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Abstract

In this essay, I examine the mathematical underpinnings of the butterfly effect
to interrogate its putatively causal status. Chaotic systems are mixing, meaning
that bundles of initial conditions eventually spread out over phase space. This has
two consequences. First, counterfactual dependence becomes ubiquitous between
temporally distant states; slight changes anywhere in the system can lead to large
changes anywhere else. Second, all events become probabilistically independent of
one another. When we map these properties onto the butterfly effect, we notice a
situation of counterfactual dependence and probabilistic independence. In this
case, our two normal criteria for causation — the counterfactual and the
probabilistic — contradict each other in an unexpected way. Rather than ruling in
favor of one of these criteria, I argue that we should view the butterfly effect’s
causal status as indeterminate.
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1 Introduction

In the philosophical literature, there are two traditions for describing causal

dependence: probabilistic dependence and counterfactual dependence.1 However, these

two criteria are known to disagree. In cases of “mere associations” we have probabilistic

dependence and counterfactual independence (e.g. a rooster crowing before the

sunrise). We typically defer to the counterfactual criteria when ruling these cases as

non-causal. But what about disagreement in the opposite direction: cases of

counterfactual dependence and probabilistic independence? In this paper, I argue that

chaos theory supplies such a case: the butterfly effect. The mathematical basis of chaos

— mixing — implies that, over the long run, chaotic systems will have ubiquitous

counterfactual dependence that cannot be tracked probabilistically.

This leaves the butterfly effect’s causal status ambiguous. According to the

popular manipulationist theories of causation, the pragmatic function of causation is to

allow us to manipulate our environment. For this we want both counterfactual

dependence and probabilistic dependence. However, the butterfly effect, particularly

when compared to obvious cases of non-causation, calls into question whether

probabilistic dependence is a part of the conceptual content of ‘cause’ or just a helpful

association. Rather than rule decisively one way or the other, I argue that the butterfly

effect’s causal status is best thought of as indeterminate.

Because this is a paper about chaos theory and the butterfly effect, it is

important to describe these ideas on their own terms. Thus, I will be operating within

1For examples of the former, see Mellor (1995) and Suppes (1970). For the latter,

see Lewis (1974).
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the classical framework of dynamical systems theory. The advantage of this approach is

that dynamical systems theory offers an objective way to interpret two highly

contentious topics in philosophy: probability and counterfactuals. However, not every

probabilistic and counterfactual question will be answerable within the framework. We

will proceed with these limitations in mind.

The paper is structured as follows. In §2, I describe the mixing property of

chaotic systems and how that leads to probabilistic independence. §3 describes the

butterfly effect. §3.1 describes how the butterfly effect exemplifies both probabilistic

independence and counterfactual dependence. Then, in §3.2 I use a simple chaotic

system — the baker’s map — to illustrate. In §3.3, I describe how the butterfly effect

differs from how we typically think about probabilistic independence. In §4, I argue

that the extension of ‘causation’ is indeterminate in chaotic domains. I describe the

purpose of causation in §4.1, and how this purpose leaves the concept indeterminate in

§4.2. I answer various objections in §5.

2 Mixing and Probability in Dynamical Systems Theory

Chaos theory is part of dynamical systems theory. Dynamical systems are

future-deterministic, meaning that every state of the system has one unique future

under time evolution. For our purposes, we will focus on a subset of dynamical systems

— measure-preserving dynamical systems — defined as a quadruple (Γ, µ,Σ, T ). Γ is

the phase space of the system, the set of all possible states the system can take. The

state of a dynamical system is represented as a point x in its phase space. µ is a

measure on Γ where µ (Γ) = 1. Σ is a σ-algebra on Γ, defining the measurable sets.

Measurable sets A ∈ Σ are also called “events” and their negations are set compliments
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¬A = {x ∈ Γ : x ̸∈ A}. Tt : Γ → Γ is a surjective map given by the system’s dynamics:

Tt(x) is phase point x ∈ Γ evolved forward by t ∈ R or Z, depending on the system. For

all A ∈ Σ, Tt(A) = {Tt(x) : x ∈ A}. A dynamical system is measure preserving iff for all

measurable subsets A ∈ Σ, µ(T−1
t (A)) = µ(A), where T−1

t (A) are all the points that get

mapped onto A.

