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In the framework of quantum field theory, one finds multiple load-bearing
locality and causality conditions. One of the most important is the cluster
decomposition principle, which requires that scattering experiments conducted
at large spatial separation have statistically independent results. The principle
grounds a number of features of quantum field theory, especially the structure
of scattering theory. However, the statistical independence required by cluster
decomposition is in tension with the long-range correlations characteristic of
entangled states. In this paper, we argue that cluster decomposition is best
stated as a condition on the dynamics of a quantum field theory, not directly
as a statistical independence condition. This redefinition avoids the tension
with entanglement while better capturing the physical significance of cluster
decomposition and the role it plays in the structure of quantum field theory.

1. Introduction. The cluster decomposition principle is intended to secure
the unremarkable fact that the long-run statistics of experimental outcomes in
our laboratories do not depend on events in distant regions of the universe; what
happens in the accelerator tunnel at Fermilab is independent of experiments
simultaneously taking place at CERN.1 This seemingly innocuous constraint
turns out to play a deep and wide-ranging role in the architecture of quantum
field theory. Indeed, one very influential approach to the foundations of
quantum field theory has it that “the whole formalism of fields, particles,
and antiparticles seems to be an inevitable consequence of Lorentz invariance,
quantum mechanics, and cluster decomposition” (Weinberg, 1999, p. 244).2

Furthermore, its conceptual implications sit at the intersection of a number of
topics in quantum field theory that have drawn the attention of philosophers:
the analysis of locality and causality conditions,3 the localizability of states,4

and the nature of entanglement in quantum field theory,5 among other topics.
One typically encounters cluster decomposition formulated as a constraint

on two distinct mathematical objects: vacuum expectation values (VEVs)
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1The cluster decompostion principle is also sometimes called “the cluster property” in the
literature. We use these terms interchangeably.

2See (Weinberg, 1995) and (Duncan, 2012) for textbook presentations of quantum field
theory structured according to this perspective.

3See Summers (1990); Rédei and Summers (2002); Butterfield (2007); Summers (2009);
Ruetsche (2011, chapter 5.3); Earman and Valente (2014)

4See Fleming and Butterfield (1999); Halvorson (2001); Wallace (2006); Wallace and
Timpson (2010); Swanson (2020)

5See Redhead (1995); Clifton and Halvorson (2001); Valente (2013); Lam (2013); Earman
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of operators or S-matrix elements.6 In each case, it is stated as a statistical
independence condition.7 As a condition on VEVs, cluster decomposition
requires that if {xi} and {yi} are sets of spacetime points, and all of the points
{xi} are translated an arbitrarily large spacelike distance away from all of the
points {yi}, then the VEV

⟨Ω |φ(x1) · · ·φ(xn)φ(y1) · · ·φ(ym) |Ω⟩

factorizes into the product

⟨Ω |φ(x1) · · ·φ(xn) |Ω⟩ ⟨Ω |φ(y1) · · ·φ(ym) |Ω⟩

This requires that in the vacuum state |Ω⟩ of the theory, the outcomes of
measurements performed on the state of the field at the points {xi} become
uncorrelated with outcomes of measurements performed on the state of the
field at the points {yi} as the two sets of spacetime points become separated
by an arbitrarily large spacelike distance.8

As a condition on S-matrix elements, cluster decomposition requires that
two scattering processes α → α′ and β → β′ be statistically independent when
one is translated an arbitrarily large spacelike distance from the other. This
translates into the requirement that the scattering amplitude for the total
process

⟨α′, β′ |S |α, β⟩

factorizes into the product

⟨α′ |S |α⟩ ⟨β′ |S | β′⟩

as the “cluster” of particles β is translated an arbitrarily large spacelike
distance away from the “cluster” of particles α.

Understanding cluster decomposition as a statistical independence condi-
tion in one of the forms just stated runs into complications. Most pressingly,
it makes the property state-dependent. VEVs and S-matrix elements are func-
tions of both operators and states, and whether the statistical independence is
satisfied will depend on the nature of the vacuum state in which one calculates
VEVs or which basis of in and out states one uses to define the S-matrix. As
we discuss in Section 5, scattering processes involving entangled states will not
factorize at large spacelike separation, which entails that an S-matrix defined

6It is also sometimes expressed as a condition on algebras of observables. We discuss this
version of the principle in Section 4.

7Our goal at this stage is just to capture the basic idea of these conditions. See Section 4
for more precise formulations of the principle.

8Our reference to the state of the field at a spacetime point, or in a bounded spacetime
region, should be read loosely. Defining strictly localized states is impossible in quantum
field theory, as a consequence of the Reeh-Schlieder theorem. The extent to which cluster
decomposition does, and does not, secure a notion of localized states is an issue to which
we return several times.

-2-



using a basis of entangled states will not satisfy cluster decomposition. This
state-dependence sits uncomfortably with the foundational role that cluster
decomposition is supposed to play in the architecture of quantum field theory
and, we argue, obscures its real physical significance. A primary aim of this
paper is to offer an understanding of cluster decomposition that is better
aligned with its physical significance and the role that it plays in quantum
field theory.

The paper proceeds as follows. In Section 2, we sketch the historical
development of cluster decomposition and its integration into quantum field
theory. This history is interesting in its own right, reflecting the combined
efforts of different communities of physicists in the 1950s and 60s. It also
provides a useful introduction to some of the different formal and conceptual
roles that cluster decomposition plays in quantum field theory. In Section 3,
we survey a variety of reasons that have been offered for requiring quantum
field theories to satisfy cluster decomposition. Our goal is to extract a common
theme: we argue that each of them treats cluster decomposition as grounding
an ability to isolate subsystems, in one form or another. In Section 4, we review
how cluster decomposition constrains three types of mathematical objects
– VEVs, scattering amplitudes, and algebras of observables. In Section 5,
we consider two phenomena that produce states that prevent VEVs and
S-matrix elements from factorizing in accord with cluster decomposition:
spontaneous symmetry breaking and entanglement. We consider them side-
by-side because while the state-dependence of VEVs arising from spontaneous
symmetry breaking is innocuous and can be addressed straightforwardly, it is
illuminating to see that the state-dependence arising from entangled states
cannot be resolved in the same way. This discussion naturally raises the
question of how the cluster decomposition of VEVs is compatible with the
fact that vacuum states in quantum field theory are entangled over arbitrarily
long distances. After answering this question, in Section 6 we argue that
stating cluster decomposition as a statistical independence condition conflates
two senses in which one could isolate a subsystem, and that this conflation is
responsible for the incompatibility with entanglement. To resolve this, one
should redefine cluster decomposition as a condition purely on the dynamics
of a quantum field theory. This restatement of cluster decomposition still
ensures that subsystems are isolable in the sense necessary for it to play the
various physical roles described in Section 3, but does not require the second,
unnecessary sense of isolability that leads to the tension with entangled states.

2. The Origins of Cluster Decomposition. A version of the cluster
property was first introduced into quantum field theory in 1957, when the
factorization of vacuum expectation values at large spacelike separation was
discussed by both Rudolf Haag and Arthur Wightman at a well-attended
conference on the mathematical properties of quantum field theory in Lille (De-

-3-



heuvels and Michel, 1959).9 While Wightman’s discussion of this factorization
was brief and focused primarily on its relationship to the mathematical ques-
tion of whether VEVs are tempered distributions in the spacetime coordinates,
Haag attributed it a more central physical significance.

It was at Lille that Haag first introduced the idea of formulating quantum
field theory using algebras of local observables, and a version of cluster
decomposition was introduced as one of the axioms of the new framework. A
few years prior to the conference in Lille, a powerful formalism for scattering
theory had been introduced by Harry Lehmann, Kurt Symanzik, and Wolfhart
Zimmermann (Lehmann et al., 1955). The LSZ formalism required assuming an
‘asymptotic condition’ which stated, roughly speaking, that in the asymptotic
past and the asymptotic future, the field operators of an interacting quantum
field theory behave as if the theory were non-interacting. The influence of
the LSZ formalism is reflected in both Haag and Wightman’s talks at Lille.
Wightman proposed a preliminary set of axioms that should be satisfied by any
mathematically rigorous quantum field theory, and included the asymptotic
condition as one such axiom. Haag, however, introduced cluster decomposition
as an axiom with the primary aim of supplanting the asymptotic condition with
a more physically transparent condition “believed to be more fundamental”
from which the asymptotic condition could then be derived as a consequence
(Haag, 2010). According to Klaus Fredenhagen (2010), the replacement of
the asymptotic condition with an assumption that VEVs satisfied the cluster
decomposition property was “the revolutionary new idea” at the heart of
Haag’s proposal to formulate quantum field theory in terms of algebras of
local observables.

After the conference in Lille, cluster decomposition was quickly integrated
into mathematically rigorous work on quantum field theory and a number of
interesting connections were discovered.10 Haag (1958) began the development
of a rigorous framework for scattering theory that incorporated cluster decom-
position as an axiom and several years later David Ruelle (1962) strengthened
the framework considerably, producing the Haag-Ruelle formalism for scat-
tering theory. Ruelle was able to build on several papers which showed that
despite Haag’s adoption of cluster decomposition as an axiom of quantum
field theory, it could actually be derived as a theorem from other, weaker
assumptions like Lorentz invariance and the non-negativity of the energy
spectrum (Araki, 1960; Jost and Hepp, 1962). During the same period, results
obtained by Hepp et al. (1961) and Borchers (1962) jointly demonstrated that
the VEVs of a quantum field theory satisfy cluster decomposition if and only

9An English translation of Haag’s talk was published as (Haag, 2010) and a list of attendees
at the Lille conference is reproduced in (Fredenhagen, 2010).

10It seems the term “cluster decomposition” was introduced by Araki (1960), though
widespread adoption doesn’t seem to have been immediate. Ruelle (1962) refers to the
factorization of VEVs at large spacelike separation as a “spacelike asymptotic condition”
and Araki et al. (1962) refer to “clusters” but do not use the term “cluster decomposition”.
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if the vacuum state of the theory is unique.11

At the same time that cluster decomposition of VEVs was being explored
in axiomatic quantum field theory, cluster decomposition of the S-matrix was
independently introduced into the burgeoning program of S-Matrix Theory.12

Eyvind Wichmann and James Crichton argued that cluster decomposition
was so physically sensible that it should be satisfied by any physically mean-
ingful S-matrix and, in the spirit of S-Matrix Theory, formulated conditions
ensuring the cluster decomposition of an S-matrix that were not tied to the
mathematical formalism of quantum field theory (Wichmann and Crichton,
1963).13 Although Wichmann and Crichton were aware of the related work
taking place in axiomatic quantum field theory, they reported being unsure
of how it might relate to their discussion of the cluster decomposition of the
S-matrix (Wichmann and Crichton, 1963, fn. 16).

It seems to be primarily from its formulation in S-matrix theory that the
cluster decomposition property made its way into the mainstream of perturba-
tive quantum field theory. Of particular significance in this regard was a paper
of Steven Weinberg (1979). He presented an argument that “although individ-
ual quantum field theories have of course a good deal of content, quantum
field theory itself has no content beyond analyticity, unitarity, cluster decom-
position, and symmetry” (Weinberg, 1979, p. 329). The inclusion of cluster
decomposition as a core principle of quantum field theory was not common
among mainstream high energy theorists at the time, but during Weinberg’s
time at Berkeley in the 1960s his colleague Wichmann had emphasized its
importance to him and the lesson had stuck (Weinberg, 2021). Largely as a
result of Weinberg structuring his enormously influential textbook (Weinberg,
1995) around an elaboration of this 1979 argument – that the structure of
quantum field theory follows naturally (if not unavoidably) from combining
quantum mechanics, Poincaré invariance, and cluster decomposition – over the
intervening years mainstream high energy theory has come to recognize cluster
decomposition as a foundational component in the architecture of quantum
field theory.

3. Motivating Cluster Decomposition. The reasons for requiring cluster
decomposition that one finds in the physics literature range from treating
it as reflecting a contingent fact about the range of forces in our universe
to declaring it a precondition for the possibility of experimental science. In
this section identify two common themes that emerge from these apparently

11A useful presentation of this early mathematically rigorous work on cluster decomposition
can be found in (Wightman, 1963).

