). We prove that Lg(p, q) =

∆Φ(p, q). Then we prove that Lg(p, q) = Lg(r, s) ↔ pq ≡ rs.
(Part IV) We have that M is isomorphic to R3 and that g is isometric with the canonical

metric geuc on R3. This implies that (M, g) is Euclidean space.

The details, then, are:
(Part I). Let’s suppose (3) holds. Hence, we have at least one bijection

Φ : P → R3 (69)

such that

(P, B,≡)
Φ∼= (R3, BR3 ,≡R3) (70)

Thus, our synthetic system (P, B,≡) is isomorphic to the standard coordinate struc-
ture for Euclidean space (R3, BR3 ,≡R3). We now have to “extract”, by definitions, from
the physical system (P, B,≡) the differential geometry “equivalent”, (M, g) and show that
it is a standard Euclidean space.

From (P, B,≡)
Φ∼= (R3, BR3 ,≡R3), we have two isomorphism conditions: for any

p, q, r, s ∈ P,
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B(p, q, r) ↔ (Φ(p),Φ(q),Φ(r)) ∈ BR3 (71)
pq ≡ rs ↔ (Φ(p),Φ(q),Φ(r),Φ(s)) ∈ ≡R3 (72)

Let us define the distance function, given Φ:

∆Φ(p, q) :=

√√√√ 3∑
i=1

(Φi(p)− Φi(q))2 (73)

Then, using (72) and the definition of ≡R3 :

pq ≡ rs ↔ ∆Φ(p, q) = ∆Φ(r, s) (74)

We now construct the chart system on P. We have at least one isomorphism Φ from
(P, B,≡) to (R3, BR3 ,≡R3), and so let us define:

C0 := {Φ : P → R3 | (P, B,≡)
Φ∼= (R3, BR3 ,≡R3)} (75)

One may check that C0 is a smooth atlas (on P, not R3—we are doing physics). This
comes down to figuring out what the transitions maps are and proving that they are
smooth. Well, the transition maps are bijections f : R3 → R3 and as we know from the
automorphism Theorem 4.1 above, these functions are elements of E(3): they have the
form, for any x ∈ R3,

f(x) = αR(x) + d (76)

where α ∈ R (α > 0) is the dilation parameter, R ∈ O(3) is the rotation matrix, and
d ∈ R3 is the linear displacement. It is clear that these bijections are smooth. Let C be
the maximal extension of C0. Define:

M := (P, C) (77)

Hence (P, C) is a three-dimensional smooth manifold. The smooth atlas C0 has a
subatlas C∗ = {(P,Φ)} consisting of a single chart. And the manifold R3 has a subatlas
CR3 = {(R3, IdR3)}. Then the mapping Φ : P → R3 is a diffeomorphism from (P, C∗) to
(R3, CR3). So, M is diffeomorphic to R3 (as a manifold). Checking back on the definitions
above, the reader will see that we have now proved the claim: Ψ1(C0, C,M,P, B,≡).

(Part II). Next, we need to define a torsion-free connection ∇ on M in terms of our
basic physical primitive B. Roughly, ∇ is going to be the unique torsion free connection
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on M whose geodesics are exactly the straight lines of the betweenness relation B on P.
We shall call this set of straight lines LP,B. So, the defining condition for ∇ is that LP,B
is equal to the set of images of curves γ ∈ Geod(∇).

Given the betweenness relation B on P, we define the collinearity relation:

co1(p, q, r) := B(p, q, r) ∨ B(q, r, p) ∨ B(r, p, q) (78)

And, supposing p ̸= q, we define:

ℓ(p, q) := {r ∈ P | co1(p, q, r)} (79)

So, ℓ(p, q) is the “straight line containing p and q”. Define:

LB,P := {ℓ(p, q) | p, q ∈ P ∧ p ̸= q} (80)

So, LB,P is the set of straight lines in P. Now working in our standard chart Φ, we
can show that there exists a set N of nicely parametrized curves γ : R → P, such that,
we have:9

(i) (∀γ ∈ N) (ran γ ∈ LB,P ↔ (∃x, y ∈ R3) (∀λ ∈ R)(Φ(γ(λ)) = x+ λ(y − x)) (81)
(ii) ℓ ∈ LB,P → (∃γ ∈ N) (ℓ = ran γ) (82)

And hence, for each γ ∈ N :

ran γ ∈ LB,P ↔
3∧

β=1

(∀λ ∈ R) γ̈β(λ) = 0 (83)

Supposing ∇ is a connection on M , we have, in any coordinates:

∇µ
∂

∂xν
= Γβ

µν

∂

∂xβ
(84)

where the (3x3x3) numbers Γβ
µν are the connection coefficients.