Mixing is a property of chaotic systems.2 J.W. Gibbs first introduces the concept

of mixing using the analogy of a drop of ink in a glass of water (1902, 144-145).

Eventually, the drop spreads out to uniformly fill the the glass. Similarly, for mixing

systems, a bundle of solutions belonging to a small region of initial conditions will

spread out to fill the phase space under time evolution. Formally, we would say that a

system is mixing iff for any two subsets A,B ∈ Σ,

lim
t→∞

µ (Tt (A) ∩B) = µ(A)µ(B). (1)

This says that the measure of A that ends up in B is the product of the measures of A

and B. In other words, every region A of phase space eventually evolves towards the

same spread out distribution over every other region B. If the system’s dynamics are

mixing, they will effectively “stir” together various regions of phase space. Figure 1 is

an example of mixing in the two-dimensional logistic map, which is a map from the unit

2Charlotte Werndl (2009) has argued that mixing is necessary and sufficient for

chaos, while Belot and Earman (1997) describe it as merely necessary.

4



𝐴

𝐵

𝐴

𝐵

𝑇 (𝐴)

𝑇 (𝐵)

Figure 1: Simulation of mixing in the two-dimensional logistic map at t = 0, 4, 7, 25.

Two regions of phase space, A and B, spread out under time-evolution, until they both

approximate the time-invariant measure of the system.

square onto itself.3 We can see how the spreading out of solutions displayed there

implies the most recognizable property of chaos: sensitive dependence on initial

conditions.

From Figure 1, it is easy to infer how mixing leads to probabilistic independence.

However, let us walk through the formal result. In dynamical systems theory, it is

typical to use the time-invariant, normalized measure as an objective probability

32D logistic map:

(xn+1, yn+1) =


(4xn(1− xn), xn + yn) if xn + yn < 1

(4xn(1− xn), xn + yn − 1) if xn + yn ≥ 1
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distribution for the system. The prior probability of event A ∈ Σ is given by the

measure of that event,

µ(A) = P (A) for all A ∈ Σ. (2)

This can be justified by the fact that mixing systems are ergodic, and so time averages

equal space averages for the system. For any two events A,B ∈ Σ occurring at time 0

and time t,

P (Bt & A0) = µ(Tt(A) ∩B). (3)

This just means that the probability of B occurring after A is measured by the

“amount” of A that ends up in B. From (2) and (3), the definition of mixing (1) implies

probabilistic independence:

lim
t→∞

P (Bt & A0) = P (A)P (B), (4)

or using the standard ratio formula for conditional probability, P (B|A) =

P (A&B)/P (A),

lim
t→∞

P (Bt|A0) = P (B). (5)

which says that every event becomes probabilistically independent of every other event

as t → ∞. By the definition of the limit, (5) also implies that for any ϵ > 0 and for all

A,B ∈ Σ, there exists a time t for which |P (Bt|A0)− P (B)| < ϵ. Charlotte Werndl has

called this property “approximate probabilistic irrelevance” because conditionalizing on

A will not appreciably raise or lower B’s probability (2009, 214). Since ϵ grows

arbitrarily small, I will not make much of the distinction between approximate

probabilistic irrelevance and probabilistic independence in this context.
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3 The Butterfly Effect

3.1 An Unstable Counterfactual

Since its introduction by Edward Lorenz in 1972, the butterfly effect has been both the

most popular and misunderstood idea to come out of chaos theory.4 Whenever the

butterfly effect is responsibly depicted, it usually comes in the form of a counterfactual

claim that closely resembles how philosopher’s talk about “actual causation” — i.e. the

causal relations between actually occurring events. For instance, Robert Bishop

describes the butterfly effect as “the flapping of a butterfly’s wings in Argentina could

cause a tornado in Texas three weeks later. By contrast, in an identical copy of the

world sans the Argentinian butterfly, no such storm would have arisen in Texas” (2008).

Although it is frequently used as a metaphor for sensitive dependence on initial

conditions, little attention has been paid to what exactly this counterfactual amounts

to. In this section, we get to the bottom of this counterfactual claim.

Because the butterfly effect is a counterfactual claim coming out of dynamical

systems theory, we will analyze it using dynamical systems theory. Dynamical systems

theory provides a framework to carry out certain types of counterfactual reasoning.