12Also at this time a related property, asymptotic abelianness, was introduced into quantum
statistical mechanics and was quickly recognized to have connections with the cluster
decomposition of VEVs (Doplicher et al., 1966; Ruelle, 1966; Kastler and Robinson, 1966).
We discuss this property briefly in Section 4.

13See (Taylor, 1966) for some important dotting of i’s and crossing of t’s omitted by
Wichmann and Crichton. Cluster decomposition was ultimately included as an “axiom”
of S-Matrix Theory (Eden et al., 1966, p. 12 & chapter 4.2).
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disparate motivations. We return to these themes in Section 6 to argue that
defining cluster decomposition as a purely dynamical constraint captures the
role it plays in the structure of quantum field theory better than defining it
as a statistical independence condition.

3.1. Precondition for Physical Theorizing. The most striking justi-
fication for imposing cluster decomposition is a transcendental one: it is
sometimes claimed to be a precondition for the possibility of experimental
science. For instance, Weinberg motivates requiring the cluster decomposition
of the S-matrix this way:

It is one of the fundamental principles of physics (indeed, of all
science) that experiments that are sufficiently separated in space
have unrelated results. . . . If this principle were not valid, then we
could never make any predictions about any experiment without
knowing everything about the universe (Weinberg, 1995, p. 177).

While emphasizing the central role that cluster decomposition plays in the
structure of quantum field theory, Tony Duncan echoes this motivation:

The characteristic phenomena of relativistic field theory only ap-
pear once we insist on the third principle: clustering, i.e., the
factorization of the S-matrix containing the scattering amplitude
for an arbitrary process as the product of two independent am-
plitudes in the event of two spatially far separated scattering
subprocesses. This principle, which seems intuitively obvious, is
surely a precondition for the success of experimental science. It
relieves us of the obligation to specify completely the state of the
entire world outside the laboratory prior to a correct interpretation
of the results of an experiment (Duncan, 2012, p. 58).14

In the same spirit, many years earlier one finds Hartle and Taylor (1969, §III)
saying that cluster decomposition “may be regarded as an essential requirement
of any reasonable physical theory” and Steinmann (1966, p. 757) claiming
that “[w]ithout an assumption of this type physics is clearly impossible.”

In each of these presentations, they are describing cluster decomposition as
a condition on an S-matrix, i.e., as the requirement that the S-matrix element

⟨α′, β′ |S |α, β⟩

factorizes into the product

⟨α′ |S |α⟩ ⟨β′ |S | β′⟩
14The first two principles to which Duncan implicitly refers are quantum mechanics and
Poincaré invariance.
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when the scattering process β → β′ is translated an arbitrarily large spacelike
distance away from the α → α′ process. As noted above, an S-matrix element
is determined by two things: the scattering operator S and the initial and final
states of the scattering process. Despite this, both Weinberg and Duncan, like
their predecessors in S-matrix Theory, treat cluster decomposition as a state-
independent property. They argue that imposing certain requirements on the
Hamiltonian alone is sufficient to ensure the factorization of the S-matrix.15

How should one understand the claim that cluster decomposition is a
precondition for the possibility of experimental science? We think it reflects
the idea that experimental science requires the ability to identify effectively
isolated subsystems and model their behavior independently from their broader
environment. If it were not possible to isolate systems in this way – if one
could not isolate a sample of graphene in their laboratory, make predictions
for its behavior, and experimentally intervene on it without worrying about
the state of every other laboratory on campus – then experimental science
would become exponentially more difficult, if not impossible. In the next
subsection, we will see that a similar reason is often given for requiring the
cluster decomposition of VEVs.

3.2. Localization. Another reason for adopting cluster decomposition one
often encounters is that the cluster decomposition of VEVs enables us to
assign approximately localized states to a quantum field in distinct bounded
spacetime regions, as long as those spacetime regions are sufficiently spacelike
separated. This understanding of the physical import of cluster decomposition
was essential in Haag’s initial statement of the principle in Lille (Haag, 2010).
The physical idea is described clearly by Huzihiro Araki in one of the earliest
statements of cluster decomposition:16

The physical idea behind this assumption is the following. Consider
a simple case where x1 · · ·xp are concentrated in a finite region A,
xp+1 · · ·xn are concentrated in a finite region B, and the distance
between A and B tends to infinity. We imagine that the change,
caused by φ(x) on the state on which φ(x) operates is concentrated
“near the point x” and therefore that the state φ(x1) · · ·φ(xp)Ψ0 is
only slightly different from the vacuum except “near the region A”
while the state φ(xp+1) · · ·φ(xn)Ψ0 is only slightly different from
the vacuum except “near the region B.” Hence as the distance
between A and B tends to infinity in the vacuum expectation
value (Ψ0, φ(x1) · · ·φ(xn)Ψ0), φ(x1) · · ·φ(xp) sees an approximate
vacuum on its right while φ(xp+1) · · ·φ(xn) sees an approximate

15We discuss these conditions in detail in Section 4.
16Ruelle also took this to be its physical significance in his seminal paper establishing
Haag-Ruelle scattering theory: “The physical meaning of the [cluster decomposition]
theorem becomes clear. . . the state Φ(x) is asymptotically localizable in the sense of
Knight” (Ruelle, 1962, p. 155).
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vacuum on the left and therefore, (Ψ0, φ(x1) · · ·φ(xn)Ψ0) tends to
(Ψ0, φ(x1) · · ·φ(xp)Ψ0)(Ψ0, φ(xp+1) · · ·φ(xn)Ψ0). From this one
can conclude (by induction) that [the connected correlation func-
tion] tends to zero as the distance between A and B tends to
infinity. Repeating this kind of heuristic argument, we arrive at a
cluster decomposition property (Araki, 1960, 261).17

As Araki describes, cluster decomposition allows us to define what Haag
(1996, §II.5.3) calls “qualitatively” or “essentially” localized states: states of a
quantum field that differ significantly from the vacuum state only within some
bounded spacetime region O. This is notable because it is a result of some
foundational significance that, as a consequence of the Reeh-Schlieder theorem,
one cannot define “strictly” localized states in quantum field theory, i.e., states
of a quantum field that differ from the vacuum at all only within some bounded
spacetime region O. To the extent that the ability to decompose the world
into independent subsystems upon which we can perform interventions is a
precondition for the possibility of experimental science, one might have worried
that the inability to define strictly localized states threatens the scientific
enterprise. However, the cluster decomposition of VEVs demonstrates how
the inability to define “strictly” localized states can coexist with the ability
to define the “essentially” localized states that seem necessary for doing
experimental science.18

Although not formulated as a constraint on the S-matrix itself, the cluster
decomposition of VEVs does have a deep connection to scattering theory.19

Recall that Haag’s initial motivation for introducing cluster decomposition
was that it was a “more fundamental” principle from which the asymptotic
condition of the LSZ formalism could be derived. The LSZ asymptotic
condition, roughly speaking, states that in the asymptotic past and the
asymptotic future the field operators in a fully interacting theory behave
like free fields. Excited states of the field at asymptotic times can then be
interpreted as describing multiple isolated, non-interacting particles. These
are the initial and final states that one typically uses to define the S-matrix. In
fact, it is only because the cluster property allows the definition of “essentially”
or “qualitatively” localized states of a quantum field, in the sense described
by Araki, that one can interpret these states of the field as describing multiple
non-interacting particles.

3.3. Range of Forces. Another commonly invoked reason to believe that a
quantum field theory should satisfy cluster decomposition concerns the “short

17Strocchi gives a similar diagnosis of its physical significance: “The physical meaning of the
cluster property is that the ground state reacts locally to local operations. . . In a certain
sense, this condition neutralizes the non-local content of the ground state. . . ” (Strocchi,
2008, p. 99).

18We consider some further subtleties concerning cluster decomposition and the localizability
of states in Section 5.

19We give a more formal discussion of this connection in Section 4.
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range” of interparticle forces. If there are no correlations between particles in
the initial state then all correlations between particles in the final state must
be due to mutual interaction during the scattering process. If the interaction
decays sufficiently quickly with distance then there won’t be any interaction
between clusters that have been translated a large spacelike distance from
one another, so in the final state there will not be any correlations between
particles in distinct clusters. This ensures that the two scattering processes
will be statistically independent. Cluster decomposition simply encodes this
observed, contingent fact about the world into the structure of quantum field
theory.

In fact, this reasoning played a central role in Wichmann and Crichton’s
original introduction of cluster decomposition into S-Matrix Theory:

The conditions we wish to impose derive from the idea that the
interparticle interactions are of short range; therefore, the outcome
of a scattering event involving two particles that are close to each
other at some time does not depend on the presence of other
particles very far away. To dramatize the situation we may say
that the presence of particles on the moon must not affect the
outcome of events in a bubble chamber on the earth (Wichmann
and Crichton, 1963, p. 2788).

Following Wichmann and Crichton, the connection of cluster decomposition
with short-range forces was common in the S-Matrix Theory tradition; for
examples, see Eden et al. (1966, pp. 190–91) or Taylor (1966).

We should clarify the meaning of “short-range” forces. It typically refers
to interactions that are mediated by a massive particle, which entails that the
range of the force decays exponentially with distance. Interactions mediated by
a massless particle – as in quantum electrodynamics, for example – will decay
polynomially with distance. Cluster decomposition can still be satisfied in
such theories, but the conclusions one can draw on the basis of its satisfaction
are more complicated. For instance, to return to the connection between
the cluster decomposition of VEVs and the existence of asymptotic states
of multiple isolated, non-interacting particles, in quantum field theories with
interactions mediated by massless particles the former may not be sufficient
to secure the existence of the latter. As a result one may not be able to define
an S-matrix for the theory (Strocchi, 2013, §6.3; Duncan, 2012, chapter 19.1).

Indeed, one of the virtues of understanding cluster decomposition as
encoding this contingent fact about the prevalance of short-range interactions
into the structure of quantum field theory is that it provides a physically
transparent explanation of the existence of initial and final scattering states
describing multiple isolated, non-interacting particles. For example, Tom
Banks explains cluster decomposition this way:

It is an experimental fact that there exist (approximately) stable
single-particle states in the world, as well as states of multiple
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particles at large relative space-like distances, which behave, to a
very good approximation, like free particles. Interactions fall off at
large spatial separation, and the cluster property of QFT provides
a neat mathematical explanation of this. . . . If all particles are
massive, the falloff is exponential, whereas if there is no mass gap
we expect power-law falloff. In this case, a variety of behaviors is
possible, and there is not always a scattering theory (Banks, 2008,
chapter 3.7).20

In fact, Wichmann and Crichton already noted this more foundational role
played by the assumption of short-range forces in the context of S-Matrix
Theory:

The basic assumption of S-matrix theory is that the interactions
between the particles are, in some sense, of short range, and be-
cause of this property of the interaction it is possible to describe a
state either in terms of an initial asymptotic configuration of non-
interacting particles or in terms of a final asymptotic configuration
of noninteracting particles. In the asymptotic limits, the particles
behave like noninteracting particles simply because their mean
separations tend to infinity and hence the interactions become
ineffective (Wichmann and Crichton, 1963, p. 2788).

We previously saw that the clustering of VEVs was necessary to secure the
existence of initial and final scattering states describing multiple isolated, non-
interacting particles. We have now seen that interactions must fall off rapidly
with distance to ensure the existence of such states. It is unsurprising, then,
that many have taken the presence of short-ranged interactions to provide the
physical underpinning for the cluster decomposition of VEVs. For example,
after deriving a bound on the rate at which VEVs must factorize at spacelike
separation, Araki says:

It is possible to give a physical interpretation for such an ex-
ponential clustering property by Yukawa’s theory. Namely, the
correlation at a distance R is interpreted as being induced by an
energy exchange (in Yukawa’s theory, a particle exchange) and
its effective radius is determined by (and hence the correlation
tends to zero beyond the distance equal to) the reciprocal of the
exchanged energy (Araki, 1999, p. 92).21

20Note that if one read Banks strictly here – we are not – his order of explanation would
be that cluster decomposition somehow explains why interactions decay with distance,
rather than vice-versa.

21The exponential clustering property is the statement that for any two operators A and B
⟨Ω |A(0)B(R) |Ω⟩ → ⟨Ω |A(0) |Ω⟩ ⟨Ω |B(R) |Ω⟩ at a rate proportional to e−mR where
m is the mass of the lightest particle mediating their interactions.
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Raymond Streater and Wightman (1964, p. 113) make a similar connection,
describing the cluster decomposition of VEVs as a requirement that “when
two systems at points x and y become separated by a large space-like distance,
the interaction between them falls off to zero.”