And, in any coordinates, a curve γ is a geodesic of ∇ just if:

γ̈β = Γβ
µν γ̇

µγ̇ν (85)

9 I.e., if x, y are distinct points in R3, the straight line ℓ(x, y) through x and y can be taken as the
range of the “nicely parametrized” curve γ : R → R3, where: γ(λ) = x+ λ(y − x).
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So, let ∇ be the connection with, for standard coordinate system Φ, vanishing con-
nection coefficients:

Γβ
µν = 0 (86)

So:

γ ∈ Geod(∇) ↔
3∧

β=1

(∀λ ∈ R) γ̈β(λ) = 0 (87)

Therefore, by combining equation (83) and equation (87), we obtain: for any γ ∈ N :

ran γ ∈ LB,P ↔ γ ∈ Geod(∇) (88)

This (vanishing) connection ∇ is torsion-free. So we have proved that there exists a
torsion-free connection ∇ on M such that

LP,B = {ran γ | γ ∈ Geod(∇)}. (89)

So, we have proved Ψ2(M,∇,P, B).
(Part III). Next, we wish to define a metric tensor g, such that the condition for

equal length of segments pq and rs, relative to g (i.e., the length Lg(p, q) of the geodesic
(straight line) from p to q, determined by g, is equal to the length Lg(r, s) of the geodesic
(straight line) from r to s, determined by g) corresponds exactly to the physical condition
pq ≡ rs.

Supposing g is a metric tensor on M , we define Lg(p, q) as follows. Given any pair
p, q of distinct points, there exists exactly one straight line ℓ(p, q) ∈ LP,B. Consequently,
up to reparametrization, there is exactly one smooth curve γ : [0, 1] → P, with γ(0) = p
and γ(1) = q, which is a geodesic from p to q. Then:

Lg(p, q) :=

∫ 1

0
dλ

√
gµν γ̇µγ̇ν (90)

One may check that this quantity Lg(p, q) is coordinate invariant and parametrization
invariant. So, to calculate Lg(p, q) we choose nice coordinates (any Cartesian chart
Φ ∈ C0). If p = q, the integral is 0. So, assume p ̸= q. Up to reparametrization, there is
a unique geodesic γ from p to q. Assuming p ̸= q, we can choose a nice parametrization
for γ, namely:

γµ(λ) = Φµ(γ(λ)) = Φµ(p) + λ(Φµ(q)− Φµ(p)) (91)
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This implies:

γ̇µ(λ) = Φµ(q)− Φµ(p) (92)

Hence (Einstein summation convention in place),

gµν γ̇µγ̇ν = gµν(Φ
µ(q)− Φµ(p))(Φν(q)− Φν(p)) (93)

Now let g be defined, in coordinates Φ, by:

gµν =

1 0 0
0 1 0
0 0 1

 (94)

In particular, since gµν = diag(1, 1, 1), we can calculate the quantity Lg(p, q):

∫ 1

0
dλ

√
gµν γ̇µγ̇ν =

√√√√ 3∑
µ=1

(Φµ(q)− Φµ(p))2

∫ 1

0
dλ (95)

= ∆Φ(p, q) (96)

In the second line, we have used the definition (73) of ∆Φ. And so,

Lg(p, q) = Lg(r, s) ⇔ ∆Φ(p, q) = ∆Φ(r, s) (97)
⇔ pq ≡ rs (98)

Where, in the second line, we used (74). Summarizing where we are, we have now
verified:

LP,B = {ran γ | γ ∈ Geod(∇)} (99)
(∀p, q, r, s ∈ P) (pq ≡ rs ↔ Lg(p, q) = Lg(r, s)) (100)

That is, we have verified Ψ2(M,∇,P, B) and Ψ3(M, g,P,≡). Hence, since we have
verified Ψ1(C0, C,M,P, B,≡), we have thereby verified the representation condition:

Rep(M, g,P, B,≡). (101)

(Part IV). It remains to prove EuclSpace(M, g). First, M is indeed diffeomorphic
to R3. So, we need to show that g (on M) is isometric to geuc (on R3). I.e., we need a
diffeomorphism ϕ : M → R3 such that:
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g = ϕ∗geuc (102)

holds. (ϕ∗geuc is pullback of geuc under ϕ.) But this is immediate from the definition
(94). For the chart Φ is a diffeomorphism from M to R3 such that g = Φ∗geuc. So, we
have EuclSpace(M, g) and Rep(M, g,P, B,≡). And this is (6).