Because dynamical systems are future deterministic, any point x0 in phase space will be

mapped to another point Tt(x0) = xt under time evolution. Thus, if we ask the question

— “Would B happen at t if our initial conditions had been x0?" — then there will be a

determinate answer based on whether xt ∈ B.

This point-to-point mapping is the typical dynamical view of the butterfly

4See Kellert (2009, 103-120) for discussion.
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counterfactual. Jean Bricmont elaborates:

The idea is that the flap of a butterfly’s wings corresponds to a very small

change in the initial conditions of the weather system that may lead to a big

difference in the future: a tornado or no tornado in Texas (2022, 83).

Let us make this more precise. The weather system has a phase space Γ and dynamics

Tt : Γ → Γ, assumed to be mixing/chaotic. Say the weather system’s “actual” initial

state is x0 ∈ Γ. Accordingly, its state at t is Tt(x0) = xt. Now change x0 slightly to x′
0

as might correspond to the difference of a butterfly not flapping its wings, and find the

future state at t by Tt(x
′
0) = x′

t. Because the system is chaotic, we know that given

enough time, xt and x′
t will end up far apart, disagreeing on large macroscopic

properties. Call ‘Tornado’ the region of phase space corresponding to the macro-event

of the Texas tornado. Let us say we find that xt ∈ Tornado and x′
t ̸∈ Tornado. Thus, we

have counterfactual dependence; changing x0 to x′
0 changes the tornado’s occurrence.

There are a few things to point out here. First, the future states xt and x′
t will

disagree on many more macroscopic events than just the tornado. Given enough time,

the disagreement will be widespread over the entire global weather system. Thus,

innumerable events in the future will be counterfactually dependent on the initial

change. Second, the tornado’s occurrence will be counterfactually dependent on many

more changes to x0. Lorenz points this out in his original lecture on the butterfly effect,

stating that the tornado will be sensitive to “the flaps of the wings of millions of other

butterflies, not to mention the activities of innumerable more powerful creatures,

including our species” (1972, 1). What he means by this is that if you were to slightly

change the initial conditions anywhere, you would also see large differences in future

behavior. Thus, there is no special counterfactual connection between that Brazilian
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butterfly and that Texas tornado. Lastly, this counterfactual is highly unstable. If we

were to change the initial state a little differently, a little more or less in some direction,

we would find a trajectory that disagrees with the first two on many future

macro-events.

Now let us consider the situation probabilistically. Call K the background

conditions at the time of the flap, ‘Flap’ the event of the butterfly’s flap at time 0, and

‘Tornado’ the event of the tornado’s occurence at time t. Assuming large enough t so

that mixing has dominated the dynamics, then the tornado will be probabilistically

independent of the flap:

P (Tornado|Flap & K) = P (Tornado|¬Flap & K) = P (Tornado) (6)

Even holding the background conditions fixed, conditionalizing on ‘Flap’ does not raise

or lower the objective probability of the tornadoes occurrence.5 Although there are

many changes to the butterfly’s flap that might change the tornado’s occurrence, those

changes are not reflected as a correlation between ‘Flap’ and ‘Tornado’. To see how this

could be, let us turn to a simple example.

5Caution: if we fix the background conditions in K at singular values — akin to how

David Lewis’ similarity metric maximizes the perfect match of particular facts between

worlds (1979, 472) — then the initial region will be measure zero µ(Flap & K) = 0.

Therefore, the mixing condition will technically not imply probabilistic independence.

However, we strongly suspect that probabilistic independence will still occur because

the coupling of the relevant differential equations will smear out any initial differences

over all of phase space.
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Figure 2: Single Iteration of the Baker’s Map

3.2 Example: The Baker’s Map

To visualize the situation, let us use a surrogate system: the time-discrete Baker’s map.

Because the chaos of time-continuous systems can typically be described by

time-discrete Poincaré maps, the switch to time-discrete systems has little effect on the

generality of the discussion (see Smith, 1998, 92-93). The Baker’s map is a chaotic 2D

map from the unit square onto itself whose invariant measure is the 2D Lebesgue

measure. The map is defined as:

(xn+1, yn+1) =


(2xn, yn/2) if 0 ≤ x < 1

2

(2xn − 1, (y + 1)/2) if 1
2
≤ x ≤ 1

(7)

It is named the Baker’s map because it mimics the process of kneading dough. It can

be visualized as two separate operations (Figure 2). First the unit square is flattened

out into a 2× 1/2 rectangle. Then the rectangle is cut into left and right halves, and

the right half is placed on top of the left half.