There are two things to note about this reasoning. The first is that it
seems to raise a puzzle about the behavior of VEVs in free quantum field
theories. If the decay of the correlations between operators at large spacelike
separation is because of the short-range of interactions, the implication is that
those correlations are present at all because of interactions between degrees
of freedom in the two spatially distant regions. One might naturally expect,
then, that in a free quantum field theory all correlation functions would be
zero, i.e., that ⟨Ω |φ(x)φ(y) |Ω⟩ = 0 for all distinct spacetime points x and y.
But that expectation is wrong. Correlation functions in a free quantum field
theory are non-zero and behave like VEVs in a field theory with interactions:
they decay with distance, exponentially for a theory with a mass gap and
polynomially for a theory of massless particles.22

The second is that justifying cluster decomposition by appeal to the
short-range of (most) real-world interactions might strike the reader as a
far cry from the transcendental arguments from Weinberg and Duncan with
which we opened this section. It may now sound like the inclusion of cluster
decomposition in quantum field theory merely reflects a contingent empirical
fact about the real world: we just happen to live in a world where interactions
fall off fairly rapidly with distance and our quantum field theories should reflect
that. We think there is something to this attitude, but it is also true that one
could not define even “essentially” localized states of a quantum field, nor
define initial and final scattering states, nor treat scattering processes involving
particles at large spatial separation as distinct, if interactions did not fall off
sufficiently rapidly with distance. So insofar as there is a case to be made that
the ability to decompose the world into effectively isolated subsystems upon
which we can independently intervene is a precondition for the possibility of
experimental science, there is equally a case to be made that interactions that
decay sufficiently rapidly with distance are such a precondition as well.

3.4. No Superluminal Signaling. Yet another natural way to motivate
cluster decomposition is as a “no-signaling” condition of the sort that have
been considered at length in discussions of Bell-type theorems. For example,
Duncan says that cluster decomposition must be satisfied to ensure that a
quantum field theory will have “sensible long range behavior, purged of bizarre
action-at-a-distance effects” and immediately clarifies that:

By “action-at-a-distance” effects, we do not refer here to the psy-
chologically unsettling effects involving non-local transitions in
entangled wavefunctions, commonly referred to as the “EPR para-
dox”, but to physically observable non-local phenomena: namely,

22We return to this issue in Section 5.
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those leading to superluminal transmission of physical signals
(Duncan, 2012, chapter 3, fn. 5).

Returning later to the role of cluster decomposition in purging the theory of
“action-at-a-distance” effects, Duncan reiterates that:

Einstein’s original use of the term “spukhafte Fernwirkung” re-
ferred to the peculiar (from the classical standpoint) statistical
correlations of entangled quantum states, as in the famous EPR ef-
fect. These correlations, while perhaps psychologically disturbing,
do not lead to the physically unacceptable action-at-a-distance
effect of the kind discussed here (Duncan, 2012, chapter 5.4, fn.
14).

In both statements, Duncan is at pains to clarify that cluster decomposition is
not incompatible with the long-range correlations characteristic of entangled
systems. Cluster decomposition is supposed to be perfectly compatible with
“outcome-outcome” dependence, to borrow some terminology familiar from
discussions of Bell-type theorems. What cluster decomposition is supposed to
prohibit are superluminal signals – what is sometimes called “act-outcome”
dependence. It rules out quantum field theories in which interventions one can
perform locally, such as injecting a beam of protons into the accelerator tunnel
at CERN, superluminally affect the predicted cross sections of experiments at
Fermilab.

Jonathan Bain explains the significance of cluster decomposition similarly,
stating that:

[Cluster decomposition] serves the same purpose for the S-matrix
as micro-causality does for fields: both are locality constraints that
prohibit causal influences from propagating between space-like
separated regions of spacetime (Bain, 1998, pp. 7–8).23

Over decades of analyses of Bell-type theorems, much has been said about
the motivation for prohibiting superluminal signals and whether they are
compelling.24 Our aim is not to contribute to those discussions. Rather, we
want to emphasize a conceptual relationship between the understanding of
cluster decomposition as a no-signalling condition and the understandings we
have encountered previously.

One frequently invoked reason for prohibiting superluminal signals is
an alleged incompatibility with relativistic spacetime structure. Whether
one thinks this incompatibility is genuine depends on what one means by
“compatibility with relativistic spacetime structure” and “superluminal signal.”
In the remarks by Duncan and Bain, the answers are straightforward: a

23See also Bain (2016, §2.1) – especially §2.1.3 – for additional discussion of the sense in
which cluster decomposition can be understood as a no-signaling condition.

24See, for example, Maudlin (2011, chapter 4).
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“superluminal signal” can be sent from spacetime region O to a spacelike
separated region O′ if an event confined to the region O can produce a change
in the statistical distribution of measurement results in the region O′. And
a quantum field theory is “compatible with relativistic spacetime structure”
if its space of states transforms under an irreducible representation of the
Poincaré group.

Given this understanding, the thought that cluster decomposition is nec-
essary to ensure compatibility with relativistic spacetime structure (by way
of prohibiting superluminal signals) is a non-starter. In fact, Duncan shows
that a large class of quantum theories that transform appropriately under
the Poincaré group – and are thus compatible with relativistic spacetime
structure – will also allow for superluminal signaling. Cluster decomposition
is then imposed to restrict this class of theories to only those that do not allow
action-at-a-distance effects (Duncan, 2012, chapters 5–6). If we understand
cluster decomposition as a no-signaling condition, one cannot justify requiring
a quantum field theory to satisfy it on the grounds that it is necessary to
ensure compatibility with relativistic spacetime structure.

We think that there is a better motivation for cluster decomposition,
understood as a no-signaling condition. In a quantum theory that allows
superluminal signaling, there is a sense in which no system can ever be treated
as isolated from any other. Suppose Ada prepares an experiment in her
laboratory. To make predictions for the outcome of that experiment she needs
to know the state of her quantum system and be able to predict its dynam-
ical evolution under the specified experimental conditions. If superluminal
signaling is possible, then events in regions of the universe very far from
her laboratory can change the state of her system in a way that affects the
statistical distribution of the results of her experiment.25 She cannot specify a
state for her system, nor how it will evolve, without knowing about the state
of the universe in regions far beyond her laboratory.

Understanding the problem with superluminal signals this way connects
to several motivations for cluster decomposition we have seen already. In
particular, we see again that cluster decomposition allows us to decompose the
world into effectively isolated subsystems whose states can be described without
referring to other physical systems. We can then make experimental predictions
and perform various local interventions, including measurements, on those
subsystems without knowing anything at all about the state of the universe
in distant spatial regions. Understood this way, the importance of prohibiting
superluminal signals seems much deeper than merely preserving compatibility
with relativistic spacetime structure; the presence of superluminal signals
would seem to endanger our ability to define isolated subsystems and make
experimental predictions at all.

25If Ada’s system is entangled with a system at spacelike separation then events in regions
of the universe spacelike separated from Ada’s could change the state of her system, but
cannot change the statistical distribution of her experimental results.
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3.5. Common Themes. We have considered four of the most commonly
encountered reasons for requiring quantum field theories to satisfy cluster
decomposition. At first glance, they form a disparate collection. They appar-
ently attribute different degrees of modal significance to cluster decomposition,
from a precondition for the possibility of experimental science to a contingent
fact about the range of forces in our world; they constrain different mathemat-
ical objects, VEVs and the S-matrix; and they give different accounts of its
physical significance, from securing the “essential” localizability of states of a
quantum field to ensuring that cross sections for widely separated scattering
processes are statistically independent.

Nevertheless, there are two important common themes shared between
all of them. The first is a belief that cluster decomposition, understood
as a statistical independence condition, is a state-independent constraint:
appropriate conditions on the dynamics alone are sufficient to ensure that
it is satisfied. In Section 5 we argue that this is incorrect: conditions on a
Hamiltonian alone are not sufficient to ensure that an S-matrix factorizes
appropriately. Whether cluster decomposition, as it is standardly articulated,
is satisfied depends not only on properties of the dynamics, but also on the
states used define the S-matrix. We argue in Section 6 that one virtue of
recasting cluster decomposition as a purely dynamical constraint is that it
does make the condition truly state-independent.

The second theme is that cluster decomposition is intended to secure
the decomposition of a larger physical system, like a quantum field or a
collection of particles, into effectively isolated subsystems to which one can
assign independent states, upon which one can perform local experimental
interventions, and whose measured properties are independent of any physical
systems localized at large spatial separation. In Section 6 we argue that
a second virtue of recasting cluster decomposition as a purely dynamical
condition, rather than a statistical independence condition on the S-matrix, is
that this captures the sense of isolability that these different motivations aim
to secure more satisfactorily than the standard definition. As we discuss in
Section 6, the standard definition requires both this desired sense of isolability
and a related, but distinct and unnecessary, sense in which a system might be
called isolable.

4. Mathematical Expressions of Cluster Decomposition. Cluster
decomposition can be stated as a condition on three different types of mathe-
matical object: VEVs, S-matrices, or algebras of observables. Here we briefly
review these statements and their logical relationships.

The cluster decomposition of VEVs requires that if a⃗ is spacelike, then

⟨Ω |φ(x1) · · ·φ(xn)φ(y1 + λa⃗) · · ·φ(ym + λa⃗) |Ω⟩
factorizes into

⟨Ω |φ(x1) · · ·φ(xn) |Ω⟩ ⟨Ω |φ(y1) · · ·φ(ym) |Ω⟩
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as λ→ ∞.26 In axiomatic settings, it has long been known that one can prove
VEV clustering under a variety of distinct assumptions, all rather weak. For
example, it has been shown that27

◦ Assuming a mass gap, microcausality, and Lorentz invariance, VEVs
factorize at a rate faster than any polynomial (Araki, 1960).

◦ Assuming a mass gap, microcausality, and translation invariance, VEVs
factorize at a rate faster than any polynomial (Ruelle, 1962).

◦ Assuming a mass gap and Lorentz invariance, but not microcausality,
VEVs factorize at a rate faster than any polynomial (Jost and Hepp,
1962).

◦ Assuming a mass gap, microcausality, and translation invariance, VEVs
factorize at a rate faster than any polynomial. Dropping the assumption
of a mass gap still gives a (different) superpolynomial rate of convergence
(Araki et al., 1962).

The strongest bound to date was given well after this flurry of activity in the
1960s when Fredenhagen (1985), assuming microcausality and a mass gap,
proved that VEVs factorize strictly exponentially, not merely superpolynomi-
ally. In perturbative quantum field theory one can sketch a proof along the
same lines, assuming non-negativity of the energy and microcausality, that
shows that VEVs factorize exponentially in the presence of a mass gap and
polynomially for massless particles (Brown, 1992, section 6.4).

The cluster decomposition of S-matrices and the cluster decomposition
of VEVs are intimately related. We will touch on several aspects of that
connection here after a review of the cluster decomposition of the S-matrix.
Recall that the cluster decomposition of the S-matrix is meant to secure the
fact that if one considers two “clusters” of particles in states |α⟩ and |β⟩, and
the β cluster is translated an arbitrarily large spacelike distance away from the
α cluster, then those two scattering events should be statistically independent:

⟨α′, β′ |S |α, β⟩ → ⟨α′ |S |α⟩ ⟨β′ |S | β⟩

This places several important constraints on the structure of a scattering ampli-
tude. First, recall that the connected part of an N →M scattering amplitude
describes all N particles in the initial state scattering among themselves. This

26One can also decompose VEVs into connected and disconnected parts and equivalently
state cluster decomposition as requiring that the connected part of a VEV vanish when
any one of the coordinates is translated an arbitrarily large spacelike distance from the
others (e.g., (Haag, 1958), (Duncan, 2012, chapter 9.2)). This has the virtue of mirroring
the decomposition of a scattering amplitude into connected and disconnected parts, with
cluster decomposition constraining the connected part of a VEV.