It’s perhaps worth adding that the metric tensor g we defined is not unique. For any
α > 0, the metric tensor αg does the trick too. This has components diag(α, α, α), with
respect to the Cartesian chart Φ we keep fixed throughout. But so what? The metric
αg nonetheless yields precisely the same congruence relation on the physical point set P:
namely, ≡. That is, the physical betweenness and congruence relations do not determine
a unique metric tensor, but rather a class of metric tensors, related by a non-zero positive
dilation coefficient, α.

6 Equivalent Axiomatizations

In summary, Theorem 5.1 gives six mathematically equivalent first-order axiomatizations
of the claim that ordinary physical space is Euclidean, with respect to physical between-
ness and physical congruence. Recall that our physical signature is:

σphys = {point,B,≡} (103)

And our mathematicized signature is:

σ = {point,B,≡,∈} (104)

The overall (first-order) language is L(σ). And the equivalent axiomatizations, in
L(σ), are:

Equivalent axiomatizations

(1) Synthetic EG(3)
(2) Semantical (P, B,≡) |=2 ⌜EG(3)⌝

(3) Representational (∃Φ : P → R3) [(P, B,≡)
Φ∼= (R3, BR3 ,≡R3)]

(4) Metrical (∃δ : P2 → R+
0 ) [(P, δ) ∼= (R3,∆R3) ∧ Def1(P,B, δ) ∧ Def2(P,≡, δ)]

(5) Kleinian ∃C [KleinE(3)(P, C) ∧ Rep(B,BR3 , C) ∧ Rep(≡,≡R3 , C)]
(6) Diff geometrical ∃M ∃g [EuclSpace(M, g) ∧ Rep(M, g,P, B,≡)]

These are physical axioms, which are inter-derivable in an ambient first-order set
theory. This is perfectly analogous to the inter-derivability of Choice and its equivalents.
Except that these are physical axioms.
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7 Definitional Equivalents

In the above results, the physical signature remains fixed, and we proved (1) ⇔ (2), and
so on, modulo the base AM∗. What if we change the physical signature?

Let us now modify the physical signatures as follows:

Definition 7.1. We define two new physical signatures:

σ′
phys := {point,B,≡,O,X,Y,Z} (105)

σ′′
phys := {point, φ1, φ2, φ3} (106)

In the first, we have the three symbols, point,B,≡ of σphys, and four new symbols: we
declare that O,X,Y,Z are constants, of the sort atom (and indeed denote points). In
the second, we keep point, but drop B and ≡, and add three new symbols, φi. We shall
declare that each symbol φi is function symbol, of the sort atom ⇒ class (and indeed
denote functions from points to reals).

Definition 7.2. In the language L(σ′), we define a four-place formula:

Eucl-3-frame(p, q, r, s) := p, q, r, s ∈ P ∧ p ̸= q ∧ p ̸= r ∧ p ̸= s ∧ q ̸= r ∧ q ̸= s ∧ r ̸= s

∧ (pq ≡ pr ∧ pq ⊥ pr) ∧ (pq ≡ ps ∧ pq ⊥ ps) ∧ (pr ≡ ps ∧ pr ⊥ ps) (107)

This expresses that we have four distinct points p, q, r, s, forming an orthogonal frame,
with p at the centre, and each “leg” pq, pr and ps having the same length. In Burgess
& Rosen (1997), John Burgess calls this a system of “benchmarks”. The detailed proof
of the Representation Theorem for EG(3) in fact shows that, given any such Euclidean
3-frame, p, q, r, s, we have a unique Cartesian chart Φ meeting the conditions that Φ(p) =
(0, 0, 0),Φ(q) = (1, 0, 0),Φ(r) = (0, 1, 0) and Φ(s) = (0, 0, 1).