Say that we want to know whether our initial conditions end up on the top half of

the square. The situation is shown in Figure 3. The blue dots represent initial

conditions that end up in the top half after n iterates, and red dots are initial

conditions that end up in the bottom half. As n increases, what we see is a procession
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𝑛 = 11 𝑛 = 10

𝑛 = 0𝑛 = 1𝑛 = 2𝑛 = 3

𝑛 = 4𝑛 = 5𝑛 = 6𝑛 = 7

𝑛 = 8𝑛 = 9

Figure 3: Blue dots are initial conditions that end up on the top half of the unit

square after n iterations of the baker’s map

of vertical blue stripes that get exponentially denser. By n = 11, the stripes have

become too tightly packed to observe.

Compare the situation at n = 2 and n = 11 in Figure 4. In both cases, there are

many changes to the initial conditions x0 and y0 that would result in the system

evolving into the top half region. For n = 2, these changes can be imprecise. Judging

from the amount of blue in each region, we can see that P (Top Half |A) = 0 and

P (Top Half |A′) = 1. By ensuring that the initial conditions start out in A′ and not A,

we guarantee that the system ends up in the top half. For n = 11, our final state is

hypersensitive to practically all changes we could make in the initial conditions. Above

a certain size, all regions B and B′ will yield roughly the same 1/2 conditional

probability that the system ends up in the top half. From a practical perspective, every

change we might make is as good as a coin flip for whether the system ends up in the

top half. This is the primary way we should understand the conjunction of
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Figure 4: Magnified versions of n = 2, 11 above. Blue dots are again initial conditions

that end up on the top half after n iterations. n = 2 shows counterfactual and

probabilistic dependence, while n = 11 shows counterfactual dependence and

probabilistic independence.

counterfactual dependence and probabilistic independence: there are many changes to

the initial conditions that would alter the occurrence of a future event, but this

dependence becomes too fined grained to be reflected as correlations between events.

So long as the system is mixing, the result will be the same in more complex

examples, such as the global weather system in a high-dimensional phase space.

Sensitive dependence entails that had the initial conditions been slightly different from

their actual values — such as might correspond to a butterfly not flapping — then the

resultant trajectories will show widespread disagreement on future events — such as a

tornado’s occurrence. However, the event of the butterfly’s flap will not raise or lower

the probability of the tornadoes occurrence. This is because the regions of ‘Flap’ and

‘No Flap’ will be filled with roughly the same proportions of initial conditions that end

up in the ‘Tornado’ region. This circumstance is similar to a dice roll; although the

relevant physics is modeled deterministically, the fairness of the roll is guaranteed by
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the fact that the outcome is far more sensitive to the initial conditions than the person

rolling the dice.6 In chaotic systems, this situation is ubiquitous over long timescales:

any macro change we might make in the distant past would be effectively re-rolling the

dice on the system’s future. High probability events will probably still happen, and low

probability events probably do not.

Accordingly, there is an additional way we could interpret counterfactual

independence, beyond the fact the tornado’s occurrence is sensitive to changes in the

flap. Say in the actual world a butterfly flaps and a tornado occurs sometime much

later. Tornadoes are very low probability events. Therefore, if we were to change only

the butterfly’s flap, the tornado almost certainly does not occur. However,

conditionalizing on the butterfly’s flap and background conditions once again does not

alter the probability of the tornado. This interpretation is especially strange because

the tornado’s counterfactual dependence on the flap crucially relies on the tornado

being a low probability event. A high probability event, e.g. sunshine in the Sahara

desert, will look to counterfactually independent of the flap.

3.3 A Counterfactual Degeneracy

We have just described how the hypersensitivity of the butterfly-tornado counterfactual

implies probabilistic independence between the two events. However, this is not the

typical route to probabilistic independence. When we think about two events being

probabilistically independent from one another, we typically imagine that they are

counterfactually insensitive to one another as well.

6For an elaboration, see Strevens (2011) and Diaconis et al. (2007).
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James Woodward gives the following example. Say Suzy throws a rock at a vase,

causing it to shatter. According to Woodward, we expect that “If Suzy’s rock strikes the

vase in Boston at the moment at which someone sneezes in Chicago, then presumably if

that person had not sneezed but the world had remained relevantly similar in other

respects, the bottle still would have shattered" (2006, 5). The macro-event of the

shattering is probabilistically and counterfactually independent of the sneeze;

reasonably sized variations to the sneeze cannot change the shattering’s occurrence. In

this case, probabilistic independence is a good marker for counterfactual independence.