27All of these proofs also make assumptions about the test functions used to define the
quantum fields, typically (at least) that they are smooth and have compact support.
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contrasts with the various disconnected parts of an amplitude which correspond
to processes where two subsets of particles scatter among themselves, but
there is no interaction between the subsets. Cluster decomposition requires
that a total scattering amplitude

⟨qm, . . . , q1 |S | p1, . . . , pn⟩ = Sqm ··· q1 , p1 ··· pn

decompose into a sum of connected and disconnected parts.28 For example, it
requires that the total amplitude for 3 → 3 scattering decompose as

Sq3 q2 q1 , p1 p2 p3 = SC
q3 q2 q1 , p1 p2 pn

+ SC
q2 q1 , p1 p2

SC
q3 , p3

+ P123

+SC
q1 , p1

SC
q2 , p2

SC
q3 , p3

+ P123

where P123 indicates repetitions of the previous term with permutations of
the indices.

This makes it apparent that requiring cluster decomposition of the total
amplitude translates into a constraint on its connected parts: the connected
amplitude SC

qm ··· q1 , p1 ··· pn must vanish when any one or more of the particles is
translated an arbitrarily large spacelike distance away from the others. This
is necessary for the total amplitude to factorize appropriately.

This, in turn, requires that the connected parts of a scattering amplitude
can only contain a single delta function enforcing total energy-momentum
conservation δ(Eq −Ep) δ

3(qm + · · ·+ q1 − p1 − · · · pn). They cannot contain
additional delta functions enforcing conservation of energy-momentum for any
subset of particles, i.e., delta functions like δ(Eq2 +Eq1−Ep1 +Ep2) δ

3(q2+q1−
p1−p2). (The various disconnected parts of an amplitude, like SC

q2 q1 , p1 p2
SC
q3 , p3

in the amplitude above, will of course contain multiple energy-momentum
delta functions: one conserving total energy-momentum for each connected
subprocess.)

The problem comes specifically from any additional delta function enforcing
momentum conservation: it prevents the connected part of the amplitude
from responding appropriately to the action of the translation operator. To
see this, consider the Fourier transform of the connected contribution to an
N → N scattering amplitude:

SC
x′
n ···x′

1 , x1 ···xn
=

∫
d3qn · · · d3q1 d3p1 · · · d3pn

SC
qn ··· q1 , p1 ··· pn e

i(
∑

qix
′
i−

∑
pixi)

Cluster decomposition requires this connected amplitude to vanish whenever
any subset of particles is translated an arbitrarily large spacelike distance

28See Duncan (2012, chapter 6) or Weinberg (1995, chapter 4) for extensive discussion of
what follows.
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away from the others. However, this cannot happen if SC
qn ··· q1 , p1 ··· pn contains

a delta function that conserves momenta of only a subset of particles.
To see this, suppose we want to translate particles initially localized around

x1, x2 an arbitrarily large spacelike distance away from the others and compute
the amplitude for them to be found localized around x′1, x

′
2 after the scattering.

We act with the translation operator eiλa⃗(q1+q2−p1−p2) and consider the limit

lim
λ→∞

SC
x′
n ··· (x′

2+λa⃗) (x′
1+λa⃗) , (x1+λa⃗) (x2+λa⃗) ···xn

Cluster decomposition is satisfied only if this connected part of the amplitude
vanishes as λ→ ∞, but this cannot happen if SC

qn ··· q1 , p1 ··· pn contains a delta
function that conserves momenta of particles 1 and 2. To see this, suppose

SC
qn ··· q1 , p1 ··· pn = δ3(q1 + q2 − p1 − p2)AC

qn ··· q1 , p1 ··· pn

Then we have

lim
λ→∞

SC
x′
n ··· (x′

2+λa⃗) (x′
1+λa⃗) , (x1+λa⃗) (x2+λa⃗) ···xn

= lim
λ→∞

∫
d3qn · · · d3q1 d3p1 · · · d3pn

eiλa⃗(q1+q2−p1−p2) δ3(q1 + q2 − p1 − p2) AC
qn ··· q1 , p1 ··· pn e

i(
∑

qix
′
i−

∑
pixi)

The momentum conservation delta function appearing in SC
qn ··· q1 , p1 ··· pn kills

the action of the translation operator, eliminating any dependence on λa⃗
on the RHS. The RHS is unchanged in the λ → ∞ limit and the LHS –
the connected amplitude in position space – cannot vanish, preventing the
S-matrix from satisfying cluster decomposition.29

Weinberg (1964) identified a condition on a Hamiltonian that is typically
presented as sufficient and necessary for a quantum field theory to satisfy
cluster decomposition.30 It formalizes the physical intuition that for an S-
matrix to satisfy cluster decomposition, the interactions between scattered
particles must fall off with distance.

29Essentially the same argument is given in (Duncan, 2012, chapter 6.1) using wavepackets,
which is a bit more physically satisfactory.

30The claim that this condition is necessary is worth clarifying, since (Weinberg, 1995,
chapter 4.4) introduces it by stating only that an S-matrix satisfies cluster decomposition
“if (and as far as I know, only if)” the Hamiltonian satisfies this condition. Weinberg
is temporarily treating it as an open question whether quantum field theory is the
appropriate framework for constructing a unitary S-matrix that is both Poincaré invariant
and satisfies cluster decomposition. His parenthetical remark has to be understood in that
context: as far as he knows, the only way to write down a Hamiltonian that that produces
such an S-matrix is to use quantum field theory (i.e., to write it as a polynomial in local
field operators and their derivatives). However, working within quantum field theory, it is
obvious that the stated condition on the Hamiltonian is understood to be both sufficient
and necessary for the corresponding S-matrix to satisfy cluster decomposition.
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First, note that any linear operator acting on a Fock space can be written
as a sum of products of creation and annihilation operators (Weinberg, 1995,
chapter 4.2). Thus one can always write a Hamiltonian in the form

H =
∑
n,m

∫
d3p′m · · · d3p′1 d3p1 · · · d3pn

hnm(p
′
m · · · p′1 , p1 · · · pn) a†(p′m) · · · a†(p′1) a(p1) · · · a(pn)

The condition that guarantees cluster decomposition of the S-matrix is simply
that, just like the scattering amplitudes, the coefficients hnm must be pro-
portional to a single delta function conserving total energy-momentum but
cannot contain any delta functions conserving momenta among any subset
of the scattered particles. This rules out interaction potentials that conserve
momenta of a subset of K < N particles in an N → N scattering process, for
example.

This constrains the rate of fall-off of interactions in the following way. Any
physically satisfactory Hamiltonian will be invariant under spatial translations,
i.e., it must remain unchanged by a uniform shift of all spatial coordinates.
This ensures two things: that it is a function of differences of spatial coordinates
and that it is proportional to an overall momentum conservation delta function
δ3(p′m + · · ·+ p′1− pn− · · ·− p1). The only way the Hamiltonian could contain
additional, partial momentum conservation delta functions is if it were also
invariant under a uniform shift in some subset of the spatial coordinates; this
would require that the interaction remain constant as that subset of particles
is translated to spacelike infinity. The prohibition on partial momentum
conservation delta functions thus amounts to a requirement that the interaction
between any two subsets of particles fall to zero as one subset of particles is
translated an arbitrarily large spacelike distance from the other.31 In quantum
field theory, all of this is secured automatically by constructing Hamiltonians
out of polynomials of local field operators and their derivatives.

We now turn to some aspects of the relationship between VEV and S-matrix
clustering. VEVs and S-matrices are connected by the LSZ reduction formula.
It allows one to compute S-matrix elements by computing (time-ordered)
VEVs:

31The matrix elements of the Hamiltonian between Fock states break up into connected and
disconnected contributions, just like S-matrix elements (Duncan, 2012, chapter 6.2). The
prohibition on partial momentum conservation delta functions ensures that the connected
part of those Hamiltonian matrix elements goes to zero when any subset of particles is
translated an arbitrarily large spacelike distance from the others.
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m∏
i=1

∫
d4xi e

−ikixi

n∏
j=1

d4yj e
−ipjyj ⟨Ω | T {φ(x1) · · ·φ(xm)φ(y1) · · ·φ(yn)} |Ω⟩

=

(
m∏
i=1

i
√
Z

k2i −m2

)(
n∏

j=1

i
√
Z

p2j −m2

)
⟨pn · · · p1 |S | k1 · · · km⟩

From this it follows immediately that in any theory that satisfies the assump-
tions of the LSZ reduction formula, a set of VEVs satisfy cluster decomposition
if and only if the corresponding S-matrix elements do.32 This means that a
Hamiltonian generates an S-matrix that satisfies cluster decomposition if and
only if that Hamiltonian also has a ground state in which VEVs cluster, a
point to which we will return in Section 6.

There is also a more foundational relationship between the cluster decom-
position of VEVs and an S-matrix: the former is a necessary condition for the
latter to exist at all. Specifically, to establish the existence of states of multiple
non-interacting particles in the Hilbert space of an interacting quantum field
theory – the initial and final states of a scattering process – requires that
VEVs of that theory satisfy cluster decomposition. We will sketch an outline
of this relationship, but the basic physical intuition is that any N particles
with wavefunctions at t = 0 that are essentially localized around spatial points
x1, . . . , xn and momenta p1, . . . , pn (where the supports of the localization of
the different particles in position and momentum space may overlap) should
become spatially isolated at early and late times t→ ∞. Suppose, for example,
that all N wavepackets have non-overlapping support in momentum space
at t = 0 – they are propagating in different directions. If they propagate in
different directions for an infinite amount of time, the result is N wavepackets
whose position space supports are also essentially non-overlapping at early
and late times and thus correspond to non-interacting particles. This is the
basic physical idea that allows one to turn the independence of wavepackets
at large spacelike separation, secured by cluster decomposition of VEVs, into
an independence of wavepackets at early and late times. This, in turn, allows
one to prove that the Hilbert space of the fully interacting theory contains, as
asymptotic states at early and late times, the familiar initial and final states
of multiple non-interacting particles used to define the S-matrix.33

32The qualifier about the applicability of the LSZ reduction formula is important. Non-
perturbatively, it means this does not hold for theories with massless particles because
such theories do not have a well-defined S-matrix (though see Dybalski (2017) for recent
progress and Buchholz and Dybalski (2023) for a more general status report). Pertur-
batively, however, the claim holds for massless theories in the following two senses: (1)
it holds for IR-regulated S-matrix elements, and (2) via the Kinoshita-Lee-Nauenberg
theorem, it holds if one replaces “S-matrix elements” with “inclusive quantities”, such
as scattering cross sections, that depend only on |Sβα|2. See Weinberg (1995, chapter
13) for details of the KLN theorem and Frye et al. (2019) for some subtleties, and Miller
(2021) for philosophical discussion.

33See Haag (1996, chapter II.3.1) for a concise description of the basic physical strategy.

-19-



This early and late time behavior for particles is secured by proving the
LSZ asymptotic condition: that a field Φ evolving in accord with the full
Hamiltonian “behaves like” a free field φin/out as t → ±∞. Crucially, this
behavior includes creating single particles of mass m when acting on the
vacuum state. This is the content of the LSZ asymptotic condition, which
states that as a weak limit34

lim
t→±∞

Φ(t) → φin/out

where the field operators φin/out satisfy the Klein-Gordon equation, but the
field operator Φ – evolving in according with the full, interacting Hamiltonian
of the theory – obviously does not. (Recall that proving the LSZ asymptotic
condition from more fundamental principles was Haag’s original motivation
for introducing cluster decomposition in Lille in 1957.) The full derivation
of the LSZ asymptotic condition is lengthy and technical, drawing on the
full structure of Haag-Ruelle scattering theory. However, the basic strategy –
and the role of the cluster property – are simpler to convey, so we will sketch
the basic ideas here and refer the reader to Duncan (2012, chapter 9.1-4) or
Strocchi (2013, chapter 6) for more expanded presentations.