Definition 7.3. Let EG+(3) be the theory in L(σ′) whose axioms are:10

AM∗(σ′) + EG(3) + Eucl-3-frame(O,X,Y,Z) (108)

Definition 7.4. In L(σ′′), the formula Bij(φi) is defined as follows:

Bij(φi) := (∀p, q ∈ P) (φi(p) = φi(q) → p = q) ∧ (∀x ∈ R) (∃p ∈ P) (x = φi(p)) (109)

Definition 7.5. The theory ACG(3) of analytic coordinate geometry in three dimensions
is the theory in L(σ′′) whose axioms are:

AM∗(σ′′) +
∧
i

Bij(φi) (110)

In other words, each axiom Bij(φi) just states that the corresponding coordinate
function denoted by φi is a bijection.

10 AM∗(σ′) is the base theory, now in the language L(σ′).
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We can then prove the following definitional equivalence:

Theorem 7.1. EG+(3) is definitionally equivalent to ACG(3).

Proof. Working in analytic coordinate geometry ACG(3), we have that each φi is a bi-
jection from P to R. Let us define a function Φ : P → R3 by:

Φ(p) := (φ1(p), φ2(p), φ3(p)) (111)

Since each φi is a bijection, it follows that Φ : P → R3 is a bijection.
Next we add the six explicit definitions:

(D1) p = O := Φ(p) = (0, 0, 0)
(D2) p = X := Φ(p) = (1, 0, 0)
(D3) p = Y := Φ(p) = (0, 1, 0)
(D4) p = Z := Φ(p) = (0, 0, 1)
(D5) B(p, q, r) := BR3(Φ(p),Φ(q),Φ(r))
(D6) pq ≡ rs := Φ(p)Φ(q) ≡R3 Φ(r)Φ(s).

Let Df1 be the conjunction of these six definitions. Let B = {(p, q, r) ∈ P3 |
B(p, q, r)}, and let ≡= {(p, q, r, s) ∈ P4 | pq ≡ rs}. So, B is now a three-place rela-
tion on P and ≡ is a four-place relation on P. The fact that Φ : P → R3, along with (D5)
and (D6), implies that Φ is an isomorphism from (P, B,≡) to (R3, BR3 ,≡R3). Hence we
have an equivalent of EG(3), via Theorem 5.1, (3). So, from these definitions (working
in ACG(3)), we can prove the synthetic Euclidean axioms EG(3). What is more, we have
Φ(O) = (0, 0, 0), Φ(X) = (1, 0, 0), Φ(Y) = (0, 1, 0) and Φ(Z) = (0, 0, 1). From these,
we obtain O,X,Y,Z ∈ P. We can easily prove that the segment (0, 0, 0) to (1, 0, 0) has
the same length as the segment (0, 0, 0) to (0, 1, 0). This yields OX ≡ OY. And we
can easily prove that the segment (0, 0, 0) to (1, 0, 0) is perpendicular to the segment
(0, 0, 0) to (0, 1, 0). This yields OX ⊥ OY. In this way, we prove the frame axiom
Eucl-3-frame(O,X,Y,Z), as desired.

Conversely, as we know, working in EG(3), we can prove item (3) in Theorem 5.1:

there exists Φ : P → R3 such that (P, B,≡)
Φ∼= (R3, BR3 ,≡R3). Examining the details of

this proof, we can prove that such a Φ exists such that Φ(O) = (0, 0, 0) and Φ(X) =
(1, 0, 0) and Φ(Y) = (0, 1, 0) and Φ(Z) = (0, 0, 1). Let us add the three definitions:

(D1) φ1(p) := Φ1(p)
(D2) φ2(p) := Φ2(p)
(D3) φ3(p) := Φ3(p)

Let Df2 be the conjunction of these three definitions. From these definitions (working
in EG+(3)), we can prove that each φi is a bijection: Bij(φ1), Bij(φ2) and Bij(φ3). So,
we can prove the axioms of analytic coordinate geometry ACG(3).

We have therefore shown that the two theories, suitably extended, are logically equiv-
alent:
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EG+(3) + Df2 ⊣ ⊢ ACG(3) + Df1 (112)

So, EG+(3) and ACG(3) have a common definitional extension. Hence, they are
definitionally equivalent.
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