However, for chaotic systems, probabilistic independence is no longer a good

marker for counterfactual independence. The events of the butterfly’s flap and the

tornado are probabilistically independent of one another, but sensitive dependence

implies that varying the butterfly’s flap can vary the tornado’s occurrence. Insofar as

tornadoes are objectively rare events, a slight variation in the butterfly’s flap probably

would have prevented a tornado that actually occurred from occurring. However, this

counterfactual dependence is too fine-grained to be picked up as a correlation between

butterflies and tornadoes.

This shows us that probabilistic independence exhibits a surprising counterfactual

degeneracy. There are two distinct counterfactual routes to probabilistic independence:

counterfactual insensitivity and hypersensitivity. If we treat probabilistic dependence as

a necessary condition for counterfactual dependence, then we conflate these starkly

different situations. From a causal perspective, we think the counterfactually insensitive

situation (the sneeze-vase case) is non-causal. The vase breaking is predictably

unaffected by changes to the sneeze. The butterfly effect represents a much different

circumstance; small changes lead to large but unpredictable differences. But does this
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amount to causation? This will be the topic of the next section.

4 The Indeterminacy of ‘Causation’

I have just shown how chaos produces widespread counterfactual dependence and

probabilistic independence. How should we interpret these results in light of the larger

debate on causation? Thus far, I have withheld judgement on whether the butterfly

effect is a genuine causal relation. In this section, I will argue that chaotic systems

describe a domain where the term ‘causation’ is indeterminate.

4.1 Causation and Manipulation

In philosophy of science, manipulability accounts of causation have gained considerable

traction.7 Manipulationists break with the philosophical tradition in how they think

about causation. While many traditional philosophical theories treat causation as a

metaphysical relation, something out there in the world, manipulationists think of

causation as an invaluable pragmatic concept that has evolved to aid human beings

navigate their environment.8 Throughout the rest of this paper, I will assume this view

of causation as a pragmatic concept is broadly correct. According to the

manipulationist, both probabilistic and counterfactual dependence is required for

causation to serve its purpose.

According to classic probabilistic theories of causation, causes always raise (or at

7For examples, see Woodward (2003, 2006, 2021b) and Halpern (2016)

8For a quintessential example of a metaphysical theory of the type described, see

Lewis (1974).
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least change) the probabilities of their effects.9 However, a well known deficiency to

these theories is the existence of “mere associations”: a class of relations which are

probability raising but not causal. The rooster’s crow regularly precedes the sunrise but

does not cause it. Probabilities are important for prediction, but human agents also

need to understand what Nancy Cartwright calls “effective strategies”: ways they can

manipulate their environment to bring about desired ends (1979, 419).

This is the province of counterfactual reasoning. Even though the rooster’s crow

is correlated with the sunrise, I cannot prevent the sunrise by silencing the rooster. The

sunrise is counterfactually independent of the crow. Thus, causal reasoning requires an

understanding of counterfactual dependencies. This in turn provides us with a way of

knowing which interventions we could successfully carry out to our advantage.

Manipulationists take both of these insights to heart. James Woodward describes

his manipulability theory of causation as:

(M) Where X and Y are variables, X causes Y iff there are some possible

interventions that would change the value of X and if were such intervention

to occur, a regular change in the value of Y would occur (2021a, 219).

This means that under certain background conditions, Y is counterfactually dependent

on certain changes in X such that the change in Y is also probabilistically dependent

on the change in X.10 How we are to understand “possible interventions” is a point of

some dispute, but regardless (M) is good at recovering our intuitions about standard

9See Mellor (1995, 67) and Suppes (1970).

10Manipulationist theories use directed acyclic graphs to represent the causal

structure of different situations, with arrows between variables denoting counterfactual
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cases of causation and non-causation.