Begin with a field Φ(x, t) evolving in accord with the full interacting
Hamiltonian. While a free field acts on the vacuum to create only 1-particle
states, the action of Φ(x, t) on the vacuum can create 1-particle or multiparticle
states. We would like to extract the “part” of Φ(x, t) that creates 1-particle
states of mass m. One can do that in two steps: first, one smears Φ(x, t)
with a function f(x) chosen specifically so that its Fourier transform, f̃(p),
has support only in a small neighborhood of the mass shell p2 = m2 and is
identically zero outside that neighborhood. This defines a field

φ1(x, t) =

∫
d4x f(x) Φ(x, t)

which acts on the vacuum to create only 1-particle states. For the second step,
one smears φ1(x, t) with a solution of the Klein-Gordon equation

g(x, t) =

∫
d3p

2E
g̃(p⃗) ei(p·x−Et)

where g̃(p⃗) is a smooth function that decays faster than any polynomial at
large momenta, which ensures that the time derivative of g(x, t) does too.
From this we can define a field

Note that for wavepackets with overlapping support in momentum space, the physical
intuition is somewhat different – the spreading of the wavepacket entails that the amplitude
for finding the two particles in any two particular nearby regions goes to zero as t → ±∞
– but cluster decomposition of VEVs remains essential.

34That is, this is a statement about the limiting behavior of matrix elements ⟨Ψβ |Φ |Ψα⟩
taken between a set of asymptotic states.
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φ1, g(t) = −i
∫

d3x g(x, t)
∂

∂t
φ1(x, t)−

∂

∂t
g(x, t)φ1(x, t)

This field φ1, g(t) is the “part” of Φ(x, t) that creates only 1-particle states
from the vacuum; it is the analogue of a creation operator in the full interacting
theory. A useful feature of the field φ1, g(t) is that the 1-particle states φ1, g |Ω⟩
that it creates are time-independent, even though φ1, g(t) itself is not. This
means the momentum-space wavefunctions of these 1-particle states have a
simple form:

⟨p⃗ |φ1, g(t) |Ω⟩ = ψ1, g(p⃗) ∝ g̃(p⃗) f̃(p⃗)

These wavefunctions (i) are non-zero only near p2 = m2 due to the presence of
f̃(p⃗) and (ii) they have the asymptotic t→ ±∞ behavior of a solution to the
Klein-Gordon equation due to the presence of g̃(p⃗). One can show that this
entails, at early and late times, that these wavefunctions decay no slower than
|t|−3/2, and for fairly generic conditions on the support of g̃(p⃗), they will decay
faster than any power of t. This simple asymptotic behavior is extremely
useful because it is precisely the t→ ±∞ behavior of states of the form

|Ψ, t⟩ = φ1,g1(t) · · · φ1,gn(t) |Ω⟩

that one is interested in when attempting to construct scattering states.
The construction of those states in Haag-Ruelle scattering theory now

follows from two things: the asymptotic behavior of solutions g(x, t) of the
Klein-Gordon equation and the cluster decomposition of VEVs. Roughly speak-
ing, the constraints they jointly impose on timelike and spacelike asymptotic
behavior entail that only states describing multiple time-independent, spatially
isolated, 1-particle wavefunctions survive as t→ ±∞. More specifically, they
allow one to show that the time-dependent state35

|Ψ, t⟩ = φ1,g1(t) · · · φ1,gn(t) |Ω⟩

converges as t→ ±∞, in the fully interacting Hilbert space, to the familiar
time-independent scattering state

|Ψ⟩in/out =
∫

d3p1 . . . d
3pn ψ1, g1 · · · ψ1, gn |p1, . . . , pn⟩in/out

This is a state of N spatially isolated particles, with non-overlapping supports
in position space. The set of all such states at t → −∞ provide a basis for
a Hilbert space Hin, while the states at t → +∞ provide a basis for Hout.
The scattering operator S can then be defined as a map from the space of
initial states Hin to the space of final states Hout. If one makes the standard
assumption of asymptotic completeness – that the full Hilbert space of the

35The 1-particle states φ1,g(t) |Ω⟩ are time-independent, but this is no longer true for states
created by multiple applications of fields φ1,gi(t).
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interacting theory is H = Hin = Hout – then S is a unitary operator. The
cluster decomposition of the S-matrix then follows straightforwardly from
the cluster decomposition of VEVs; this can be shown either via the LSZ
reduction formula, as noted above, or more directly as in (Duncan, 2012, pp.
277-78).

Pushing forward with the same strategy, relying essentially on the timelike
asymptotic behavior of solutions to the Klein-Gordon equation and the cluster
property, finally allows one to establish the LSZ asymptotic condition. This
establishes that the field Φ(x, t) evolving in accord with the full Hamiltonian
asymptotically approaches the free field φin = φout as t→ ±∞. Neither the
existence of asymptotic scattering states nor the LSZ asymptotic condition
can be proven without the cluster decomposition of VEVs; as Strocchi (2013,
chapter 2.3) emphasizes, “the cluster property is the really crucial and physi-
cally essential property for the existence of the asymptotic states and of the
S-matrix.”

Finally, one can state a physically intuitive cluster decomposition property
directly at the level of the algebra of observables. The property is asymptotic
abelianness, which states that any two observables A,B in an algebra A
commute in the limit in which one is translated an arbitrarily large spacelike
distance from the other:

lim
|a|→∞

[
A, U (⃗a)BU (⃗a)−1

]
This is particularly natural in algebraic quantum field theory, where such
algebras are the fundamental mathematical objects of the theory, but it is
also valuable and physically transparent in a more standard presentation of
quantum field theory that works within a particular representation of that
algebra in terms of field operators.

The basic physical idea is that even if A and B are localized around
timelike-related points, a large enough translation in a spacelike direction will
eventually put B outside the lightcone of A, at which point microcausality
ensures that [A, B] = 0. We said that this property is also useful in standard
approaches to quantum field theory which take field operators as the primary
objects of interest. As one example, this property is often relied upon in
analyses of the cluster property of VEVs, when it is assumed that any two field
operators commute inside a time-ordered VEV once their spatial coordinates
have been translated an arbitrarily large spacelike distance away from one
another.

5. Cluster Decomposition, Entanglement, and the Vacuum. One
might naturally expect that cluster decomposition must be a state-independent
condition, given its centrality in the structure of quantum field theory. Surely
no physically reasonable states could endanger such a central structural pillar
of quantum field theory? In fact, neither the cluster decomposition of VEVs
nor of the S-matrix is state-independent. However, one well-known source
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of state-dependence for the cluster decomposition of VEVs serves a positive
function in quantum field theory: it acts as a selection principle for physically
reasonable ground states. Specifically, one identifies physical vacuum states,
at least in part, by requiring that VEVs in that vacuum state satisfy cluster
decomposition.

It is less widely appreciated that even within a physically reasonable vac-
uum state, the cluster decomposition of the S-matrix remains state-dependent.
This stems from the failure of scattering amplitudes to cluster if there is
entanglement in the initial state of the scattering process. A basis of entangled
states is a completely unobjectionable basis for a Fock space, but the S-matrix
in this basis will not satisfy cluster decomposition. Attempting to recast
this as a selection principle for physically acceptable scattering states or as
an argument for a preferred basis for the Fock space, analogous to how one
resolves the state-dependence of VEV clustering, is untenable. Instead, we
argue in Section 6 that this is best resolved by redefining cluster decomposition
as a dynamical constraint.

5.1. State Dependence: Vacuum State. It has been known since the
early 1960s that VEVs in a quantum field theory satisfy cluster decomposition
if and only if the Hilbert space contains a unique vacuum state (Hepp et al.,
1961; Borchers, 1962). An early example illustrating the connection was offered
by E. C. G. Sudarshan and Korkut Bardacki (Wightman, 1963, Section 1.3).
Their example was somewhat artificial but turned out to be prescient.

They considered two quantum field theories describing an uncharged scalar
field. Each is characterized by a Hilbert space Hi, field operators φi(x), an
irreducible representation of the Poincaré group Ui(a,Λ) acting on Hi, and
a vacuum state |ωi⟩. They then constructed a new quantum field theory by
taking their direct sum, producing a quantum field theory with a Hilbert
space H = H1 ⊕H2, field operators Φ(x) = φ1(x) ⊕ φ2(x), and a reducible
representation of the Poincaré group U(a,Λ) = U1(a,Λ)⊕ U2(a,Λ) acting on
H. Importantly, there is no unique vacuum state for this new theory. Instead,
there is a set of states of the form |Ω⟩ = α1|ω1⟩+α2|ω2⟩, with |α1|2+ |α2|2 = 1.
Each of these is a ground state of the Hamiltonian of the theory and is invariant
under the action of the reducible representation U(a,Λ) of the Poincaré group.
This set of vacua occupies a two-dimensional subspace of the Hilbert space H,
not the one-dimensional subspace associated with a unique vacuum state.

A simple calculation shows that even if the VEVs ⟨ω1 |φ1(x1) . . . φ1(xj) |ω1⟩
and ⟨ω2 |φ2(xj+1) . . . φ2(xn) |ω2⟩ satisfy cluster decomposition, the VEV

⟨Ω |Φ(x1) . . .Φ(xj) Φ(xj+1) . . .Φ(xn) |Ω⟩

will generally not. It will cluster if and only if α1 = 0 or α1 = 1, i.e., if and
only if |Ω⟩ is equal to one of the original unique vacua |ω1⟩ or |ω2⟩.

This rather artificial example was prescient because an essentially identical
situation arises in quantum field theories with spontaneous symmetry breaking
(SSB), one of the great theoretical developments of the 1960s. In the broken
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phase of a theory with SSB, the full Hilbert space decomposes into a direct
sum of superselection sectors H =

⊕
j Hj with each superselection sector

Hj equipped with a unique vacuum state |ωj⟩.36 These vacuum states are
orthogonal and the matrix element of any local operator A(x) taken between
two distinct vacua |ωj⟩ and |ωk⟩ vanishes. These vacuum states are degenerate
in the sense that they are each ground states of the Hamiltonian of the theory,
but are distinguished by the VEV of some other operator O(x). The VEV
⟨ωj |O(x) |ωj⟩ that distinguishes states that break the symmetry of interest
is called the order parameter for that symmetry. The requirement that VEVs
satisfy cluster decomposition again acts as a selection principle, explaining
why the individual vacuum states |ωj⟩ that break the symmetry are physically
satisfactory vacua, while linear combinations of those vacua |Ω⟩ =

∑
j αj |ωj⟩

that preseve the symmetry are not.
The general point can be illustrated with a simple example (Duncan, 2012,

pp. 503–505). Consider a theory of an uncharged scalar field φ(x) governed
by a Hamiltonian that is invariant under the Z2 symmetry φ(x) → −φ(x).
The familar φ4 theory with a “wrong-sign” mass term provides an example:

H =

∫
d3x

1

2
π(x)2 +

1

2
(∇φ(x))2 − 1

2
m2φ(x)2 +

λ

4!
φ(x)4

This Hamiltonian has two vacuum states |ω+⟩ and |ω−⟩. The field φ(x) has a
non-zero VEV in each of these two vacua:

⟨ω+ |φ(x) |ω+⟩ = v and ⟨ω− |φ(x) |ω−⟩ = −v

In each vacuum state, the symmetry φ→ −φ obeyed by the Hamiltonian is
broken:

⟨ω± |φ(x) |ω±⟩ ≠ ⟨ω± | −φ(x) |ω±⟩

The vacuum states are orthogonal, and the fact that ⟨ω± |A(x) |ω∓⟩ = 0 for
all local operators A(x) means that no local operator can turn |± v⟩ into |∓ v⟩.
The Hilbert space for the theory thus decomposes into the direct sum of two
superselection sectors H = H+ ⊕H−, with |ω+⟩ the vacuum state of H+ and
|ω−⟩ the vacuum state of H−.

Why not simply avoid breaking the Z2 symmetry by taking the vacuum
state of the theory to be |Ω⟩ = α+ |ω+⟩ + α− |ω−⟩ with |α+|2 + |α−|2 = 1?
This is also a ground state of the Hamiltonian – it yields the same expectation
value for the Hamiltonian as each of the degenerate vacua |ω+⟩ and |ω−⟩ – and
it preserves the symmetry φ→ −φ obeyed by the Hamiltonian. The reason
|Ω⟩ is not a physically acceptable vacuum state is that VEVs in this state do
not satisfy cluster decomposition.