We can see that (M) asserts that causes should, under the right circumstances,

act like a lever to bring about their effects with some regularity. However, the event of

the butterfly flap cannot do this. The butterfly effect is an intervention on X (changing

the flap) which can change Y (the tornado), but that change is irregular. The only

change that could bring about the tornado with regularity would be an impossibly

precise positioning of the weather’s initial conditions. Despite this, the butterfly effect

is described in causal terms in both the physics and philosophy literature.11 If (M)

truly captured the conceptual content of ‘causation’, then the butterfly effect would

clearly be non-causal, similar to the rooster-sunrise example. Yet it is not.

On the other hand, if one agrees with the manipulationist view of causation as a

pragmatic concept, then we cannot assume that causation can be extended to all of the

foreign contexts offered by physics. For the manipulationist, to count the butterfly effect

as a counterexample would be to misunderstand the nature of their project. In doing so

dependence. There, the fact that probabilistic dependence always accompanies

counterfactual dependence is implied by a fundamental assumption of the framework

called the “Minimality Condition”: if there is an arrow from X to Y then there must be

a context in which X makes a probabilistic difference for Y (Hitchcock, 2021).

11For additional examples of this, see Smith (1990, 247), Frisch (2014, 212), and

Hilborn (2004). Note that this is not a bald appeal to the authority of these

philosophers and physicists. For this case, I am inclined to exclude the intuitions of

laypeople who have only ever encountered the butterfly effect as a causal claim, and

have no understanding of the underlying phase space dynamics from which it originates.
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we would be taking the metaphysics of causation too seriously. Something has to give.

4.2 The Open Texture of ‘Causation’

We can see a way out of this dilemma if we give up the referential determinacy of

‘cause’ in the case of hypersensitive counterfactuals. To understand what is going on, I

will appeal to Friedrich Waismann’s notion of “open texture concepts” (1945, 121).

According to Waismann, a concept is open texture insofar as there exists potential

contexts under which there is no correct answer as to whether it applies. This is

because there are two or more definitions of the term that are coextensive within its

ordinary domain of use, but disagree in the novel context. Consider a case given in

Dennett (1987, 312). An isolated tribe of humans often encounter an explosive gas in

their marsh they call “glug,” which happens to be methane. Say we remove a member

of this tribe from his marsh and introduce him to a novel explosive gas, acetylene,

which he instinctively calls “glug.” Has the tribesman erred? The properties the

tribesman associated with ‘glug’ has hitherto always referenced methane, but now he is

confronted with a different substance with similar properties. Perhaps after teaching

the tribesman some chemistry, ‘glug’ might come to mean either ‘methane’ or

‘explosive gas’, but before this point, there is no fact to the matter.

The same thing is occurring when we are considering whether the butterfly flap

“causes” the tornado. There are two definitions which fit our typical use of ‘cause’

equally well. One definition is closely tracked by (M); Causation is counterfactual

dependence plus probabilistic dependence under certain background conditions.

Counterfactual dependence provides information about what listens to changes in what,

and probabilistic dependence helps us predict those changes.
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Another definition is that causation is just something like counterfactual

dependence. On this reading, probabilistic dependence is not part of the meaning of

‘cause’ but part of its ordinary context. This is because the counterfactual

dependencies which are readily identified and controlled are the ones which are

predictable. Thus, probabilistic dependence has historically set the boundary for where

the concept of causation is useful.

The butterfly effect provides a novel case where these two definitions come apart.

It lies outside causation’s ordinary domain of use and exposes a hidden ambiguity. By

ascribing open texture to ‘cause’ in this case, we can explain why we might encounter

conflicting intuitions about the butterfly effect’s causal status. Just as modern

chemistry confronts the tribesman with two possible definitions for ‘glug’ that do not

decouple inside of his marsh, chaos theory provides us with two possible definitions for

‘cause’ which do not decouple in ordinary use.

Understanding causation to be open texture in this way is not necessarily at odds

with the manipulationist. Recently, Woodward, Naftali Weinberger, and Porter

Williams (2023) have argued that although causation is not a metaphysical concept of

the type sought by traditional causal theorists, there are certain features of reality they

dub “The Worldly Infastructure of Causation” that license and support causal

reasoning. One of these features is that the macroscopic, coarse grained behavior of a

system is largely independent of its microscopic realizers. In the butterfly effect, if we

were to hold the background conditions fixed, then whether the tornado occurs will

come down to the microscopic realization of the flap. Thus, there is a breakdown in

some of the worldly infrastructure of causation. These authors argue that when such a

breakdown occurs “such systems simply will not admit a straightforward causal
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interpretation, at least on anything like how we presently think about causation”

(Weinberger et al., 2023, 34). All of this is consistent with ‘causation’ being

indeterminate for the butterfly effect. Elsewhere, Woodward states that “causal notions

are legitimate in any context in which we can explain why they are useful” (2007, 67).

If we understand “useful” here in terms of our ability to control our environment, then

the butterfly effect would be an illegitimate application of the concept. Even if we

could fix the background conditions, we could not use the variable of the butterfly’s flap

to control the tornado. In applying the concept in this way, we have taken causation

beyond its domain of useful application.

5 Objections

In framing the discussion, I have avoided some of the more philosophically and

technically fraught issues of probability and dynamical systems theory. To head off

potential objections, we shall return to them now.

5.1 Differing Measures

Early in the paper, I made the assumption in (2) that µ(A) = P (A) for all A ∈ Σ. In

other words, our probability distribution over all events should mirror the system’s

invariant measure of those events. However, there are many measures we might want to

adopt that differ from the invariant measure. If we relax the assumption in (2), does

probabilistic independence still hold?

Mixing implies that probabilistic independence will occur for any generic

measure. Call µ0 any normalized measure that is absolutely continuous with respect to

the invariant measure µ (i.e. µ(A) = 0 =⇒ µ0(A) = 0 for all A ∈ Σ). Call the
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time-evolved measure µt, where µt(A) = µ0(T
−1
t (A)) for all A ∈ Σ. If a dynamical

system is mixing, then for all A ∈ Σ,

lim
t→∞

µt(A) = µ(A) (8)

In other words, every measure that is absolutely continuous with the invariant measure

will relax into the invariant measure over time.12 From (1) and (8) we get:

lim
t→∞

µt(Tt (A) ∩B) = µ(A)µ(B) (9)

which can be used to once again derive probabilistic independence. Thus, no matter

how localized our chosen measure is in phase space, so long as it is absolutely

continuous with the invariant measure, then we will recover the same mixing behavior

and probabilistic independence for large enough t.

What about non-generic measures that are not absolutely continuous with respect

to the invariant measure? One way to create a measure that does not relax to the

invariant measure is to assign positive measure to points in phase space. The simplest

example is the Dirac measure:

δ(A) =


1 , x ∈ A

0 , x ̸∈ A

(10)

for every measurable set A ∈ Σ and some fixed point x ∈ Γ. The Dirac measure is not

absolutely continuous with the invariant measure (e.g. µ(x) = 0 ≠⇒ δ(x) = 0), and it

12For additional details, see Cornfeld et al. (2012, 24-25)
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will not relax into the invariant measure over time. This measure seems appropriate

when conditionalizing on phase points P (Bt|X0 = x) because the invariant measure will

yield an undefined value.13 In this case, determinism will imply that for all events

B ∈ Σ and for all phase points x ∈ Γ, P (Bt|X0 = x) = 1 if Tt(x) ∈ B, and

P (Bt|X0 = x) = 0 if Tt(x) ̸∈ B. Thus, from a point-to-point perspective, counterfactual

dependence will always be accompanied by probabilistic dependence.

This leaves us in the following situation. Say we want to describe the causal

relationship between two events in a chaotic system. Insofar as we stipulate that

probabilistic dependence needs to accompany counterfactual dependence, we must

either restrict ourselves to events occurring over relatively short timescales before

mixing occurs, or we restrict ourselves to talking about dependencies on points in phase

space. In the latter case, we once again encounter a breakdown in the worldly

infrastructure of causation where the exact microstate of the present is the only

determiner of arbitrarily future macrostates. Accordingly, it may be that the only

useful sense in which “causation” survives in chaotic systems over long timescales is that

they are deterministic, not in the folk-sense that is built around relating macro-events.

5.2 Prior Examples of Ubiquitous Counterfactual Dependence/Probabilistic Indepen-

dence

How new is the idea of widespread counterfactual dependence and probabilistic

independence? David Lewis described causal histories as resembling a tree (1986, 215).

13µ(x) = P (X = x) = 0, therefore, the ratio formula for conditional probability

P (B|X = x) = P (B &X = x)/P (X = x) is undefined.
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One effect is counterfactually dependent on many causes, who in turn are dependent on

many more causes. As one goes farther back in time, there is a combinatorial explosion

of causes for a single effect. In the limit, this means that knowing one of these causes

occurred will not appreciably raise the probability of the effect because it is only one of

many. Therefore, the idea that we could have ubiquitous counterfactual dependence

and probabilistic independence is not so new.