36In the language of algebraic quantum field theory, the superselection sectors Hj are
unitarily inequivalent irreducible GNS representations corresponding to distinct states ωj

on the C⋆-algebra defining the theory.
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To do so, VEVs taken in the state |Ω⟩ would have to satisfy

lim
λ→∞

⟨Ω|φ(x)φ(y + λa⃗)|Ω⟩ − ⟨Ω|φ(x)|Ω⟩ ⟨Ω|φ(y)|Ω⟩ = 0

Instead, a simple calculation reveals that

⟨Ω|φ(x)φ(y + λa⃗)|Ω⟩ = v2

while
⟨Ω|φ(x)|Ω⟩ ⟨Ω|φ(y)|Ω⟩ = v2(1− 2α)2

Combining the two results, one sees that cluster decomposition is satisfied if
and only if α = 1 or α = 0, i.e., if and only if the vacuum state of the theory
is either |ω+⟩ or |ω−⟩.

Thus the cluster decomposition of VEVs is state-dependent – it is only
satisfied in particular vacuum states. However, as long as the Hamiltonian
has ground states in which VEVs do cluster, this state-dependence is straight-
forwardly resolved by treating the requirement that VEVs satisfy cluster
decomposition as a selection criteria for physical vacuum states.37 One can
then define the necessary ingredients for a scattering theory as outlined in
Section 4.

5.2. State Dependence: Entanglement. This role played by cluster
decomposition in identifying physical vacua is well known. However, it seems
less widely appreciated that even if one has identified a vacuum state in which
VEVs satisfy cluster decomposition, the corresponding Fock space contains
states for which the scattering amplitudes do not factorize. Indeed, one can
actually form a basis for the Fock space with such states. This becomes
apparent when one considers scattering processes with entangled initial states.

Entangled states don’t show up in textbook discussions of scattering theory,
but preparing and scattering particles in a partially or fully entangled state
is a perfectly physical process.38 Of course, distant scattering experiments
whose initial states are entangled will have correlated results. The correspond-
ing scattering amplitude will not factorize when any subset of particles are
translated an arbitrarily large spacelike distance away from the others.

Here is a simple example. Recall that the space of asymptotic states of a
quantum field H = Hin = Hout is a Fock space, that is, a direct sum of n-fold

37The requirement that correlation functions in the ground state satisfy cluster decomposi-
tion also selects physical ground states in statistical physics (Parisi, 1988, Section 2.2;
Denef, 2012, Section 2.2.2). A system in the broken phase is no longer ergodic on the
full state space and the equivalence between phase averages and time averages can only
be restored by choosing one of the two symmetry-breaking ground states for the system.
Indeed, Ruelle (1969, chapter 6.3) just calls clustering ground states “ergodic states”.

38In fact, considerable attention has recently been devoted to various aspects of the scattering
behavior of such states. For a sample of this literature, see Seki et al. (2015); Peschanski
and Seki (2016); Grignani and Semenoff (2017); Fan et al. (2017); Kharzeev and Levin
(2017); Peschanski and Seki (2019); Araujo et al. (2019); Faleiro et al. (2020).
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tensor products of the subspace H1 containing one-particle states of the field:

H = C⊕H1 ⊕
(
H1 ⊗H1

)
⊕
(
H1 ⊗H1 ⊗H1

)
⊕ · · ·

In a theory containing multiple quantum fields φj, φk, the full Hilbert space
of asymptotic states is just the tensor product of the Hilbert spaces associated
with each field:

Hjk = Hj ⊗Hk

Now consider an elastic 3 → 3 scattering of distinguishable particles (the
generalization to generic N →M scattering is straightforward). Label distin-
guishable particles as A, B, and C. Each particle is associated with a quantum
field Φa, Φb, or Φc, and asymptotic states of those quantum fields form the
Fock spaces Ha, Hb, and Hc.

39

The full Hilbert space of asymptotic states is thus

Habc = Ha ⊗Hb ⊗Hc

For our purposes we can restrict our attention to asymptotic states containing
only a single particle each of species A, B, and C, so we consider only the
subspace

H1
abc = H1

a ⊗H1
b ⊗H1

c

and scattering amplitudes with

H1
abc = Hin = Hout

States in H1
abc have the form

|k, p, q⟩abc = |k;σa⟩a ⊗ |p;σb⟩b ⊗ |q;σc⟩c

where the σi represent the state of any other quantum numbers the particle
might have, like spin or flavor. We will ignore them and consider only
entangled momenta, but of course a similar failure of factorization could arise
from entanglement between those degrees of freedom as well.

Now consider S-matrix elements involving partially or fully entangled
initial states

|i⟩abc = a1 |k1, p1, q1⟩abc ± a2 |k2, p2, q2⟩abc
For example, suppose that in the initial state, the momenta of particles A and
B are entangled with each other, while particle C is not entangled with either
one.40 The three particles are in a partially entangled state of the form

|Ψ⟩abc = (a1 |k, p⟩ab + a2 |p, k⟩ab)⊗ |q⟩c

39Despite the notation, the Φi need not be scalar fields.
40One could prepare such a state by preparing C independently and letting A and B be
products of a decay process, like π0 → e+ e−.
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Figure 1: Particles A and B are initially
entangled, particle A propagates freely,
and particles B and C scatter.

Suppose that B and C scatter, while
A is translated an arbitrarily large
spacelike distance away and under-
goes no scattering, as in Figure 1.
The scattering amplitude for A→ A
will not be statistically independent
from the amplitude for BC → BC.

At the risk of belaboring the
point, the physical situation is the
following. In the state |Ψ⟩abc parti-
cles A and B do not have individually
determinate momentum states, due
to their entanglement, while particle
C initially has momentum q. Parti-
cle A is translated a large spacelike distance away from particles B and C,
propagates freely, and hits a detector that records its momentum. This mea-
surement will determine the momentum of particle A, since it previously could
not be assigned a momentum due to its entanglement with particle B. The
possible results of this measurement are k and p. Over the same time interval,
particles B and C undergo a scattering process. That process conserves total
momentum, so the possible final states for particles B and C will have total
momentum of either k + q or p+ q.

As soon as the momentum of particle A is registered by the detector, the
total momentum of the final state of particles B and C is instantly determined.
Suppose the momentum of particle A is measured to be k. That instantly
determines, with certainty, that particles B and C will be in a final state with
total momentum p+ q – the amplitude for any process that takes particles B
and C into a final state with momentum k+q is zero. Prior to the measurement
of particle A’s momentum, the amplitude for the outcome of the B and C
scattering is spread over two regions of H: one region of final states with p+ q
and another of final states with k + q. The measurement of the momentum of
particle A instantly bunches up all of the amplitude for the B and C scattering
into the p+q region of H. Of course this all holds, mutatis mutandis, if instead
the detector registers the momentum of particle A to be p. To borrow some
terminology familiar from discussion of Bell-type theorems, the two scattering
processes exhibit “outcome-outcome” dependence and the 3 → 3 amplitude
does not factorize into a product of statistically independent 1 → 1 and 2 → 2
amplitudes.

Now, cluster decomposition does not require that every scattering ampli-
tude between arbitrary states factorize; it requires only that the S-matrix does,
and the S-matrix is the set of matrix elements ⟨Ψβ |S |Ψα⟩ taken between
states |Ψα⟩ , |Ψβ⟩ of a particular basis. It is not the set of matrix elements
between all states in Hin/out. Insofar as cluster decomposition is a condition
on an S-matrix, then, what really matters is basis-independence, not state-
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independence. One might therefore hope that the cluster decomposition of
the S-matrix holds in all bases, even if the analogous factorization property
doesn’t hold for all states.

However, it is easy to show that the state-dependence described above
translates into a basis-dependence; simply choose an entangled basis for the
Fock space Hin/out. For example, for a fermionic field, one can exploit the
analogy between fermionic modes and qubits and construct an entangled basis
for the Fock space by starting with a GHZ-type state41

|ΨGHZ⟩ = α |0, 0, · · · 0, · · ·⟩+ β |1, 1, · · · 1, · · ·⟩
One can then construct an entangled basis for the momentum representation of
the Fock space by toggling modes, in direct analogy to the standard procedure
for constructing an entangled basis for the Hilbert space of N qubits by
starting from a GHZ state. An analogous construction generates an entangled
basis for a bosonic Fock space.

For the reasons outlined above, an S-matrix in this basis will not satisfy
cluster decomposition even if the Hamiltonian of the theory satisfies the condi-
tion discussed in Section 4 that is typically deemed sufficient (and necessary)
for cluster decomposition. This simply reflects the fact that an S-matrix
element ⟨Ψβ |S |Ψα⟩ is a function of the scattering operator and the basis
states {|Ψα⟩}, so cluster decomposition can be violated if either one produces
long-range correlations. Note that while we considered distinguishable parti-
cles for the extended example above, that was not essential; here we have a
basis for the Fock space associated with a single fermionic field – i.e., for a
system of indistinguishable particles – in which the S-matrix does not satisfy
cluster decomposition.

Of course, the S-matrix in an entangled basis doesn’t factorize because the
initial states don’t factorize when one subsystem is translated an arbitrarily
large spacelike distance away from the others. In fact, this failure of the initial
state to factorize means that certain constraints on S-matrix elements that
were said to follow from cluster decomposition in Section 4 can’t even be
stated in this basis. In particular, recall that cluster decomposition requires
that S-matrix elements decompose into a sum of connected and disconnected
parts:

Sq3 q2 q1 , p1 p2 p3 = SC
q3 q2 q1 , p1 p2 pn

+ SC
q2 q1 , p1 p2

SC
q3 , p3

+ P123

+SC
q1 , p1

SC
q2 , p2

SC
q3 , p3

+ P123

Stating this condition assumes that each of the three particles can be assigned
some determinate momenta in the initial state. But this is false, in general,

41We consider a spinless fermion and entanglement between momentum modes for simplicity,
but nothing hinges on this.
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for a system of N particles whose momenta are entangled.
Cluster decomposition is thus incompatible with entanglement in the initial

state of a scattering process. Cluster decomposition of the S-matrix fails –
indeed, cannot even be sensibly stated – when the S-matrix is defined using
a basis of entangled states. This is because even though it is universally
described as requiring only an ability to dynamically isolate subsystems from
one another, by making it a condition on the S-matrix it also introduces a
requirement on states: that those subsystems be isolated from one another
in the sense of being unentangled. The conflation of these two senses of
isolability, and how to recast cluster decomposition in a way that cleaves them,
is discussed in Section 6.

5.3. Vacuum Entanglement. Our discussion of entangled states raises
two puzzles. It is well known that the vacuum state of a quantum field theory
is entangled; one can maximally violate the Bell inequalities in such a state.42

The first puzzle: why is the entanglement of the vacuum state compatible with
VEVs satisfying cluster decomposition, while entanglement in an initial state
in a scattering process prevents the analogous factorization of the scattering
amplitude? The second puzzle: the standard basis for a Fock space consists of
separable states of N particles, but such states are prepared by exciting local,
entangled regions of the vacuum state; one might worry that the entanglement
of the vacuum should be transferred to entanglement between the created
particles. Given the incompatibility of cluster decomposition and entangled
initial states, that raises the question of how cluster decomposition can ever
be satisfied.

The beginnings of an answer were given by Redhead (1995).43 He employed
the tools of algebraic quantum field theory in his analysis: one assigns to
every open, bounded spacetime region U a von Neumann algebra A(U) of
bounded operators, and self-adjoint elements of the algebra A(U) correspond
to observables that can be measured in the spacetime region U . For any open,
bounded spacetime region V that is spacelike separated from U , all elements
of the algebra A(V ) commute with all elements of the algebra A(U). For a
quantum field in its vacuum state |Ω⟩ Redhead considers arbitrary spacelike
separated regions U and V and shows that for any nontrivial projection oper-
ator P contained in the algebra A(U), there exists some nontrivial projection
operator Q in the algebra A(V ) such that the two projectors are maximally
correlated in the vacuum state. That is, Redhead shows that for all ϵ > 0 and

42See Summers (2011, Section 4) for a summary discussion of Bell inequality violation in
the quantum field theory vacuum, with many citations to original papers. See Casini
and Huerta (2009), Headrick (2019), and Casini and Huerta (2021) for an overview
of entanglement in the quantum field theory vacuum with a focus on properties of
entanglement entropy.

43See Clifton et al. (1998, sections II-III) for a clear and concise presentation of Redhead’s
argument and some related mathematical and conceptual issues.
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any P in A(U), there exists some Q in A(V ) such that44

PrΩ(P = 1 | Q = 1) > 1− ε

The significance of this result is that in the vacuum state, for any chosen
observable in spacetime region U (such as the projector P ), there is always
some observable one could measure in spacetime region V (such as the projector
Q) and some particular result one could get for that measurement in V , that
would determine with certainty the result of measuring the chosen observable
in U .