Although Lewis was not thinking in terms of dynamical systems, the key

difference between Lewis’ discussion and mine is that Lewis is still presupposing a

dependence between macro-cause and macro-effect. Presumably, if we could freeze the

background conditions around one of the many causes in the distant past, then the

macro-event of that cause could act like a lever for reliably bringing about some distant

future effect. The butterfly effect means that all regions of phase space spread out

under time evolution, leading to roughly the same distribution. This is why butterfly

flaps cannot act like levers for tornadoes, not because of unknown background

conditions. In other words, Lewis’ tree-structure is a hugely complex network of causal

relations between macrophysical events. The butterfly effect shows that, over the long

run in chaotic systems, there is no causal structure linking macrophysical events. This

is because counterfactual dependence has become hypersensitive to the precise initial

conditions.

5.3 The Weather May Not Be Chaotic

In my analysis, I have focused on the butterfly effect because it is the canonical

metaphor for chaos theory. However, we cannot be certain that the butterfly effect is

actually representative of real-world weather dynamics. Lorenz’s original model is a
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first-order approximation of the Navier-Stokes equations, consisting of three coupled

ordinary differential equations which represent a single atmospheric convection roll

(1963). As Peter Smith points out, the inference from the Lorenz model to butterflies

and tornadoes is highly speculative (1998, 66-67). Despite this, numerical simulations of

vastly more complex, contemporary meteorological models still exhibit chaos (Palmer

et al., 2014).

As we have seen with the Baker’s map, none of my conclusions particularly hinge

on the weather being chaotic. We can view the weather as a stand-in for any chaotic

system, and the butterfly and tornado as stand-ins for temporally separated events in

the system. The analysis is still essentially the same. As long as chaos exists in certain

systems, then we can import these conclusions there.

5.4 Quantum Mechanics is Not Chaotic

A deeper question is whether chaos is actually a fundamental component of the

dynamics of the universe, or something emergent. This is brought to a head when we

consider the fact that the basic evolution equation of quantum mechanics, the

Schrödinger equation, is linear and thus not a candidate for chaos. For quantum

mechanical systems, nearby initial conditions stay nearby indefinitely under

Schrödinger evolution.14 Nonlinearity enters orthodox quantum mechanics via the Born

rule, which only applies in measurement contexts. Thus, how chaos emerges out of

quantum mechanics is caught in the jaws of a deeper question: the quantum

14Formally, the Schrödinger equation is unitary, meaning vectors in Hilbert space

preserve their inner product under time-evolution.
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measurement problem.

Of the interpretations of quantum mechanics that offer a realist solution to the

measurement problem, we have a range of descriptions of quantum chaos. On one end,

hidden variables theories such as Bohmian mechanics leave chaos’ essential character

mostly intact (Dürr et al., 1992). On the other end, multiverse interpretations claim

that classical chaos is an emergent phenomena that appears from linear dynamics plus

environmental decoherence (Wallace, 2012, 64-102). On this view, it is the spreading

out and subsequent branching of the wave function (a single microstate) across different

macrostates that makes the future uncertain, not sensitive dependence on the initial

conditions of microstates. The neutral conclusion to draw here is that we simply do not

know whether chaos is a fundamental feature of the world’s dynamics, or merely an

emergent one. Thus, we do not know whether the butterfly effect, and the

indeterminacy it creates in our concept of causation, is a feature of our world.

6 Conclusion

The butterfly effect is an example where one of our most fundamental concepts —

causation — is indeterminate. Causation is intimately tied up with counterfactual

dependence, which we expect to be accompanied by probabilistic dependence. However,

the butterfly effect is a hypersensitive counterfactual; a counterfactual dependence that

is too sensitive to be reflected probabilistically. In chaotic systems, this relation

predominates over large timescales because both ubiquitous counterfactual dependence

and probabilistic independence are a consequence of one of chaos’ central traits:

mixing. This unexpected separation is an example where the reference of ‘causation’ is

indeterminate; there are two meanings of ‘cause’ — counterfactual dependence vs.
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predictable counterfactual dependence — which are coextensive inside the concept’s

normal domain of use.
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