These long-range correlations reflect the fact that the vacuum state of
a quantum field theory is highly entangled. They also seem prima facie
incompatible with the requirement that VEVs satisfy cluster decomposition,
but Redhead demonstates this is not right: these two properties of the vacuum
state can coexist. The cost of this coexistence is that correlations between
measurements of observables in U and measurements of observables in V
must fall off exponentially with the spacelike distance d(U, V ) between the
two regions. Redhead shows that this exponential falloff imposes an upper
bound on the probability of getting the measurement result for the observable
in V that would determine, with certainty, the result of measuring the chosen
observable in U . The key fact is that this upper bound has to decrease
exponentially as the two spacetime regions U and V are taken to ever-greater
spacelike separation. For example, if we take a projection operator P in A(U)
and its maximally correlated partner Q as the observables, Redhead shows
that the probability of getting the result Q = 1 that would determine with
certainty that P = 1 must satisfy the following bound:

PrΩ(Q = 1) ≤ e−2md(U,V ) PrΩ(P = 1)

(1− PrΩ(P = 1))2

where m is the mass of the particle associated with the field and d(U, V ) is
the minimum spacelike distance between spacetime regions U and V . The
result establishes that for a fixed probability PrΩ(P = 1), the probability that
a measurement of the maximally correlated projector will give the outcome
Q = 1 falls off exponentially with the distance between U and V .

This goes a long way toward solving our puzzle. Unlike the correlations
between momentum or spin measurements in an EPR-type state, which are
independent of the distance between the subsystems, correlations between
measurements performed on different spacetime regions of the field in its
vacuum state fall off exponentially with the spacelike distance between those
regions. The rate of this falloff is what makes the entanglement of the vacuum
state consistent with the requirement that VEVs taken in that vacuum state

44The conditional probability PrΩ(P = 1 | Q = 1) can be equivalently written as
⟨Ω |P Q |Ω⟩/⟨Ω |Q |Ω⟩. This follows from the definition of conditional probability and
the fact that PrΨ(Pj = 1) = ⟨Ψ |Pj |Ψ⟩ for any state |Ψ⟩ and any projection operator Pj .
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satisfy cluster decomposition. However, it raises a further question: why do
these correlations fall off with distance? Redhead has shown that compatibility
with cluster decomposition requires that they do, but what is the physical
explanation for that behavior?

The answer, and the final piece of the puzzle, lies in the origin of vacuum
entanglement. It is well known that a free quantum field is mathematically
equivalent to an infinite set of coupled harmonic oscillators. The source of
the coupling is the gradient term (∇φ)2 in the Hamiltonian, which couples
harmonic oscillators at neighboring spatial points. This is the only term
in the Hamiltonian that couples operators at different spatial points, and
it is the source of the entanglement in the vacuum state. We will use a
free massive scalar field as our example, but this physical explanation of the
origin of vacuum correlations applies equally well to theories with perturbative
interactions and higher-spin fields.45

The essential features can all be gleaned from two coupled harmonic
oscillators (Srednicki, 1993). The Hamiltonian is

H =
1

2

[
p21 + p22 + ka(x

2
1 + x22) + kb(x1 − x2)

2
]

One typically transforms this into a system of decoupled harmonic oscillators
by re-expressing it in the basis of its normal modes:

H =
1

2

[
p2+ + ω+x

2
+ + p2− + ω−x

2
−
]

with x± = 1√
2
(x1 ± x2), ω

2
+ = ka, and ω2

− = ka + 2k2b . This amounts to a
choice of how to divide the system of oscillators up into subsystems: each
normal mode of the coupled oscillators is treated as a subsystem, and we no
longer keep track of each individual oscillator. In this basis, the ground state
wavefunction of the system is separable:

Ψ0(x+, x−) = Ψ0(x+)Ψ0(x−) =
1√

π(ω+ω−)1/4
exp

[
−1

4
(ω+x+ + ω−x−)

]
However, there is no requirement that we individuate subsystems this way. If
we keep track of the individual oscillators rather than the normal modes of
the coupled system, we find that the ground state of the position degrees of

45 It applies to Abelian and non-Abelian gauge fields because such Hamiltonians also
contain gradient-squared terms, although there is no free non-Abelian gauge theory and
the interaction potential generically grows linearly with distance so the physical argument
below for how the decay of correlations in the vacuum is related to their origin will not
hold for such theories. Indeed, there is good reason to expect VEVs should not satisfy
cluster decomposition in those theories (Wilson, 1974; Strocchi, 1978; Lowdon, 2016).
For fermions, the discretization of the Hamiltonian for Dirac or Majorana fermions still
couples operators at neighboring lattice sites, even though it is linear in derivatives (Casini
and Huerta, 2009, sections 3.1.8 & 3.2.3).
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freedom of the two oscillators is entangled:

Ψ0(x1, x2) =
1√

π(ω+ω−)1/4
exp

[
−1

8
(ω+(x1 + x2)

2 + ω−(x1 + x2)
2)

]
̸= Ψ0(x1)Ψ0(x2)

A little algebra reveals that the source of the entanglement in this ground
state is the coupling between the two oscillators, here encoded in a term of
the form x1x2(ω+ − ω−).

This diagnosis of the physical origin of the entanglement of the ground
state for two coupled harmonic oscillators generalizes directly to the case of
the free massive scalar field. Consider N coupled harmonic oscillators:

H =
1

2

N∑
i=1

pi +
1

2

N∑
i,j=1

xiKijxj

where pi and xi represent the momentum and position of the ith oscillator and
the matrix Kij couples oscillators at neighboring points. The ground state of
the position degrees of freedom of the N oscillator system is again entangled:

Ψ0(x1, x2, . . . , xN) ∝ exp

[
−1

2
(xT ·

√
K · x)

]
where the non-factorizability of the ground state again comes from the coupling
between oscillators at neighboring points.

It is easy connect this to quantum field theory. After a little algebra and
a suggestive switch of notation, the Hamiltonian becomes

H =
1

2

N∑
i=1

πi +
1

2

N∑
i,j=1

(φ2
i + φ2

j) +
1

2

N∑
i,j=1
i ̸=j

φiKijφj

where πi and φi now represent the momentum and position operators associ-
ated with the ith oscillator. Compare this to the discretized Hamiltonian for a
free massive scalar field:

H =
1

2
a3

N∑
i=1

[
π(xi)

2 +
3∑

n=1

(
φ(xi)− φ(xi + an̂)

a

)2

+m2φ(xi)
2

]

where xi labels lattice sites, a is the lattice spacing, and n̂ is a unit vector
along each lattice link.

Our interest is in the terms(
φ(xi)− φ(xi + an̂)

a

)2
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that come from discretizing (∇φ)2 in the continuum Hamiltonian. These are
the only terms that couple operators at neighboring spatial points. Multiplying
them out gives

H =
1

2
a3

N∑
i

[
π(xi)

2 +
1

a2

3∑
n=1

[
φ(xi)

2 + φ(xi + an̂)2
]

− 1

a2

3∑
n=1

2φ(xi)φ(xi + an̂) +m2φ(xi)
2

]
This exhibits the same coupling between operators at neighboring spatial
points as the Hamiltonian for N harmonic oscillators with a particular choice
of the matrix Kij.

In the continuum limit,

φ(xi) → φ(x), π(xi) → π(x), and ad−1

N∑
i=1

→
∫
dd−1x

and the finite-difference terms that couple operators at neighboring points are
replaced by (∇φ)2. One recovers the familiar Hamiltonian

H =
1

2

∫
d3x π(x, t)2 + (∇φ(x, t))2 +m2φ(x, t)2

When we keep track of the field operators at individual spacetime points, rather
than the normal modes of the entire field, the ground state wavefunctional of
this Hamiltonian is entangled. As we just saw, this is due to the coupling of
field operators φ(x) and φ(y) at adjacent spatial points.

The coupling between fields at neighboring spatial points explains why a
change in the state of the field in a spacetime region U cannot be confined
to that region: the effect of exciting the field in U will spread throughout
the field due to the coupling between the oscillators. This is a physically
intuitive way of understanding why one cannot define strictly localized states
for spacetime regions U and V in a quantum field theory: the state of the
field in region V can never be perfectly insulated from changes in the state of
the field in U .

This also gives us an answer to our second puzzle. The (∇φ)2 term couples
field operators only at neighboring spatial points, so one expects that the effect
of exciting the field in region U should be mostly confined to the region U , and
the effect it has on the state of the field in region V should fall off with the
distance between the two regions. Indeed, this effect falls off exponentially for
massive fields and polynomially for massless fields just as cluster decomposition
requires. For example, suppose the particle associated with Ψ has mass
∼ 0.5MeV. The overlap between the state of the field ⟨Ω|Ψ(x) produced by
exciting the field around the spacetime point x and the state Ψ(y)|Ω⟩ produced
by exciting the field around spacetime point y is given by ⟨Ω |Ψ(x)Ψ(y) |Ω⟩,
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and the quantity ⟨Ω |Ψ(x)Ψ(y) |Ω⟩ − ⟨Ω |Ψ(x) |Ω⟩⟨Ω |Ψ(y) |Ω⟩ captures the
degree to which the state Ψ(y)|Ω⟩ differs from the vacuum |Ω⟩ for an observer
localized around the point x. This second quantity is much smaller than
10−400 once points x and y are separated by even ∼ 1 nm.46 For an observer
localized around x, there is essentially no difference between the field around
y being in its vacuum state or in the state Ψ(y)|Ω⟩; any change in the state
of the field at y is essentially localized to the spacetime region immediately
around y. This is what underlies the idea we encountered in Section 3 that
cluster decomposition secures the approximate, or “essential”, localization of
states.

It is worth commenting briefly on this notion of “essentially” localized
states. If one excites the field in a spacetime region U , the effect of that
excitation on the field in region V will become vanishingly small as V is
translated by a large spacelike distance; to a very good approximation, as far
as the state of the field in V is concerned, it will be as if the field in U is in its
vacuum state. Qualitatively, but only qualitatively, this amounts to an ability
to factorize the global state of the field into a product of states assigned to
its subregions. For example, Haag says that cluster decomposition of VEVs
means that “it is meaningful to define a ‘product state vector’ Ψ = ψ1⊗tψ2 . . .
although in general no tensor product between vectors of H with values in
H is defined, such a product becomes meaningful between states which are
localized far apart at a particular time” (Haag, 1996, II.3.1).47 This ensures
that, despite the entanglement of the vacuum state, one can still define initial
and final states describing multiple independent, essentially localized particles,
just as in the sketch of the Haag-Ruelle derivation of the LSZ asymptotic
condition in Section 4.

However, one cannot factorize the global state exactly. The ability to
exploit the extremely small but non-vanishing effects that acting in U can
have on the state of the field in region V is precisely what underlies the Reeh–
Schlieder theorem (see, e.g., Witten (2018, section 2)). This is what leads
Haag (1996, Theorem 5.3.1), for example, to offer the reminder that while
cluster decomposition does secure the localization of states in this qualitative
sense, “the concept of localized states, if used in a more than qualitative
sense, must be handled with care.” The origin of the entanglement of the
vacuum state offers a physically intuitive explanation of why VEVs satisfy
cluster decomposition, despite the vacuum being an entangled state, while also
explaining the origin of the miniscule, but extremely important, long-range
correlations that underlie the Reeh–Schlieder theorem.

46If the theory is not in a symmetry breaking phase then ⟨Ω |Ψ |Ω⟩ = 0 and this becomes
the statement that the amplitude for finding the state Ψ(y)|Ω⟩ in the state Ψ(x)|Ω⟩ goes
to zero exponentially in the distance between x and y.

47Similarly, Weinberg invokes the same idea in justifying the use of “product states” in
scattering theory, explaining that “physical states before and after the collision consist of
particles that are so far apart that they are effectively non-interacting, so they can be
described as direct products of the one-particle states” (Weinberg, 1995, p. 107).
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6. Two Senses of Isolability How should we understand the physical
significance of cluster decomposition? How should we understand its role in
the structure of quantum field theory?

In Section 3, we encountered a number of ostensibly distinct roles that
cluster decomposition is supposed to play in quantum field theory: it is
necessary for the possibility of experimental science; it allows for the definition
of “essentially” localized states of a quantum field; it reflects the short range
of forces in the actual world; it prohibits superluminal signaling. At the heart
of each of these motivations was a recognition of the importance of being able
to decompose a larger physical system, like a quantum field or a collection of
particles, into effectively isolated subsystems for the purposes of description,
intervention, and measurement.

It is crucial to distinguish two senses in which one might be unable to
isolate a quantum system. One the one hand, one might not be able to
isolate a system in a bounded spacetime region U from dynamical influences
coming from events in spatially distant regions V . Dynamical influences of
this sort have at least two characteristic features: (i) events in V can change
the statistical distribution of results of measurements performed on the system
in region U and, as a result, (ii) one cannot specify an independent state for a
system in region U , but instead must include information about the state of
the universe in other, perhaps distant regions of the universe V . In that case,
one cannot specify the state of a system in U (a laboratory, for example),
extract predictions for experiments from that state assignment, and test those
predictions with an experiment performed in U without including the state of
all of the systems in regions outside the lab that could potential dynamically
influence the system in U . An inability to dynamically isolate subystems
endangers the possibility of locally preparing and describing systems and
performing experimental measurements; it really is unclear how experimental
science could take place in a universe with widespread failures of isolability in
this sense.

On the other hand, one might not be able to isolate a quantum system in
U from systems in distant regions V due to entanglement. In that case, (i) one
can independently specify a state for the system in region U without knowing
about the state of the universe in a (perhaps distant) region V with which the
system in U is entangled. Furthermore, (ii) influences from V cannot change
the statistical distribution of results of measurements performed on the system
in U ; events in V can change the state of a system in U , but not the statistical
distribution of results of measurements performed in U . In fact, this bears
importantly on (i): one cannot specify a pure state for a system in region
U if it is entangled with a system in V , but one can always assign a mixed
state to the system in region U .48 This mixed state will furnish predictions

48One might worry that this basic feature of nonrelativistic quantum mechanics is somehow
altered in quantum field theory, but Clifton and Halvorson (2001) show that worry is
mistaken. Note, also, that if Ada doesn’t know that her system is entangled with Bob’s
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for the results of experiments, and those predictions (and results) are entirely
independent of anything happening outside of the region U . The inability to
isolate a system due to entanglement may have many surprising consequences,
but it does not endanger our ability to do experimental science.

Rather famously, Einstein is often read as conflating these two senses of
isolability in a passage written in 1948:

If one asks what is characteristic of the realm of physical ideas
independently of the quantum theory, then above all the following
attracts our attention: the concepts of physics refer to a real
external world, i.e., ideas are posited of things that claim a ‘real
existence’ independent of the perceiving subject (bodies, fields,
etc.). . . it appears to be essential for this arrangement of the things
introduced in physics that, at a specific time, these things claim
an existence independent of one another, insofar as these things
‘lie in different parts of space’. Without such an assumption of
the mutually independent existence (the ‘being-thus’) of spatially
distant things, an assumption which originates in everyday thought,
physical thought in the sense familiar to us would not be possible.
Nor does one see how physical laws could be formulated and tested
without such a clean separation. . . . For the relative independence
of spatially distant things (A and B), this idea is characteristic: an
external influence on A has no immediate effect on B; this is known
as the ‘principle of local action’, which is applied consistently only
in field theory. The complete suspension of this basic principle
would make impossible the idea of the existence of (quasi-)closed
systems and, thereby, the establishment of empirically testable laws
in the sense familiar to us (Einstein, 1948, pp. 321–322) (transl.
(Howard, 1985, pp. 187–188)).

Einstein apparently worried that the inability to isolate subsystems in different
spatial regions from entanglement and assign them independent states would
make experimental science impossible. Of course, he was mistaken; he failed
to distinguish the consequences of being unable to isolate subsystems from
external dynamical influences, which arguably would make experimental
science impossible, from the consequences of being unable to isolate subsystems
due to entanglement, which does not.

The same conflation is encoded in the standard statement of cluster
decomposition as a constraint on the S-matrix. For the S-matrix to factorize

and (falsely) assigns it a pure state, it will make no difference to the predictions she
makes, the interventions she can perform, nor the results of her measurements in U . For
example, Ada will make the same predictions if she (falsely) assigns her system the pure
state |A⟩ = 1√

2
|0⟩+ 1√

2
|1⟩ that she would if she assigned it the mixed state obtained by

tracing Bob’s subsystem out of the (true) state |AB⟩ = 1√
2
|0⟩ |0⟩+ 1√

2
|1⟩ |1⟩. So Ada

truly doesn’t need to know anything about regions outside of U .
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as one subsystem is translated a large spacelike distance from the others, both
the Hamiltonian and the states must be well behaved. More precisely, the
Hamiltonian must not contain any delta functions that conserve momenta
among a subset of particles and the states used to define the S-matrix must
be separable. The Hamiltonian condition ensures that as the two subsystems
become increasingly separated, they will become dynamically isolated. This
arguably is a precondition for the possibility of experimental science; if it failed
generically, a subsystem of particles translated an arbitrarily large spacelike
distance away from Ada’s lab could influence the statistical distribution of her
measurement results. Forces would no longer fall off with distance; subsystems
could no longer be treated as effectively localized; superluminal signals could
be sent; scattering in the accelerator tunnel at Fermilab could not be modeled
independently of events taking place at CERN.

The requirement of the separability of the states used to define the S-
matrix, however, is inessential. Its failure would not endanger any of the roles
that cluster decomposition is supposed to play in the structure of quantum
field theory; indeed, recall the assurances from Duncan in Section 3 that
the behaviors that cluster decomposition is intended to rule out �should be
perfectly compatible with entanglement. Suppose the Hilbert space of a
quantum field theory, per impossible, contained only entangled states; that
would make no difference for whether forces fall off with distance, whether
superluminal signals could be sent, whether one could assign subsystems
essentially localized states, and so on. It certainly would not threaten the
possibility of experimental science. That the use of an entangled basis would
nevertheless invalidate cluster decomposition is simply an artefact of stating
cluster decomposition as a factorizability condition for the S-matrix.

This conflation of these two senses of isolability in the standard statement
of cluster decomposition has several drawbacks. It obscures the physical
meaning and structural import of cluster decomposition: its formal statement
is misaligned with the roles it is supposed to play in quantum field theory. It
suggests that an ability to isolate subsystems from entanglement is somehow
essential for cluster decomposition to secure the structural features of quantum
field theory that it does, when that is actually a purely dynamical matter. It
is rather unsatisfactory that cluster decomposition, stated as a factorizability
condition for the S-matrix, can fail without threatening any of the structural
features of quantum field theory that it supports. But this is exactly what
happens for a theory whose Hamiltonian is well-behaved, but whose S-matrix
is defined in an entangled basis. Worse, it makes cluster decomposition a
basis-dependent statement. The condition is typically presented as one of the
pillars on which quantum field theory is built, even a precondition for the
possibility of experimental science; certainly the possibility of quantum field
theory, or of experimental science itself, is not a basis-dependent matter.

We propose redefining cluster decomposition to avoid these drawbacks.
Specifically, we propose that cluster decomposition should not be defined as
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a condition requiring the factorization of an S-matrix. Instead, it should
be identified with the condition on the Hamiltonian that we discussed in
Section 4, originally introduced by Weinberg (1964): a quantum field theory
should be said to satisfy cluster decomposition if and only if its Hamiltonian
can be written in the form

H =
∑
n,m

∫
d3p′m · · · d3p′1 d3p1 · · · d3pn

hnm(p
′
m · · · p′1 , p1 · · · pn) a†(p′m) · · · a†(p′1) a(p1) · · · a(pn)

where the coefficients hnm are proportional to only a single delta function
conserving total energy-momentum. In quantum field theory, recall, this
can be accomplished simply by constructing a Hamiltonian as a polynomial
of local field operators and their derivatives. This condition is typically
presented as sufficient and necessary for cluster decomposition, understood as
the factorization of the S-matrix. However, as we saw in Section 5, that is
not correct: a Hamiltonian that satisfies this condition can still produce an
S-matrix that violates cluster decomposition if one uses a basis of entangled
states to define the S-matrix.

This redefinition is, in a sense, a small change: we propose simply identi-
fying cluster decomposition with the condition that is standardly (mistakenly)
taken to be sufficient and necessary for the factorization of an S-matrix (i.e.,
what is standardly called cluster decomposition). Nevertheless, recasting
cluster decomposition in this way has a number of virtues. The isolability of
subsystems that cluster decomposition is meant to secure is dynamical isolabil-
ity: by identifying cluster decomposition with a condition on the Hamiltonian,
it becomes a constraint on only the dynamical behavior of a quantum field
theory without introducing any irrelevant dependence on states. Furthermore,
it renders cluster decomposition basis-independent and avoids any conflict
with entanglement; the condition on the Hamiltonian that is typically (but, as
we have seen, incorrectly) presented as sufficient and necessary for a quantum
field theory to satisfy cluster decomposition is now truly sufficient and neces-
sary (albeit by definition). Factorizability properties of the S-matrix are now
entailed by cluster decomposition, not identified with it; in a separable basis,
the S-matrix will factorize and in an entangled basis, it will not. As long as the
Hamiltonian does not create correlations between initially separable particles
that are localized at spacelike separation, none of the structural features of
quantum field theory that cluster decomposition is intended to support will
be endangered. It is no longer true that cluster decomposition, now stated
as a condition on the Hamiltonian, could fail without threatening any of the
structural features of quantum field theory that it supports.

It also emphasizes the origin of the cluster decomposition of VEVs. The
vacuum state of a quantum field theory is, after all, the ground state of its
Hamiltonian: the structure of the Hamiltonian thus determines the behavior
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of the vacuum. And indeed, there are multiple ways to see that a Hamiltonian
that can be written in the form above has a ground state in which VEVs
factorize when one subsystem is translated a large spacelike distance from
the others. The most direct route is via the LSZ reduction formula: a
scattering amplitude on the RHS of the reduction formula will factorize
when a subset of particles localized around x1, x2, · · · , xn are translated an
arbitrarily large spacelike distance from all others if and only if the VEV on the
LHS also factorizes when the same translation is applied to the corresponding
field operators. Thus if a Hamiltonian generates an S-matrix that factorizes
appropriately, its ground state necessarily does the same. More physically,
we also saw that the Hamiltonian determines the structure of correlations
in its ground state. The kinetic term couples field operators at neighboring
points, which generates the correlations; the mass spectrum of the Hamiltonian
(specifically, whether the spectrum has a mass gap) determines whether those
correlations decay exponentially or polynomially along spacelike directions.

In short, redefining cluster decomposition as we propose allows us to
recover ordinary practice on the back a definition of cluster decomposition that,
compared to the standard statement, is both more physically transparent and
better reflects the structural role that it plays in the architecture of quantum
field theory. Insofar as the standard definition of cluster decomposition shapes
the structure of quantum field theory, it is due to the dynamical constraints it
imposes. A satisfactory definition should reflect that.

7. Conclusion. We have argued that the standard statement of one of the
central pillars of quantum field theory, the cluster decomposition principle,
is unsatisfactory and proposed a redefinition. Our argument proceeded by
demonstrating that the factorization of the S-matrix under large spacelike
translations of a subset of particles – what is standardly called cluster de-
composition – can fail for two reasons: the Hamiltonian of the theory can be
badly behaved or there can be entanglement between particles in the states
used to define the S-matrix. We argued that the second source of failure is,
in a sense, spurious: it does not endanger any of the structural features of
quantum field theory that cluster decomposition is typically taken to ground.
These structural features, broadly speaking, all concern senses in which a
physical system can be decomposed into essentially isolated subsystems that
one can assign independent states, upon which one can perform local interven-
tions, and for which the statistical distributions of measurement results are
independent of events elsewhere in the universe. Those features depend only
on the Hamiltonian of the theory being well-behaved, in the sense of Section 4.
Accordingly, our proposed redefinition of cluster decomposition identifies it
with a dynamical condition alone. This allows us to recover ordinary practice
while relying on a definition of cluster decomposition that, compared to the
standard statement, is both more physically transparent and better reflects
the structural role that it plays in the architecture of quantum field theory.
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